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Executive Summary 
 
Project P2-20 is a collaboration between DEWC Systems and the Institute for Intelligent Systems 
Research and Innovation (IISRII), Deakin University. The main project objective is to design and develop 
intelligent data-based models for classification of radar signals with potential distributed radio frequency 
(RF) processing capabilities for deployment across space-based platforms. 

The project leverages advancements in artificial intelligence (AI) to develop cutting edge intelligent data 
analytic solutions for radar monitoring capabilities. This initial collaboration is part of a multi-phase AI-
driven RF monitoring system roadmap of DEWC systems to advance sovereign RF technologies and 
capabilities in Australia, along with the support of SmartSat CRC. The collaboration team brings together 
researchers from Deakin University and domain experts from DEWC Systems to analyse and address 
radar signal analytics, leading to detection and classification of conventional and low-probability-of-
intercept (LPI) radar signals. 

The eight-month duration of the project has resulted in a proof-of-concept deep learning-based 
framework capable of detecting and classifying synthetic RF signals tested in a lab environment with 
simulated noise. A variety of data sets with different signal-to-noise ratios (SNRs) from different target 
radar signals have been generated for evaluation.  The obtained accuracy scores across different 
scenarios are promising, yielding close to perfect classification performance and demonstrating efficacy 
of the developed DL framework for RF signal detection and classification. 
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1. Introduction 
Two machine learning (ML) and deep learning (DL)-based pipelines were fully designed and 
implemented as part of this project. These two pipelines differ in how they transform and process time 
series data (radar echoed signals), perform feature extraction and develop classification models. Details 
of these two pipelines along with the obtained results are discussed. 
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2. ML Pipeline 
2.1 Preliminary 
To build the ML pipeline, a binary classification is formulated for analyzing data generated based on 
characteristics with respect to radar systems. Data samples in conducted experiments in this section 
are radar echoes from a cylinder and a cone. These samples are generated using the Radar Toolbox 
of Matlab.  

As an example, the signals in Figure 1 indicate 100 echo returns from a cylinder over time. The 
assumption data generation is that the cylinder undergoes a motion that causes tiny vibrations around 
its boresight. This results in the aspect angle changes from one sample to the next. 

2.2 Machine Learning (ML) Pipeline 
The ML pipeline mainly covers data transformation, feature extraction from time series, and classifier 
development.  

The following subtasks are completed as part of this activity: 

• Data generation using Radar Toolbox in Matlab 

• Conversion of the data to the CSV format for processing using software tools and packages in 
Python 

• Data manipulation in Python 

• Feature extraction in Python using the principal component analysis (PCA) 

• Exploratory data analysis based on the extracted features 

 

FIGURE 1: THE TARGET RETURN FOR CYLINDER OBJECT. 
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• Development of the classification models, which include random forest and decision trees 

• Comprehensive data pre-processing, model evaluation and examination 

These steps are visually presented in Figure 2. The synthetic data generation part has been completed 
in Matlab. The generated CSV files are imported into a Python software and processed using ML and 
data processing packages. 

2.3 ML Results and Discussion 
2.3.1 Data Transformation 

The results of data pre-processing, transformation, and feature extraction are shown in Figure 3. The 
first five principal components contain more than 70% of information variation in the data set, indicating 
the importance of these features for ML model development.  

Figure 4 depicts transformed time series (radar echoed signals) in the 2D space of principal 
components. Each point corresponds to an echoed signal from a cone or cylinder. There is a very good 
separation between features extracted using PCA. This separation is obvious for principal components 
1 and 2 as well as 1 and 3, i.e. no overlap between density plots of two classes (data from cone and 
cylinder).  

This exploratory data analysis reveals that the data samples from the target classes are well-separated, 
and existing ML models, such as support vector machines, decision trees, etc., could achieve promising 
results. 

 

 

FIGURE 2: THE PIPELINE FOR SIGNAL PROCESSING, FEATURE EXTRACTION, AND MODEL 
DEVELOPMENT AND EVALUATION USING TRADITIONAL MACHINE LEARNING TECHNIQUES. 
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2.3.2 Classification Results 

Based on insights obtained from exploratory data analysis in the feature space, support vector classifiers 
(SVCs) are identified for ML model development for tackling this binary classification problem. The 
process of model development and evaluation is as follows: 

• Repeat the following steps 100 times:

o Randomly split the data samples into training (80%) and test (20%) sets.

FIGURE 4: THE SCATTERPLOT OF TOP PCA FEATURES FOR TWO CLASSES. A VERY GOOD 
SEPARATION BETWEEN THESE CLASSES IS OBTAINED JUST USING FEATURES 1 AND 2 OR 1 AND 3. 

FIGURE 3: THE RESULT OF DATA TRANSFORMATION AND PROCESSING USING PRINCIPAL 
COMPONENT ANALYSIS. THE PLOT ON THE LEFT SIDE SHOWS THE CUMULATIVE VARIANCE CAPTURED 
BY PRINCIPAL COMPONENTS. THE PLOT ON THE RIGHT SIDE DEMONSTRATES THE VARIANCE 
CAPTURED BY INDIVIDUAL PRINCIPAL COMPONENTS. THESE TWO PLOTS INDICATE THAT THE FIRST 
FEW COMPONENTS EFFECTIVELY AND EFFICIENTLY CAPTURE MOST OF THE DATA VARIANCE AND 
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o Develop an SVC model using the training set 

o Check and record the model performance for the test set (accuracy and area under the 
Receiver Operating Characteristic (ROC)curve (AUC)) 

• Generate the density plots for the performance metrics and calculate their statistics. 

Figure 5 depicts the boxplots of AUC and accuracy pertaining to the test samples from 100 runs (training 
and evaluating the model 100 times). SVC models achieve 100% accuracy and AUC of 1 in all 
experiments.   This observation is within expectation considering the scatterplots of time series in the 
feature space (as shown in Figure 4). The zero variance in the AUC and accuracy scores from 100 runs 
indicate the effectiveness of the proposed ML pipeline for accurate classification radar signals for this 
specific case. 

The AUC plot for one of the trained SVC models is shown in Figure 6. This plot indicates that the ML 
model is capable of perfectly separating cone and cylinder echoed signals based on a few key features 
identified through PCA. 

 

 

 

 
FIGURE 5: AUC AND ACCURACY PERFORMANCE METRICS IN 100 RUNS OF SVC MODEL. 
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FIGURE 6: THE AUC PLOT OF SUPPORT VECTOR CLASSIFIER IN ONE OF THE TRAINING SESSIONS. 

 

 

 



 

SmartSat Technical Report 4 | Development of machine learning and deep learning models for classification of radar signals 13 

3. Deep Learning Pipeline 
3.1 Motivation to Develop a DL Pipeline 
Research in Artificial Intelligence (AI)  was revolutionised in 2012 by the introduction of deep learning 
(DL) algorithms [1]. DL realises large artificial neural networks, which are inspired by biological neurons 
of humans brains. Compared with  conventional ML techniques, DL models can achieve best-in class 
performance, scale effectively with data, automatically extract useful information (i.e.,  features) for 
decision making, and are fully transferable [2]. New advances in DL have  ignited an explosion of AI 
applications for solving challenging problems across a range of previously closed applications, as 
diverse as autonomous cars [3], cancer diagnosis [4] [5], and drug discovery [6].  

The proposed ML pipeline described in the previous section achieves promising results under specific 
conditions: 

• A low level of communication noise; 

• Data abundance; and 

• Binary signal classification. 

These assumptions could be easily violated in real-world due to multiple reasons: 

• Usually, communication noise is high resulting in corrupted signals. The transformation 
of and feature extraction from these signals lead to poor data representation. 

• It could be the case that the number of collected samples is very limited, e.g.  due to 
technical problems including hardware constraints (e.g. memory shortage). 

• The separation of multiple classes becomes practically impossible in the space of 
features obtained using linear transformations. 

• While effective, the procedure of feature engineering requires extensive effort and 
domain knowledge to yield acceptable classification results. 

Considering these issues and shortcomings, we propose and implement a DL pipeline for processing 
time series signals from radar systems. The key benefits of DL models leveraged in this study are: 

• State-of-the-art performance in 1D and 2D classification problems; 

• No need for manual feature engineering; 

• Possibility of using pre-trained models; 

• Possibility of using optimised and proven architectures. 
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3.2 Data Generation 
The data set used for DL experiments was generated based on the information on the following website: 

https://au.mathworks.com/help/deeplearning/ug/radar-waveform-classification-using-deep-learning.html 

The simulated radar system generates data for the following types of signals: 

• Rectangular

• Linear frequency modulation (LFM)

• Barker Code

• Gaussian frequency shift keying (GFSK)

• Continuous phase frequency shift keying (CPFSK)

• Broadcast frequency modulation (B-FM)

• Double sideband amplitude modulation (DSB-AM)

• Single sideband amplitude modulation (SSB-AM)

Figure 7 shows three randomly selected LFM radar waveforms. These plots clearly depict the 
differences/variances in the generated data samples. 

We also change the signal to noise (SNR) ratio during the data generation process. This is to simulate 
scenarios where there is no communication interference (high SNR) and where the communication is 
corrupted by noise (low SNR). To comprehensively examine the noise impact, we generate multiple 
data sets for different SNR values, i.e., from -10 to 20 with an increment of 5. These seven data sets 
are used to train DL models where their performance is evaluated using unseen data samples in the 
test set. 

FIGURE 7: RADAR WAVEFORMS GENERATED DURING SIMULATIONS. 

https://au.mathworks.com/help/deeplearning/ug/radar-waveform-classification-using-deep-learning.html
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3.3 1D to 2D Data Encoder 
DL models have been mainly developed for 2D data structures such as images.  As such, we convert 
1D signals into 2D images by applying the Wigner-Ville distribution transformation. This 2D encoder 
provides an effective representation of the time series data in the time-frequency domain. This 
representation makes pattern recognition and classification easier for the DL model. The Wigner-Ville 
distribution generates a time-frequency representation of the original time series data. This 
transformation is suitable for time varying signals. The high resolution and locality in both time and 
frequency provide ample information/patterns for the identification of similar modulation types.  The 
obtained 2D views are saved as pictures, which are then used for model development. 

Figure 8 shows nine pictures corresponding to nine randomly selected waveforms after their 
transformation using the Wigner-Ville distribution encoder.  

  

 

 
FIGURE 8: NINE RANDOMLY SELECTED WAVEFORM AFTER THEIR 2D TRANSFORMATION. 
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3.4 DL Model Architecture 
The DL pipeline for processing radar waveforms is shown in Figure 9. The 2D images are fed to a deep 
convolutional neural network (CNN). The model consists of one rescaling layer, three convolutional 
layers, and one dense layer. The model treats the radar signals as 2D images (non-RGB) and outputs 
one of the target classes, as per the data generation process. 

The model uses ‘Adam’ optimiser for adjusting its parameters through minimisation of the categorical 
cross-entropy as the loss function. Max pooling is applied after each convolutional layer to calculate the 
maximum value for patches of a feature map and create a downsampled feature map. The model is 
trained for only 15 epochs as we found the performance hits the maximum limit with this number of 
epochs. The dropout mechanism is also applied to the layers of the network to guard against overfitting 
during the training process. 

Figure 10 demonstrates the number of parameters per layer and the total number of DL parameters. 
Similar to other CNN models used for computer vision tasks, the majority of the model parameters 
belong to the network head (fully connected part) where 50,176 flattened features are mapped to 128 
features. 

The model is developed using TensorFlow so we can use distributed training and warm start-up, which 
allows us to start training using previously optimized model parameters. This allows the use of online 
learning in a distributed fashion as we are now able to periodically update the model as new data 
samples are collected. 

 

 

 
FIGURE 9: DL PIPELINE FOR THE CLASSIFICATION OF RADAR WAVEFORMS. 
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3.5 DL Model Convergence and Performance 
The convergence plots of the DL model are shown in Figure 11. These plots are generated for 10 epochs 
in one of the training sessions corresponding to an SNR value of -10 (strong noise). The validation set 
is utilised for detecting when overfitting starts to happen, allowing the use of weights corresponding to 
that epoch for the final model.  

More information about the convergence of DL models for different SNR values is provided in Appendix 
A. 

FIGURE 10: THE DEEP CNN ARCHITECTURE AND THE NUMBER OF PARAMETERS PER LAYER. 

FIGURE 11: THE ACCURACY AND LOSS PLOTS FOR THE TRAINING AND VALIDATION SET DURING THE 
MODEL DEVELOPMENT. THE RESULTS ARE SHOWN ONLY FOR 10 EPOCHS.  
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The confusion matrix for the test samples of a data set with an SNR value of -10 is shown in Figure 12. 
Only a few samples from specific classes (mainly P1 and P2) have been incorrectly classified. This is 
due to the high similarity of signals for these specific classes. 

 

3.6 Accuracy vs SNR Plot 
The most important chart in this technical report is the accuracy vs SNR values. This is to investigate 
how communication noise and other interferences impact classification accuracy of DL models 
pertaining to radar waveforms. A new CNN model is trained using data from each SNR value and its 
performance is examined for the test set. A total of seven CNN models are constructed in this analysis. 

Figure 13 displays obtained accuracy rates for different SNR values. It is observed that: 

• The network test accuracy and SNR values are positively correlated. The smaller the SNR 
value, the smaller the accuracy rate of the test set. 

• For SNR values greater than zero, the DL models achieve a near perfect (100%) accuracy 
score. 

• The minimum accuracy score of the test set is 97.97% for the SNR value of -10. This is a very 
severe case of high communication noise. Despite that, the CNN model achieves promising 
classification results. 

 
FIGURE 12: THE CONFUSION MATRIX FOR NINE CLASSES OBTAINED FOR THE TEST SET. 
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FIGURE 13: THE ACCURACY OF THE TEST SET FOR DIFFERENT SNR VALUES. A NEW DL MODEL IS 

TRAINED AND TESTED FOR EACH SNR DATASET. 
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4. Conclusion
The obtained results in this proof-of-concept project indicate that the DL methodology can be effectively 
and efficiently applied to classification of radar waveforms. Comprehensive simulations using synthetic 
data sets demonstrate the promising competency of deep CNN models to automatically extract useful 
features from data and utilise them to correctly categorise radar signals into different groups. The 
proposed DL solution is also robust against noise and uncertainties that negatively impact the quality of 
communication signals.  

It is important to note that Phase 1 of this project has been focused on developing a DL pipeline for 
binary classification of synthetic radar signals. Phase 2 of this project has taken a step further to handle 
multi-class data sets with varying SNR values.  Promising results with near perfect classification 
accuracy have been achieved.   

5. Further Research
P2-20 Phase 1 has been a very successful project both in terms of the research results and the level of 
collaboration achieved by DEWC Systems and the IISRII at Deakin University. This collaboration and 
the project outcomes have formed a strong basis for further research. In particular, the existing pipeline 
can be enhanced to undertake the following tasks: 

• Process actual radar signals in real-time.

• Develop parsimonious models (minimum computational burden and being able to be trained
on small battery-powered GPUs).

• Deploy and test the developed DL solution on a battery-powered GPU system.

• Improve the robustness of models considering high level of communication noise/uncertainty.
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Appendix A 
 

Accuracy and Loss for SNR Values 
 

TABLE 1: PERFORMANCE METRICS FOR THE SNR VALUE OF -10 

Epoch Loss Accuracy Validation Loss Validation Accuracy 

1 0.163468 0.939194 0.103636 0.961944 

2 0.069572 0.97375 0.076991 0.972833 

3 0.047218 0.982306 0.103089 0.968389 

4 0.032026 0.988278 0.070413 0.973667 

5 0.02338 0.991611 0.082567 0.974 

6 0.019583 0.993333 0.071448 0.979722 

7 0.015223 0.994778 0.089808 0.975 

8 0.013349 0.995722 0.103795 0.971056 

9 0.012364 0.995861 0.111919 0.974722 

10 0.010872 0.996403 0.150795 0.9735 
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TABLE 2: PERFORMANCE METRICS FOR THE SNR VALUE OF -5 

Epoch Loss Accuracy Validation Loss Validation Accuracy 

1 0.13051 0.95383 0.06894 0.97428 

2 0.05230 0.98132 0.04120 0.98472 

3 0.03463 0.98815 0.08326 0.96911 

4 0.02343 0.99179 0.04498 0.98472 

5 0.01783 0.99374 0.04154 0.98706 

6 0.01208 0.99618 0.04952 0.98589 

7 0.00868 0.99714 0.06209 0.98378 

8 0.00959 0.99694 0.07679 0.98472 

9 0.00948 0.99721 0.07509 0.98378 

10 0.00773 0.99751 0.07240 0.98489 
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TABLE 3: PERFORMANCE METRICS FOR THE SNR VALUE OF 0 

Epoch Loss Accuracy Validation Loss Validation Accuracy 

1 0.11788 0.95882 0.06725 0.97422 

2 0.03176 0.98914 0.03131 0.98917 

3 0.01774 0.99399 0.02546 0.99100 

4 0.01346 0.99554 0.02110 0.99328 

5 0.01060 0.99660 0.02053 0.99400 

6 0.00794 0.99751 0.02672 0.99311 

7 0.00566 0.99824 0.03453 0.99094 

8 0.00500 0.99844 0.01255 0.99661 

9 0.00464 0.99875 0.01307 0.99694 

10 0.00629 0.99825 0.03305 0.99194 
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TABLE 4: PERFORMANCE METRICS FOR THE SNR VALUE OF 5 

Epoch Loss Accuracy Validation Loss Validation Accuracy 

1 0.08332 0.97072 0.01177 0.99611 

2 0.01768 0.99435 0.01590 0.99489 

3 0.01009 0.99697 0.00728 0.99772 

4 0.00686 0.99779 0.00454 0.99861 

5 0.00483 0.99839 0.00487 0.99906 

6 0.00675 0.99797 0.01053 0.99794 

7 0.00520 0.99869 0.00655 0.99867 

8 0.00010 0.99997 0.00532 0.99928 

9 0.00000 1.00000 0.00561 0.99939 

10 0.00469 0.99910 0.01195 0.99728 
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TABLE 5: PERFORMANCE METRICS FOR THE SNR VALUE OF 10 

Epoch Loss Accuracy Validation Loss Validation Accuracy 

1 0.075362667 0.974291682 0.011515077 0.99627775 

2 0.010332919 0.996652782 0.022697451 0.995666683 

3 0.009682666 0.99693054 0.021585153 0.994555533 

4 0.004839437 0.99869442 0.008029566 0.998388886 

5 0.004596752 0.998680532 0.004434864 0.999111116 

6 0.004867876 0.998597205 0.011049566 0.997555554 

7 0.000568573 0.999833345 0.001536458 0.999833345 

8 0.004430521 0.999000013 0.003521878 0.999722242 

9 0.002446122 0.99934721 0.004129854 0.999611139 

10 9.98E-06 1 0.004036414 0.999666691 
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TABLE 6: PERFORMANCE METRICS FOR THE SNR VALUE OF 15 

Epoch Loss Accuracy Validation Loss Validation Accuracy 

1 0.07072749 0.975652754 0.007146718 0.997222245 

2 0.010374228 0.996708333 0.001994345 0.999277771 

3 0.006389605 0.998013914 0.00319334 0.999555528 

4 0.000161575 0.999944448 0.001846861 0.999888897 

5 0.006560472 0.998472214 0.000724981 0.999833345 

6 0.003543315 0.999097228 0.001153432 0.999833345 

7 0.004396447 0.998930573 0.003054217 0.999388874 

8 0.005304446 0.99869442 0.006278185 0.999111116 

9 0.001965454 0.999527752 0.002876327 0.999777794 

10 0.004079413 0.999222219 0.002653279 0.999666691 
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TABLE 7: PERFORMANCE METRICS FOR THE SNR VALUE OF 20 

Epoch Loss Accuracy Validation Loss Validation Accuracy 

1 0.069147691 0.97613889 0.015477251 0.996222198 

2 0.014174704 0.995930552 0.001411045 0.999555528 

3 0.006691303 0.998027802 0.001180926 0.999555528 

4 0.002674808 0.999277771 0.000290291 0.999888897 

5 0.005282861 0.99862498 0.005270964 0.998666644 

6 0.001729035 0.99954164 0.000316811 0.999944448 

7 1.05E-05 1 0.000202576 0.999944448 

8 1.29E-06 1 0.000206467 0.999944448 

9 3.38E-07 1 0.00018567 0.999944448 

10 2.04E-07 1 0.00020375 0.999944448 
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