

Integration of ground- and satellite-based data to map the Urban Heat Island effect

Robert Andriambololonaharisoamalala¹, Petra Helmholz¹, Ivana Ivanova¹, Susannah Soon², Dimitri Bulatov³, Eriita Jones¹

Introduction

Expected outcomes

- The World is experiencing rapid urbanisation and over 66% of global population will live in cities by 2050 [1].
- Urban Heat Island (UHI) effect, which is a phenomenon where cities experience warmer temperatures than their rural surroundings [2], is intensified due to human activities such as buildings, roads, and industrial processes.
- Combined with climate change, UHI effect is becoming a serious issue as it affects human health and energy consumption [3]. Accurate measurement and monitoring urban surface temperatures (Ts) are crucial to preparing for tracking potential UHIs [4].
- Data-driven (fine scale Ts) recommendation is needed to advise on policy decisions.
- Few existing studies on urban heating are focused on understanding the characteristics of urban Ts at fine spatial and temporal scales.

Aims

Understand urban thermal dynamics at fine spatial and temporal scales by

integrating ground and satellite data:

1. Fine spatial resolution urban **Ts** data.

- Fig. 2: Ground-based measurements (red circle), predictors and fine spatial resolution Ts (10m).
- 2. Fine temporal resolution urban **Ts** from ground-based measurements.

Fig. 3: Fine temporal Ts (hourly) from sensor nodes connected to a

LoraWAN network.

3. Fine spatiotemporal urban **Ts**.

- 1. Design an algorithm to measure and monitor urban Ts.
- 2. Apply and evaluate the algorithm on Curtin campus and other urban environments.

Fig. 4: Fine spatiotemporal Ts.

The predicted fine scales Ts will be validated with temperature simulation

and satellite-derived Ts using spatiotemporal enhancement techniques.

References

 United Nations, 2014 revision of the World Urbanization Prospects | Latest Major Publications - United Nations Department of Economic and Social Affairs, in Un.org. 2014.
Oke T.D. et al. Urban Olimeters, 2017. Combridges Combridges

- 2. Oke, T.R., et al., Urban Climates. 2017, Cambridge: Cambridge University Press.
- 3. Bonan, G., Ecological Climatology: Concepts and Applications. 3 ed. 2015, Cambridge: Cambridge University Press.
- 4. Kim, S.W. and R.D. Brown, *Urban heat island (UHI) intensity and magnitude estimations: A systematic literature review. Science of The Total Environment, 2021. 779: p. 146389.*

¹School of Earth and Planetary science, Curtin University - ²School of Elec Eng, Comp and Math Sci (EECMS), Curtin University - ³Institute of Optronics, System and Technologies and Image Exploitation (IOSB), Germany.

