
Methods 
• PID Controller: Best for simple, linear systems. Effective and easy

to implement but limited in handling nonlinearities and complex
dynamics.  

• PD Controller: A simpler version of PID, effective where integral
action is unnecessary. Easier to tune and implement.  

• DNN Controller: Suitable for complex, nonlinear systems. Requires
extensive training and computational resources.   

• MPR Controller: Optimizes control actions by predicting future
system behaviour, suitable for multi-variable and constrained
systems but computationally intensive.  

Aims
• Enhance intelligent decision-making for dynamic adjustment of satellite

operations in response to failures or degradations.

• Minimize disruption to mission objectives in unpredictable and resource-

constrained space environments.

• Ensure robust performance on resource-constrained spacecraft

platforms.

Challenges Introduction
Spacecraft attitude control is essential, but actuator failures can cause

mission failure without adaptive control mechanism which is crucial to

ensure mission reliability [1].

Recent advancements shows that the optimal attitude control remains

challenging due to the balancing complexity with limited on-board

computational resources [2].

Reinforcement Learning allow us to model sequential actions and

uncertainties, in order to achieve adaptive strategies and efficient resource

management in space [3].
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Formulated Problem 
Reinforcement learning involves an agent learning by interacting with its 
environment, modelled as a Markov Decision Process (MDP) with states, actions, 
transitions, and rewards. The goal is to find an optimal policy that maximizes 
rewards. For attitude control, the satellite (agent) uses observations from the 
Basilisk simulator to predict reaction wheel speeds for target attitude and stability.

Autonomous Satellite Attitude Control Using 
Reinforcement Learning

Ghaith El-Dalahmeh, Bao Quoc Vo, Ryszard Kowalczyk, Reza Jabbarpour Sattari

Swinburne University of Technology , University of South Australia

Email: geldalahmeh@swin.edu.au ; bvo@swin.edu.au ; ryszard.kowalczyk@unisa.edu.au; rjabbarpoursattari@swin.edu.au

Attitude & Orbit Control Computer

Controller

Estimator

Actuators

Sensors

Desired

E
st

im
at

e

Control Error

Spacecraft

Disturbances

Sensor Noise, 
Misalignment

Estimation 
ModelsTelemetryCommand

Block Diagram for an Attitude and Orbit Control System 

Complex Systems

• Spacecraft consist of thousands of intricate 
components.

• Many components are designed for specific 
mission requirements.

Monitoring Constraints 
• Continuous monitoring of every 

component is impractical and 
requires extensive resources.

Processor Limitations

Spacecraft processors are relatively 
weak with limited RAM and 
processing capabilities.

Interrelated Components

• Autonomous control systems 
must comprehend the complex 
interactions between various 

parts.

Computing Power Allocation

A significant portion of computing 
resources is dedicated to essential 
operations, leaving less available 
for autonomous functions.
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Satellite Agent

Action Space : Reaction Wheel Speed

State: Current Friction error, Rotation Rates
Reward : Target attitude error
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Overview of Attitude Control System using Reinforcement Learning
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