

Event-based Structure-from-Orbit

Ethan Elms¹, Yasir Latif¹, Tae Ha Park² and Tat-Jun Chin¹

- Space is a domain abundant with naturally spinning objects, such as satellites and space debris (Fig. 1). Extracting the shape and motion parameters of such spinning objects in space can facilitate vision-based spacecraft navigation and debris removal [1, 2].
- We formulate the task of event-based Structure-from-Orbit (eSfO), \bullet which entails the reconstruction of an object undergoing a spinning (circular) motion while being observed by a static event camera, and jointly estimating the motion of the object. Successfully achieving this task would enable us to survey an object and characterise its motion.

Aims

- Develop a method that can estimate the sparse structure and motion **parameters** of a spinning object observed by a static event camera.
- Development of a monocular event-based feature detection and

- Through extensive experiments, we have demonstrated that the motion parameters (rotation rate and projection of the axis of rotation) and sparse reconstruction are reliably recovered by the eSfO pipeline.
- Unlike current state-of-the-art event-based feature trackers, our tracker can operate under both general 6-DoF motion and circular motion.
- Sample reconstructions are depicted below on the right.

tracking method that can handle the spinning motion.

• Production of a monocular event-based dataset and benchmark for the *eSfO* problem.

Methods

- The developed event corner clustering-based feature detection and \bullet tracking method, Event Tracking by Clustering (ETC), is designed to handle the unique feature tracking challenge posed by the circular motion. Its design also enables the tracker to **operate under high-speed** motion and challenging lighting conditions.
- Our Structure-from-Orbit (SfO) formulation enables joint optimisation of \bullet the sparse structure and motion parameters from the feature tracks.

Fig. 2: Sample event frames from our TOPSPIN dataset.

References

[1] Brent E. Tweddle, et al. Factor graph modelling of rigid-body dynamics

Fig. 1: Astroscale's ADRAS-J spacecraft in orbit around some debris.^[3]

for localization, mapping, and parameter estimation of a spinning object in space. Journal of Field Robotics.

[2] Mehregan Dor, et al. Visual SLAM for asteroid relative navigation.

[3] A. Howlett, "Astroscale's adras-J continues to make history: Successfully demonstrates fly-around observations of Space Debris," Astroscale.

¹The University of Adelaide ²Stanford University

Cooperative Research Centres Program