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Abstract 

Wildfires are environmental phenomena that contribute to global carbon emissions and can cause 

abrupt ecological changes in local environments. Within the context of a changing climate, wildfire 

frequency and impact are projected to worsen. The effective monitoring, characterisation and impact 

assessment of wildfires can be quite challenging due to their potentially large extent, which can include a 

variety of land cover types, fuel loads, moisture conditions and topography. Additional challenges arise 

also from rapid changes in intensity and direction caused by factors such as the wind velocity and humidity. 

To this end, collecting data that describes the different stages and aspects of wildfires is crucial for 

understanding and mitigating their effects. 

Satellite remote sensing systems provide opportunities to monitor wildfires at a variety of 

spatiotemporal resolutions. Traditionally, Low Earth Orbiting (LEO) satellite sensors have been the main 

source of wildfire data, from hotspot detections to severity estimations. Due to their orbital limitations, 

however, LEO sensors have a temporal resolution (typically 12-24 hours) that is not adequate for capturing 

the rapidly changing course of an active fire. Meanwhile, GEOstationary (GEO) sensors are capable of 

capturing data multiple times in an hour but have coarser spatial resolution that reduces the ability to detect 

small and cool actively burning fires. Contemporary GEO sensors, such as the Advanced Baseline Imager 

(ABI) and the Advanced Himawari Imager (AHI), capture full-disk images of the earth every 10-minutes 

in a range of visible, near-infrared and thermal spectral channels, opening new pathways for high-frequency 

wildfire monitoring. This dissertation explores the utility of these satellite sensors for wildfire 

characterisation and investigates opportunities for new ways of fire impact classification, using AHI which 

unlike ABI has acquisition coverage over Australia. To address this aim, four research questions are posed. 

The first research question examined the equivalency of Fire Radiative Power (FRP) estimates – 

expressed in SI units of megawatts (MW) – from LEO and GEO sensors, during the Black Summer Fires 

in Southeastern Australia (2019-2020). Specifically, the commonly used data products from the MODIS 

LEO sensor (MOD14/MYD14) and the AHI sensor (BRIGHT/AHI) were compared. The intercomparison 

was implemented across different geographical areas and scales, including regional segmentations, spatially 

and temporally continuous wildfire events and individual concurrent hotspots/pixels. Results show a high 

agreement between the products at the pixel level (r = 0.74), but with BRIGHT/AHI consistently 

underestimating FRP (by ~15%) due to its lower spatial resolution. However, BRIGHT/AHI’s temporal 

profile of fire activity was significantly more detailed at a regional level with up to 144 cloud free 

observation opportunities every 24 hours compared to MODIS, which has four observation opportunities 
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per day. Therefore, the confidence in BRIGHT/AHI’s ability to capture equivalent wildfire detail to MODIS 

and reveal new insights, for an extreme event such as the Black Summer fires (2019-2020), was established.  

The second research question progressed the intercomparison of the BRIGHT/AHI FRP estimations to 

the whole continent of Australia for an entire year, day and night, inclusive of a diverse range of land covers, 

burning conditions and durations. In addition to MODIS, LEO active fire detections from VIIRS 

(VNP14IMG) were included to further explore the effect of higher spatial resolution data in the 

intercomparison. The results suggest that LEO and GEO products captured similar wildfire dynamics, with 

a high agreement on a pixel level for concurrent detections (r = 0.74-0.77). The FRP estimations from 

BRIGHT/AHI, MODIS and VIIRS showed similar distributions across different land covers and regions, 

although with a clear positive bias for higher spatial resolution data upwards of 10 times the BRIGHT/AHI 

FRP estimations on average. Unsurprisingly, the regional diurnal fire intensity profiles captured by the LEO 

sensors demonstrated major temporal gaps between acquisitions compared to BRIGHT/AHI, especially 

around the times of peak and low fire activity. Examining individual localised events revealed that AHI 

captured a continuous stream of data that closely followed, although underestimated, all the temporal FRP 

peaks captured by either MODIS or VIIRS, with MODIS missing fire activity on some occasions. These 

findings indicate the ability of GEO data to capture active fire information accurately over large spatial 

scales, with an improved temporal detail over the LEO sensors.   

With the capability of the BRIGHT/AHI product established, the third research question explored the 

association of this new stream of wildfire activity data to commonly used burn severity metrics. While burn 

severity has been extensively studied using bi-temporal spectral differencing indices, such as the 

Differenced Normalised Burn Ratio (dNBR), few studies have examined whether active fire observations 

capture the same aspects of fire activity as dNBR. Here, the BRIGHT/AHI FRP metrics were compared to 

Sentinel-2 dNBR metrics across Australia. Results reveal that the two groups of metrics were only weakly 

correlated for high maximum FPR fires (r = 0.33-0.39), while regional, land cover, and duration variations 

did not have a significant impact on the correlations. Higher correlations were only achieved after 

introducing different burned area classification thresholds to derive the fire fractional cover, or FFC, 

(percentage of an AHI pixel classified as burned by Sentinel-2 data) for each category of fire hotspots based 

on their fire intensity (FRP) and duration.  

As the spectral differencing (Sentinel-2 dNBR) and FRP (BRIGHT/AHI) metrics capture independent 

aspects of wildfire activity, the fourth research question explored the combination of the two in a new 

wildfire impact classification method. Active fire metrics, such as the maximum FRP, the total energy 

emitted (Fire Radiative Energy – FRE) and the duration of the fire in a specific pixel location, were 

combined with the dNBR, the FFC and the pre-fire NBR (as a proxy of pre-fire vegetation health) in a 
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dataset. Commonly used and state of the art dimensionality reduction techniques (e.g., PCA, t-SNE, UMAP, 

PaCMAP) were used to transform the dataset into two-dimensional projections that distributed wildfire 

pixels in terms of linear or non-linear associations across the six wildfire variables (Maximum FRP, FRE, 

Duration, dNBR, FFC, pre-fire NBR). Then, agglomerative hierarchical clustering was implemented to 

group the transformed data into clusters that were aggregated using ensemble clustering. The resulting 

ensemble clusters represented similar fires across a variety of land covers and were attributed different 

Composite Wildfire Impact (CWI) ratings based on their individual variable medians. The results reveal 

that expected fire regime patterns are effectively captured on a continental scale and over a variety of 

biogeographical settings. Furthermore, despite the spatial resolution differences, local burn severity 

assessments based on dNBR and in-situ data demonstrated a broad agreement with the proposed CWI rating. 

The proposed data-driven methodology can be adapted and applied to different environments globally, 

without the need for training data, and assist in the monitoring of fire regime patterns and trends over 

extensive spatiotemporal scales. 

This thesis highlights the potential of contemporary geostationary satellite sensors in advancing wildfire 

monitoring and impact assessment. By providing continuous, high-frequency observations, GEO sensors 

can complement and, in some regards, surpass traditional LEO sensors in capturing the dynamic nature of 

wildfires. The combination of GEO fire intensity metrics with established LEO burn severity indices offers 

a new pathway to understanding and categorising wildfire impacts across landscapes. The methodology 

developed here enhances our ability to monitor wildfires on a continental scale, while it also provides a 

scalable and globally applicable framework for future research and operational monitoring. As climate 

change continues to increase the frequency and intensity of wildfires, the insights and tools provided here 

can inform mitigation strategies and improve our resilience to the environmental challenges of the future. 
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Chapter 1. Introduction 

This thesis explores the utility of next-generation geostationary sensors in combination with polar-

orbiting satellite data for wildfire characterisation. It proposes a set of remotely sensed variables and 

auxiliary data that can provide important information regarding wildfire effects that goes beyond the 

traditional and commonly used burn severity spectral indices. These effects are described as the impact of 

the wildfire and are estimated by combining active fire and spectral differencing metrics. This chapter 

introduces the key concepts associated with the remote sensing of wildfire, identifies knowledge gaps in 

the literature and formulates the research aim and questions that are the focus of this dissertation.

1.1. Motivation 

Every year, the world witnesses extreme weather events, such as forest fires, floods and hurricanes 

(Messerli et al., 2019). The United Nations’ 2030 agenda, with Sustainable Development Goals 13 and 15, 

urges for national policy adaptation to hazards related to climate change, as well as the protection and 

restoration of terrestrial ecosystems (UN General Assembly, 2015). Forests are important ecosystems and 

carbon storage sinks, which release considerable amounts of greenhouse gases (GHG) when burned. As 

fire seasons become longer and more extreme, with higher temperatures and less precipitation, wildfire 

regimes are changing often with negative impacts (Jia et al., 2019). If not disturbed again, burnt forest and 

vegetated areas are expected to recover within years to decades, recapturing most of the released carbon 

(Landry and Matthews, 2016). Therefore, wildfire monitoring and an enhanced understanding of their 

ignition conditions, behaviour and impact are crucial (Lang and Moeini-Meybodi, 2021). 

Remote sensing offers a plethora of diverse observations that can be used to quantify fire danger based 

on pre-fire conditions (Pettinari and Chuvieco, 2020), detect wildfires actively burning at the time of 

satellite observation (Engel et al., 2021a), assess their GHG emissions based on their intensity and available 

carbon (biomass) (Nguyen et al., 2023), map burned areas (Roy et al., 2024), quantify the immediate impact 

on the landscape (Lizundia-Loiola et al., 2022), as well as monitor fuel load (Fernández-Guisuraga et al., 

2022), fuel moisture (Rao et al., 2020), and the long-term recovery of the vegetation (Sparks et al., 2023a; 

Wooster et al., 2021). This information is often available over large spatial areas and for long periods of 

time, in some cases decades, with varying observation revisits ranging from days to minutes. 

However, current satellite products are limited in their spatial and temporal resolution. Low Earth polar-

orbiting sensors (LEO) used in wildfire detection and characterisation revisit the same location typically 

every 12-24 hours, which is not ideal for capturing dynamic and rapidly changing wildfires. Meanwhile, 

geostationary sensors (GEO) observe the full disk from a "fixed" position, capturing multiple images per 
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hour, although their spatial resolution cannot compete with LEO sensors yet. To allow for more detailed 

and accurate description of fire regimes and effects, new frameworks are needed to combine the available 

data and maximise their strengths. Hence, an opportunity emerges to investigate and define better ways of 

using satellite-derived information for understanding wildfire impact in the landscape. 

1.2. Wildfire monitoring from space 

1.2.1. Active fire detection and intensity 

Earth observations can be used to identify wildfire hotspots across large spatial areas in a timely 

manner. Active fires emit electromagnetic radiation (EMR) that can be detected by multispectral sensors in 

the middle (MIR) and longwave (LWIR) infrared part of the spectrum, between 3-5μm and 8-14μm 

respectively (Dozier, 1980; Wooster et al., 2021). Often, additional spectral bands may also be used to filter 

out the contamination from signals other than fire (e.g., clouds, sun glint) (Giglio et al., 2021; Szpakowski 

and Jensen, 2019; Wooster et al., 2021). 

Wildfires are rapidly changing phenomena, hence their prompt detection and spread monitoring is 

time sensitive. An important aspect of a satellite sensor used in fire detection is its revisit time to a specific 

location, also known as its temporal resolution. Polar-orbiting or LEO sensors are the most commonly used 

for fire detection, and their temporal resolution is typically 12 hours with one daytime and one nighttime 

observation (e.g., MODIS, VIIRS). Recently, fire detection algorithms have been adapted to GEO sensor 

observations to take advantage of their higher temporal resolution (10-30 minutes) (Engel et al., 2021b; 

Roberts and Wooster, 2008; Xu et al., 2021, 2010) enabling near continuous or persistent surveillance 

during cloud-free conditions. Therefore, GEO satellites offer the potential for more appropriate observation 

frequency that is better suited to dynamic phenomena such as active wildfires. 

The sensor’s ability to distinguish a fire from its background depends on several factors. For 

example, the size and temperature of the fire, the surrounding land cover, and the spatial resolution of the 

sensor. If a fire occupies only a fraction of an image’s pixel, which corresponds to the sensor’s minimum 

sampling distance on the ground, then a true detection can be missed (or omitted). LEO sensors usually 

have a higher spatial resolution than GEO sensors and are more successful at detecting small and low 

intensity fires (Engel et al., 2021b; Hall et al., 2019). Logically, the agreement between LEO and GEO 

increases with increasing fire temperature and size (Engel et al., 2021b; Xu et al., 2017). 

The upwelling radiation in the MIR part of the EMR spectrum of an active fire is an indicator of 

fire intensity (Keeley, 2009; Wooster, 2002). The Fire Radiative Power (FRP) of an active fire detection, 

an instantaneous fire intensity proxy, can be estimated from satellite sensor MIR data (Wooster et al., 2005). 
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The time integration of FRP through the course of a wildfire’s life is called Fire Radiative Energy (FRE), 

typically expressed in megajoules (MJ). FRE represents the total radiative energy released during 

combustion and is computed by integrating FRP over time. In practice, this is done by summing the product 

of FRP and the temporal interval between consecutive satellite observations. The temporal extent is 

determined by identifying the start and end of detectable fire activity from active fire detections. FRE has 

been shown to correlate with biomass consumption and it has been used to estimate GHG emissions (Ichoku 

and Kaufman, 2005; Mota and Wooster, 2018). This information is important for atmospheric carbon 

emission and climate change studies (Li et al., 2019a; Nguyen et al., 2023). 

1.2.2. Burned area detection and wildfire severity 

The change in the earth’s surface reflectance caused by a wildfire, and especially in the Shortwave 

Infrared (SWIR) and Near-Infrared (NIR) part of the electromagnetic spectrum, is used to detect burned 

area and proxy measures of severity (Chuvieco et al., 2019; Key and Benson, 2006), and has been of interest 

in the remote sensing community for decades  Such changes are used to quantify burned area assessments 

through a binary classification of land to burned or unburned. Meanwhile, the magnitude of spectral change 

is used to quantify the burn severity of a fire, a term that have been used in the literature to describe various 

aspects of wildfire effects on the landscape (Keeley, 2009; Key and Benson, 2006). The Normalised Burn 

Ratio (NBR) and its pre-post fire difference (dNBR) is a spectral index often used for burned area mapping 

and severity assessments that incorporates NIR and SWIR remotely sensed information (Key and Benson, 

2006; López-García and Caselles, 1991). NBR-based indices are usually calibrated with in-situ assessments 

of severity in small plots of burned land and generalized locally (De Santis and Chuvieco, 2009; Gerrevink 

and Veraverbeke, 2021; Key and Benson, 2006). However, their generalization capabilities are limited over 

larger areas (Fernández-Guisuraga et al., 2023a; French et al., 2008), with their design often being deemed 

adequate for burned area mapping, but not for severity assessment (Roy et al., 2006). Meanwhile, canopy 

density (Yin et al., 2020) and poor pre-fire vegetation health (e.g., after a drought) (Gale and Cary, 2022) 

can also result in negligible spectral change estimates due to a fire. 

Severity is usually defined as the spectral change of vegetation that has been burned, however, wildfire 

impact can be broader. Several small area studies have shown that the radiated heat of a fire can affect tree 

growth and mortality in the short and long term (Smith et al., 2016; Sparks et al., 2023a, 2017; Subasinghe 

Achchige et al., 2022). Furthermore, tall and dense canopies can obstruct the ground and fires that burn 

with low intensity may not reach the crown of the trees, making changes from a nadir perspective difficult 

to observe (Fernández-Guisuraga et al., 2023a). While next generation GEO sensors are limited in their 

ability to detect significant post-fire changes in reflectance due to coarse spatial resolution and strong 

diurnal reflectance variation (Roy et al., 2021), they provide near-continuous observations of active fire 
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activity and radiative power. This capability offers a complementary data stream that, when integrated with 

high-resolution spectral differencing methods, can offer additional insights into wildfire impact, beyond 

what traditional post-fire assessments capture. 

1.3. Satellite sensor data and algorithms for wildfire applications 

1.3.1. Himawari-8/9 AHI 

Himawari-8/9 are meteorological satellites launched by the Japanese Meteorological Agency (JMA) 

that follow a geostationary orbit. They carry the Advanced Himawari Imager (AHI) sensor, an instrument 

that is significantly improved from older generations and identical to the Advanced Baseline Imager (ABI) 

of the GOES satellites of NASA (Bessho et al., 2016). AHI provides full-disk scenes of the earth every 10-

minutes in 16 multispectral bands that range between 500m and 2km spatial resolution. While AHI’s 

observations are mainly used for meteorological purposes, its improved spatial resolution, and its ability to 

capture data in the MIR and Thermal Infra-red (TIR) make it a good candidate for wildfire monitoring. 

Specifically, bands 7 and 13 centred at 3.9μm and 10.4μm respectively, and at 2km spatial resolution (Table 

1.1), have been used in various studies for active fire detection (Engel et al., 2021b, 2021a; Wickramasinghe 

et al., 2020) and FRP estimation (Engel et al., 2022; Xu et al., 2017). 
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Table 1.1 Himawari-8/9 AHI sensor specifications, showing central wavelengths and spatial resolution per band  (Bessho et al., 

2016). 

Part of the EM spectrum Band Wavelength (μm) Spatial resolution (km) 

Visible 1 0.47 1 

2 0.51 1 

3 0.64 0.5 

Near-Infrared 4 0.86 1 

5 1.6 2 

6 2.3 2 

Infra-red 7 3.9 2 

 8 6.2 2 

 9 6.9 2 

 10 7.3 2 

 11 8.6 2 

 12 9.6 2 

 13 10.4 2 

 14 11.2 2 

 15 12.4 2 

 16 13.3 2 

 

1.3.2. Geostationary active fire detection algorithms 

Fire detection algorithms are used with satellite data to identify fires by identifying spatial or temporal 

anomalies between fire pixels and their surroundings. These algorithms typically utilise Brightness 

Temperature (BT) bands in the MIR and TIR parts of the spectrum, around 3.9μm and 10.4μm respectively, 

as well as reflectance in the red band (0.64μm) for cloud masking and albedo thresholds (Dozier, 1980; 

Engel et al., 2021b; Wooster et al., 2021). The most prominent spatial anomaly algorithm is the Fire 

Thermal Anomaly (FTA) (Roberts and Wooster, 2008). FTA is a contextual algorithm, which means that 

it identifies potential fire pixels in single images using fixed thresholds and then refines its detection by 

comparing them to nearby non-fire pixels (Wooster et al., 2021). FTA has been implemented across 

different geostationary sensors, such as the Meteosat SEVIRI over Europe and Africa (Freeborn et al., 

2014a; Wooster et al., 2015), the two GOES sensors over the Americas (Xu et al., 2010), and AHI over 

East Asia and Australia (Xu et al., 2017).  
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Meanwhile, algorithms that detect fire hotspots based on spatial and temporal information utilising 

GEO sensors (AHI) have also been developed (Engel et al., 2021b, 2021a; Hally et al., 2023, 2019). One 

such algorithm is the Biogeographical Region and Individual Geostationary HHMMSS Threshold 

(BRIGHT) that has been developed for AHI with a focus on Australia (Engel et al., 2021b, 2021a). 

BRIGHT/AHI considers the temporal information of each pixel as well as the neighbouring pixels that are 

situated in the same biogeographical region. The temporal information includes all the available cloud-free 

observations in the 28 days leading up to a new observation, and it is used to derive the expected fire-free 

background BT for each of the 419 unique biogeographical regions of Australia (DAWE, 2000; Engel et 

al., 2021a). Each new observation is then compared to the expected background BT and it is classified as 

an active fire detection or not, based on a series of statistical thresholds (Engel et al., 2021b, 2021a). For 

each hotspot, BRIGHT/AHI also provides fire intensity information (FRP) using the model proposed by 

Wooster et al. (2005, 2003) (Engel et al., 2022).  

1.3.3. AQUA/TERRA MODIS 

NASA’s Aqua and Terra LEO satellites and the Moderate Resolution Imaging Spectroradiometer 

(MODIS) sensors have been providing daily global earth observations for over than two decades. The 

MODIS observation capabilities include 36 spectral bands from 0.41μm to 14.23μm, at spatial resolutions 

ranging from 250m to 1km. The active fire detections are derived using a contextual algorithm that utilizes 

the MODIS brightness temperature bands 21, 22, and 31 (Table 1.2) (Giglio et al., 2021, 2016). The hotspots 

are available at 1km of spatial resolution, two times a day from each of two satellites and they include FRP 

estimations using the method proposed by Wooster et al. (2003). The resulting datasets are distributed as 

MOD14 (Terra) and MYD14 (Aqua) products (Giglio et al., 2021). 

Table 1.2 MODIS specifications, showing central wavelengths and spatial resolution per spectral band that is relevant for the 

fire detection algorithm (Giglio et al., 2016). 

Band Wavelength (μm) Spatial resolution (km) 

21 4 1 

22 4 1 

31 11 1 
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1.3.4. SNPP VIIRS 

The Suomi National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite 

(SNPP/VIIRS) is a sensor used for various earth observation applications, including active fire monitoring, 

since 2012 (Schroeder and Giglio, 2018). The VIIRS sensor offers data in 21 spectral bands, ranging from 

0.412 μm to 12μm. VIIRS bands I4 and I5 (Table 1.3) are used for active fire hotspot detection and FRP 

estimation, and their derivation follows the same methodology as MODIS (Giglio et al., 2016). The active 

fire VIIRS data are available at a higher spatial resolution compared to MODIS (375m) and are distributed 

as VNP14IMG (Schroeder and Giglio, 2018). VIIRS data have a global coverage, with two observation per 

day (day and night) (Schroeder et al., 2014).  

Table 1.3 VIIRS specifications, showing central wavelengths and spatial resolution per spectral band that is relevant for the fire 

detection algorithm (Schroeder et al., 2014). 

Band Wavelength (μm) Spatial resolution (m) 

I4 3.74 375 

I5 11.45 375 

 

1.3.5. Sentinel-2 MSI 

The Sentinel-2 mission is a two-satellite constellation on a polar-orbit that carry the Multispectral 

Imager (MSI). The satellites’ temporal resolution is 10 days, that when combined can offer data for specific 

locations every 5 days. MSI data are available in three different spatial resolutions depending on the spectral 

band, at 10m, 20m and 60m (ESA, 2015). While these data are not ideal for active fire monitoring due to 

the long revisit times and the absence of MIR and TIR spectral bands Table 1.4), they are suitable for 

monitoring temporal changes in reflectance of the burned areas at a much higher spatial resolution than the 

active fire hotspot sensors. The Near Infrared (band 8A) and Short-wave Infrared (band 12) bands are often 

used to derive NBR and dNBR indices using MSI data (Roy et al., 2021). 
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Table 1.4 Sentinel-2 MSI specifications, showing central wavelengths and spatial resolution per band (ESA, 2015). 

Band Wavelength (nm) Spatial resolution (m) 

1 443 60 

2 490 10 

3 560 10 

4 665 10 

5 705 20 

6 740 20 

7 783 20 

8 842 10 

8A 865 20 

9 945 60 

10 1375 60 

11 1610 20 

12 2190 20 

 

1.4. Problem statement 

Next generation geostationary sensors make active fire behaviour data available at a higher spatial and 

temporal resolution that has been unavailable from sensors in such orbits until recently. Previously, the lack 

of high frequency information on the active fire progression (Keeley, 2009) meant that wildfire impact from 

space has mostly been studied using surface reflectance change due to fire (e.g., dNBR). New active fire 

information from GEO sensors is becoming increasingly available in higher temporal and spatial resolutions, 

but so far it has not been explored whether it can also be used to characterise wildfire impact. Here, we 

define wildfire impact as the composite effects on vegetation, ecosystems and the landscape that are 

observed through remotely sensed spectral changes and the release of energy from burning biomass. 

Few studies have explored the association between active fire intensity and burn severity metrics by 

directly comparing FRP from polar-orbiting sensors (MODIS) to the change in spectral indices for small 

area fires, but no significant correlation was found (Henry et al., 2019; Heward et al., 2013). GEO datasets, 

such as BRIGHT/AHI, can provide detailed diurnal information about the active fire and reduce the 

temporal uncertainty introduced by polar-orbiting observations. However, despite its ability to rapidly 

detect fires (Engel et al., 2021a, 2021b), BRIGHT/AHI is a nascent product and its fire intensity monitoring 

capabilities have not been fully explored.  
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1.5. Research aim 

This thesis argues that the existing spectral differencing methods commonly utilised to characterise 

fires can be augmented by including high frequency active fire behaviour information. The aim is to explore 

the utility of these new earth observations and derived products, expand on their evaluation methods, and 

investigate new approaches for understanding and characterising wildfire activity and impact. This is 

achieved over a comprehensive variety of climates, landscapes, and fire regimes, by including the whole 

continent of Australia for a year of fire activity (April 2019-Mach 2020). 

1.5.1. Research questions 

The research aim is achieved by investigating four research questions outlined below: 

Research Question 1: How do measures of fire radiative power from geostationary satellites 

compare with those from polar-orbiting satellites for an extreme wildfire event?  

In this research question, next generation geostationary wildfire detections and their associated intensity 

estimations (BRIGHT/AHI) are compared to equivalent and commonly used polar-orbiting sensor data 

from MODIS (MOD14/MYD14). The goal is to assess the ability of BRIGHT/AHI to capture the intensity 

of fire and to explore opportunities stemming from its higher temporal resolution to characterise wildfires. 

The data used correspond to the southeastern Australia during the devastating Black Summer Fires 

(2019/2020), which was an unprecedented fire season that exceeded typical scale and intensity expectations. 

The Black Summer fires started in northern Australia and progressed south, affecting large parts of Northern 

Territory, Queensland, New South Wales, and Victoria. The association between the datasets is assessed 

for simultaneous observations on a pixel, single fire event, and biogeographical region level. The diurnal 

fire intensity profiles and spread patterns over the study area and period are also compared.  

Research Question 2: How do measures of fire radiative power from geostationary satellites 

compare with those from polar-orbiting satellites when examining an entire year of wildfire activity, 

for the whole of Australia to capture seasonal and geographical variations? 

This research question expands RQ1's study area (southeastern Australia) and period (over an extreme 

wildfire event), to all of Australia between April 2019 and March 2020, to further explore the equivalency 

of BRIGHT/AHI to other established polar-orbiting datasets over varying land covers, fire regimes and 

seasons. An additional polar-orbiting dataset from VIIRS (VNP14IMG) with a higher spatial resolution 

than MODIS is included in the analysis. Simultaneous observations between the sensors are compared to 

evaluate the effect of their different spatial resolutions on fire intensity estimation. The temporal resolution 

differences between the datasets are also assessed by comparing their total observation records for high and 
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low fire activity months, exploring the benefits of high frequency observations. Finally, the time-series of 

FRP for four fire events are compared to examine additional temporal resolution discrepancies in more 

detail.  

Research Question 3: What is the relationship between different earth observation measures of 

fire intensity (i.e., active fire) and burn severity (i.e., impact of fire)? 

The third research question explores the association between fire intensity data (Maximum FRP and 

FRE) from BRIGHT/AHI and burn severity data from Sentinel-2. These metrics were selected based on 

their relevance to different phases of a wildfire event. Maximum FRP provides a measure of peak fire 

intensity, offering insight into the most extreme radiative output of the event. FRE reflects the total energy 

released from the burning process and serves as a proxy for total fuel consumption. Finally, dNBR is used 

as a proxy of burn severity, as it is traditionally used in burn severity assessments in remote sensing. The 

aim is to examine whether these distinct metrics correlate and capture similar effects for the same fires. 

Their equivalency is studied over different land covers, burning conditions and durations all over Australia 

between April 2019 and March 2020 to reveal opportunities for complementary use. 

Research Question 4: How can cross-platform fire intensity and severity measures be used to 

derive new metrics of wildfire characterization and impact in the landscape?  

The final research question builds on the outcomes of the previous research and proposes a framework 

to characterise wildfire impact on vegetation. The framework also introduces additional dimensions to fire 

impact assessment, by incorporating pre-fire spectral observations, land cover, burned area percentage of 

the AHI pixel and fire duration variables. The study area is Australia, and the study period spans from April 

2019 to March 2020. Current practices rely on spectral differencing and have certain drawbacks, such as 

an inability to generalise the severity assessments, and inconsistencies due to pre-fire vegetation condition 

and fire history. The aim of this research question is to augment the existing methodologies with newly 

available active fire information from geostationary sensors. 

1.6. Thesis structure 

This thesis is organized into six chapters, including this introductory chapter (Chapter 1). The following 

four chapters (Chapter 2 to Chapter 5) correspond to each of the four research questions (1.5.1). Chapters 

2 determine the capability of BRIGHT/AHI to estimate fire intensity during and extreme event. Chapter 3 

expands on the methodology and study area of Chapter 2 including a complete fire season and all of 

Australia. Chapter 4 assesses the association between BRIGHT/AHI, whose confidence and limitations 

have been established in the previous chapters, with traditionally used burn severity metrics based on 
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spectral differencing. Chapter 5 explores the combination of the two cohorts of metrics from Chapter 4 into 

a new wildfire impact rating system. By the time of this thesis’s submission, Chapters 2 to 4 (Research 

Questions 1, 2 and 3) have been published in peer-reviewed journals (Chatzopoulos-Vouzoglanis et al., 

2024, 2023, 2022), while Chapter 5 is submitted for publication. The outcome of this study, its contributions 

to the field and suggestions for future research are presented in Chapter 6. 
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Chapter 2. Comparing Geostationary and Polar-

orbiting satellite sensor estimates of Fire Radiative 

Power (FRP) during the Black Summer Fires (2019-

2020) in South-Eastern Australia 

 

This chapter is based on: Chatzopoulos-Vouzoglanis, K., Reinke, K.J., Soto-Berelov, M., Engel, C., 

Jones, S.D., 2022. Comparing geostationary and polar-orbiting satellite sensor estimates of Fire Radiative 

Power (FRP) during the Black Summer Fires (2019–2020) in south-eastern Australia. International Journal 

of Wildland Fire 31, 572–585. https://doi.org/10.1071/WF21144 

Abstract 

We compared estimates of Fire Radiative Power (FRP) from sensors onboard geostationary Himawari-

8 (BRIGHT_AHI) and polar-orbiting TERRA/AQUA (MOD14/MYD14) satellites during the 2019/2020 

Black Summer Fires in South-Eastern Australia. Analysis was performed on a pixel, bioregion, and wildfire 

event basis to assess the utility of the new BRIGHT_AHI FRP product. Results show a high agreement 

between the products (r = 0.74, p < 0.01) on a pixel level, with BRIGHT_AHI generally underestimating 

FRP compared to MOD14/MYD14. Regional spatio-temporal trends were captured in more detail by 

BRIGHT_AHI due to its higher temporal resolution, with MOD14/MYD14 systematically underestimating 

the total and sub-diurnal FRP values. Nevertheless, both datasets captured similar fire ignition and spread 

patterns for the study region.  On the event level, the correlation between the datasets was moderate (r = 

0.49, r = 0.67), when considering different temporal constraints for hotspot matching. The results of this 

study indicate that BRIGHT_AHI approximates the well-established MOD14/MYD14 product during 

concurrent observations, while revealing additional temporal information for FRP trends. This gives 

confidence of the reliability of BRIGHT_AHI FRP estimates, opening the way for a denser observation 

record (10-minute intervals) that will provide new opportunities for fire activity reporting, some of which 

are presented here. 

 

 

https://doi.org/10.1071/WF21144
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2.1.  Introduction 

During the 2019-2020 southern hemisphere summer, south eastern Australia experienced prolonged 

drought, dry fuel accumulation, and extremely high temperatures creating fire-favouring conditions (Fryirs 

et al., 2021). Multiple fires ignited across south-eastern Australia, eventually leading to major fires that 

were collectively termed the Black Summer Fires, burning almost 12.6 million ha of land, including 8 

million ha of natural vegetation (Godfree et al., 2021; Wintle et al., 2020). Despite the long history of 

extreme wildfires in Australia, the Black Summer Fires were devastating for the already stressed 

ecosystems and unparalleled in terms of intensity, spatial and temporal scales (Wintle et al., 2020). It is 

estimated that 76 plant families were affected by the fires, while 498 out of the 816 vascular plant species 

lost more than 75% of the area they occupy (Godfree et al., 2021). In addition, 33 human lives were lost, 

thousands of houses burned down, while over one billion animals estimated to have been killed (Filkov et 

al., 2020). 

Satellite earth observations allow wildfires to be observed and studied through their various stages; 

from ignition to impact in the landscape. The orbital characteristics of satellite sensors influence how often, 

and with what level of detail, fire activity can be observed and recorded. Most commonly used datasets are 

captured by polar-orbiting satellites in a Low Earth Orbit (LEO), which allows them to revisit almost any 

spot on the earth’s surface from two times a day (e.g., TERRA/MODIS) to a few times a month (e.g., 

Sentinel-2 MSI). Recently, data from satellites on a Geostationary Orbit (GEO) are also being used as they 

offer multiple observations per hour but for a constant area, that often corresponds to a full-disk view of 

the earth (e.g., Himawari-8/AHI). Fire hotspot detection and identification (Engel et al., 2021a; Giglio et 

al., 2021; Wickramasinghe et al., 2020), fire intensity estimation (Engel et al., 2022; Xu et al., 2021, 2017), 

burned area estimation (Giglio et al., 2018; Roy et al., 2019), and fire severity assessment metrics (Gibson 

et al., 2020) are among the applications that highlight the importance and opportunities that these 

observations offer.  

Fire activity and hotspot detection capabilities using GEO and LEO satellites have been studied through 

LEO-vs-LEO (Fu et al., 2020) and LEO-vs-GEO product intercomparisons (Engel et al., 2021b), comparing 

errors of omission and commission and FRP retrieval capabilities. Generally, MOD14/MYD14 have been 

shown to detect more fire hotspots than GEO satellite products when given the same observation 

opportunities (e.g., clear line-of-sight, appropriate satellite and sensor location over the fire), and especially 

when these fires are burning with low intensity (Engel et al., 2021b; Xu et al., 2021, 2017). When products 

that implement the Fire Thermal Anomaly (FTA) algorithm (Wooster et al., 2015) derived from the GOES-

16 geostationary satellite over the Americas are compared to MOD14/MYD14 (Xu et al., 2021), they report 
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68% omission and 12% commissions errors. The omission error is mainly attributed to undetected low 

intensity fires which, when excluded from the assessment, reduce the omission error to 37% (Xu et al., 

2021). Similarly, the adapted FTA algorithm product for Himawari-8’s Advanced Himawari Imager (AHI) 

reported a 66% omission error and an 8% commission error in comparison to MOD14/MYD14, across East 

Asia and Australia and different land covers for June 2015 (Xu et al., 2017).  

A recently developed algorithm for the AHI data, the Biogeographical Region and Individual 

Geostationary HHMMSS Threshold (BRIGHT) (Engel et al., 2021b), uses a different approach to fire 

detection compared to FTA. Its latest version has slightly reduced omission and commission errors for 

Australia reporting 54% and 5% respectively when compared to MOD14/MYD14 from April of 2019 to 

March 2020 (Engel et al., 2021a). This error is again attributed to lower intensity fires being missed due to 

the lower spatial resolution of the GEO products, but differs from previous studies as the study period was 

considerably longer, capturing an entire year of observations across the whole of Australia. (Engel et al., 

2021a) also showed that the agreement between the two datasets in terms of probability of fire detection 

increases with increasing minimum fire intensity throughout a fire event. 

One particularly important element of attributing and measuring fire intensity and activity is Fire 

Radiative Power (FRP). This corresponds to the upwelling energy emitted by a fire and is used to inform 

combustion completeness, burning biomass emissions, severity, and impact of wildfire (Freeborn et al., 

2014b; Li et al., 2019b; Shen et al., 2021; Wooster et al., 2005, 2003). A detailed diurnal estimation of FRP 

can be integrated to compute the Fire Radiative Energy (FRE) of a fire and alongside other satellite sensor 

derived variables (e.g., Aerosol Optical Depth) used to make an alternative biome specific emission 

estimation without the need of certain assumptions and hard to acquire variables, such as fuel density and 

consumption rates (Ichoku and Ellison, 2014; Ichoku and Kaufman, 2005; Nguyen and Wooster, 2020). 

(Xu et al., 2017) compared GEO FRP estimates with established products, such as MOD14/MYD14, for 

different parts of the world and land covers. They found that more recent GEO sensors such as H8-AHI can 

provide FRP estimations more reliably than older platforms such as FY-2 and MTSAT. AHI showcased an 

almost perfect correlation with MOD14/MYD14 (R2 = 0.98) on a per-fire level across East Asia and 

Australia for June 2015, where per-fire refers to a cluster of spatially-adjacent and near-simultaneous fire 

pixels.  

Currently, only the two studies mentioned above (Xu et al., 2021, 2017) have moved past the detection 

error comparison and intercompared FRP derived from GEO and LEO sensors.  These studies compare 

aggregations of FRP estimations from each sensor that correspond to specific fire event/clusters or 0.5𝑜 

grid aggregations. Nevertheless, conclusions from these studies are limited as they cover one and two 

months respectively, while focusing on large area spatial patterns.  
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This study intercompares the BRIGHT_AHI FRP product (Engel et al., 2022) to MOD14/MYD14 

during the extreme Black Summer Fires event in south-eastern Australia (November 2019- March 2020). 

The two FRP products are compared through different temporal and spatial constraints to explore the 

agreement in concurrent hotspot FRP estimations (per-pixel) and diurnal FRP variations in bio-regional and 

seasonal settings.    

2.2. Methods 

2.2.1. Data 

The FRP Level 2 MODIS products (1km spatial resolution) MOD14 from the TERRA and MYD14 

from AQUA satellites (Thermal Anomalies/Fire) were accessed. MOD14/MYD14 is included in the latest 

MODIS data releases and remain unchanged between Collection 6 and 6.1. Nevertheless, a small percentage 

of pixels (~0.1%) have changed cloud cover status due to improvements in the processing of the relevant 

spectral channels (Giglio et al., 2021). The FRP calculation is based on the methodology proposed by 

(Wooster et al., 2003), which utilises the MIR channel centred at 4𝜇𝑚 and is heavily dependent on the 

accurate characterisation of the identified hotspot’s background MIR radiance (Giglio et al., 2016). In 

addition to the typical image granule format (HDF), NASA’s Fire Energetics and Emissions Research 

(FEER) website offers Collection 6 data in tables (ASCII) including the coordinates, timestamp and 

variables for each hotspot (FEER, 2021). The FEER data was used in this study. 

To reduce known errors in hotspot detection and FRP intercomparison, MOD14/MYD14 data were 

limited to narrower than the full scan angle, as this is known to affect the detection and retrieval capabilities 

with the increasing pixel size towards the scan edge (Engel et al., 2021b, 2021a; Freeborn et al., 2014a; 

Roberts et al., 2015; Xu et al., 2021, 2017). For comparison and consistency with the existing literature 

purposes, MOD14/MYD14 hotspots were filtered to those retrieved from pixels with a scan angle between 

0o and 30o, which results in a maximum increment of the MOD14/MYD14 pixels by 1.7-times compared 

to their size at nadir. 

BRIGHT_AHI FRP estimations derived from Himawari-8 imagery were also collected. Himawari-8 

sits in a geostationary orbit (140.7º E) and through the Advanced Himawari Imager (AHI) sensor, provides 

data for the whole disk in 10-minute intervals in 16 spectral bands of varying spatial resolutions from 500m 

to 2km IFOV. The BRIGHT_AHI hotspot detection algorithm (Engel et al., 2021b, 2021a) provides FRP 

estimations at hotspot locations at ~2km spatial resolution. The same algorithm as MOD14/MYD14  

(Wooster et al., 2003) is used for this step (Engel et al., 2022), utilising the Middle Infrared spectral band 

from AHI (MIR at 3.9 μm) to derive the FRP values at hotspot locations. 
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2.2.2. Study area and duration  

The study was conducted across south-eastern Australia, specifically along forested areas impacted by 

the Black Summer Fires during Southern Hemisphere summer (2019-2020). Nine biogeographical regions 

(or bioregions) as defined by the Interim Biogeographic Regionalisation for Australia (IBRA) framework 

that were affected by the Black Summer Fires were selected as the study area for the period between 

1/11/2019 and 31/3/2020 (Figure 2.1). IBRA is a commonly used segmentation of the continent into regions 

of similar biophysical characteristics (DAWE, 2000). The analysis was conducted across multiple spatial 

scales: the entire study area, for each bioregion, for individual wildfire events/clusters and on a pixel level. 

At the bioregion scale the analysis includes only the NSW North Coast, Sydney Basin and South East 

Corner bioregions as they have the highest forest cover and highest fire activity according to the two 

datasets (Table 2.1).  

  

Figure 2.1 Map of study area with the different forest cover types (SOFR, 2018) (left) and different  biogeographic regions 

(DAWE, 2000) (right).The areas that correspond to single fire events in VIC and NSW are highlighted in both maps as derived 

the methodology described in (Lizundia-Loiola et al., 2020) . 
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Table 2.1. Size of IBRA Bioregions used in the study area, proportion of forest within, and their administrative setting 

(Australian Capital Territory – ACT, New South Wales – NSW, Victoria – VIC).   

Bioregion Area (sq km) Forest Cover (%) State 

Australian Alps 12330 8.5 NSW, VIC 

Nandewar 27020 0.9 NSW, QLD 

New England Tablelands 30022 4.6 NSW, QLD 

NSW North Coast 39966 9.9 NSW 

NSW South Western Slopes 86811 0.3 NSW, VIC 

South East Corner 25320 13.4 NSW, VIC 

South Eastern Highlands 83760 3.3 NSW, VIC 

South Eastern Queensland 68421 1.9 QLD 

Sydney Basin 36296 11.7 NSW 

 

2.2.3. Intercomparison of BRIGHT_AHI and MOD14/MYD14 FRP values 

The first level of comparison between BRIGHT_AHI and MOD14/MYD14 was performed on the 

entire study area by grouping the hotspots (pixel centroids) using spatial and temporal proximity constraints. 

The bioregion level stratification was used to spatially group the hotspots, while a temporal separation was 

implemented using discrete calendar months. For each bioregion and calendar month, diurnal cycle plots 

were created using the total number of hotspots, along with the averaged and summed (integrated) FRP 

estimations per hour (local time) as an appropriate visualization tool that would uncover the general trends. 

An additional level of fire-hotspot spatial grouping was achieved through the spatiotemporal clustering 

of the BRIGHT_AHI fire pixels into superclusters as reported in (Ramsey et al., 2021) based on the work 

by (Lizundia-Loiola et al., 2020). A supercluster refers to a group of spatially (within a 3.6km radius) and 

temporally (2-hour window) connected fire pixel centroids that are assumed to represent a single fire event 

from ignition to extinguishment. The superclusters were used to further intercompare BRIGHT_AHI and 

MOD14/MYD14 using their FRP estimates for the spatial extent and duration of specific events. Two 

different approaches were examined, one integrating and comparing all hotspots from both datasets in a 

supercluster’s footprint and duration, and a second including only concurrent hotspots from both datasets 

that were observed within 10 minutes of each other. 
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2.2.4. Grid alignment between BRIGHT_AHI and MOD14/MYD14  

The comparison of two products with different spatial resolutions usually requires some grid 

reprojection for the measurements to correspond to the same area and location on the earth’s surface. The 

differences are more prominent when the products are derived from sensors with different orbits, scan 

angles and point spread functions. As such, MOD14/MYD14 pixels were aggregated to match the lower 

spatial resolution grid of BRIGHT_AHI (~2km2) and from hereon will be referred to as MD14_agg. A 

modification of the superellipse model (also known as Lamé Curve or Oval - (Gridgeman, 1970)) was used 

to define the neighbourhood of each BRIGHT_AHI pixel centroid, to approximate the elongated 

rectangular pixels of the sensor (Equation 1). Any concurrent MOD14/MYD14 pixel centroids that were 

located inside the superellipse were summed to provide a single aggregated FRP value for the area. The 

temporal threshold used to define concurrent spatiotemporal matches between the two datasets was ±10 

minutes. 

The superellipse neighbourhood was given by the inequality: 

 
|
xAHI-xMOD

a+h
|
p

+ |
y

AHI
-y

MOD

b+h
|
p

≤1 Eq 2.1 

Where x and y are the coordinates of the BRIGHT_AHI and MOD14/MYD14 pixel centroids, a and b 

are the values of the major and minor axis of the superellipse that approximates the BRIGHT_AHI pixel 

axes lengths within the study region, and p is the curvature coefficient of the model. The p=1 represents a 

rhombus, p=2 represents a normal ellipse and p→∞ approximates a rectangle. The h was used as a buffer 

constant that increased the size of the superellipse by half a MOD14/MYD14 pixel to account for pixel area 

(but not centroid) overlap and was set to 0.005 decimal degrees. 

2.2.5. Intercomparison of BRIGHT_AHI and MD14_agg spread patterns and FRP 

values 

The association of the matched hotspots was examined through their correlation using Pearson’s 

correlation coefficient (r), as the two products are estimations of the same variable and therefore their 

relationship is expected to be linear. Following the work by (Xu et al., 2021, 2017), the best-fit linear model 

that passes through the origin was also calculated for the log-transformed data to satisfy the normality 

assumption of the Ordinary-Least-Squares regression (OLS) and be consistent with the literature. In 

addition, the matched hotspots were compared in terms of their location and ignition date, which was 

calculated based on the first logged FRP measurement in the time series of the stable BRIGHT_AHI pixel 

centroid location.  
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2.3. Results 

2.3.1. BRIGHT_AHI vs MOD14/MYD14 

The frequency distribution for the different sensor hotspot retrievals (Figure 2.2) depicts the temporal 

coverage difference between the two platforms over the diurnal cycle. BRIGHT_AHI reports considerably 

more hotspots per hour than MOD14/MYD14 on their concurrent hours, but this should be interpreted after 

considering the temporal resolution (BRIGHT_AHI makes six retrievals per hour versus a four retrievals 

per day by MOD14/MYD14) and spatial resolution (BRIGHT_AHI’s pixels are two to four times larger 

than MOD14/MYD14) differences. However, BRIGHT_AHI detects significantly fewer hotspots per hour 

between 06:00 and 19:00 compared to 20:00-05:00 (Figure 2.2), which roughly corresponds to a day/night 

difference. 

 

Figure 2.2 Frequency distribution of hotspot numbers per retrieval time during the Black Summer fires (November 2019 - 

March2020). The percentage captions over the MOD14 and MYD14 hotspot bars indicate their proportion against the reported 

BRIGHT_AHI hotspot numbers in the one-hour window. 



Chapter 2 

 

23 

 

A clear difference in the number of hotspots between BRIGHT_AHI and MOD14/MYD14 products is 

detected (Figure 2.3 a, b). Integrated FRP values demonstrate a similar trend (Figure 3 c, d), where 

observations from both sensors are available, with a dip in the morning hours and an increase from 10:00 

to 15:00. Meanwhile, the mean FRP values fluctuate with a similar magnitude and trend, peaking around 

15:00. Finally, an inverse relationship between the number of hotspots and their average and integrated 

FRP is evident in the BRIGHT_AHI data, alternating between day and night (Figure 2.3 a, c). 

  

  

Figure 2.3 Aggregated diurnal cycles of hotspot numbers overlayed by Mean and Integrated FRP values for the BRIGHT_AHI 

(a), (c) and MOD14/MYD14 (b), (d) sensors. The data are grouped on hourly intervals and represent the entirety of the Black 

Summer fires (November 2019 – March 2020). 

A further break down of the dataset per month and bioregion reveals specific temporal patterns. As 

seen in Figure 2.4, there is a clear gradient indicating that at the beginning of the fire season (November) 

the majority of hotspots were in the northern regions (NSW North Coast). A month later most hotspots 

were in the central region (Sydney Basin) and another month later the southern region South East Corner 

had more hotspots than the other areas.  

 

 

(a) (b) 

(c) (d) 
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Figure 2.4 Aggregated diurnal cycles of Mean FRP from BRIGHT_AHI over number of hotspots between November 2019 and 

January 2020 for the three analysed bioregions which follow a north to south latitudinal gradient (NSW North Coast – top row; 

Sydney Basin – middle row; South East Corner – bottom row). From left to right the progression depicts the temporal change 

(November to January), while from top to bottom spatial change (Bioregions from North to South). 

When compared to BRIGHT_AHI, the number of hotspots from MOD14/MYD14 is lower with the 

resultant loss of fire activity information. However, a similar trend in hotspot spatial-temporal incidence 

can be seen in the data (Figure 2.5). Mean MOD14/MYD14 FRP values are underestimated compared to 

BRIGHT_AHI (Figure 2.4). 
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Figure 2.5 Aggregated diurnal cycles of Mean FRP from MOD14/MYD14 over number of hotspots between November 2019 and 

January 2020 for the three analysed bioregions which follow a north to south latitudinal gradient (NSW North Coast – top row; 

Sydney Basin – middle row; South East Corner – bottom row). From left to right the progression depicts the temporal change 

(November to January), while from top to bottom spatial change (Bioregions from North to South). 

Figure 2.6 replicates the fire season progression (November, December 2019, January 2020) and study 

bioregions presented in figures 4 and 5. As per the trends in hotspot numbers, fires became more intense 

over time and progress towards the south, while their intensity reduced over time in the north. An irregular 

jump of the FRP is observed in South East Corner for night-time observations in December 2019.  
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Figure 2.6 Aggregated diurnal cycles of Integrated FRP from Himawari-8 over number of hotspots between November 2019 and 

January 2020 for the three analysed bioregions which follow a north to south latitudinal gradient (NSW North Coast – top row; 

Sydney Basin – middle row; South East Corner – bottom row). From left to right the progression depicts the temporal change 

(November to January), while from top to bottom spatial change (Bioregions from North to South). 

MOD14/MYD14 depicts similar spatial and temporal trends as BRIGHT_AHI (Figure 2.7), but these 

are smaller in magnitude. The night-time peaks measured by BRIGHT_AHI during November in NSW 

North Coast and December in Sydney Basin and South East Corner are not captured by MOD14/MYD14. 
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Figure 2.7 Aggregated diurnal cycles of Integrated FRP from MOD14/MYD14 over number of hotspots between November 2019 

and January 2020 for the three analysed bioregions which follow a north to south latitudinal gradient (NSW North Coast – top 

row; Sydney Basin – middle row; South East Corner – bottom row). From left to right the progression depicts the temporal 

change (November to January), while from top to bottom spatial change (Bioregions from North to South). 

2.3.2. BRIGHT_AHI vs MOD14/MYD14: Fire superclusters 

Using the fire superclusters (for derivation see Methods), BRIGHT_AHI continues to offer a more 

complete picture of fire intensity and hotspot numbers (Table 2.2). As seen in Figure 2.8 and Table 2.2, the 

NSW North Coast supercluster as captured by BRIGHT_AHI is consistent with the results from the 

bioregional level analysis (Figure 2.4), with a peak of intensity between 10:00-14:00, unlike 

MOD14/MYD14 that misses the FRP variation. Meanwhile, MOD14/MYD14 successfully indicates the 

increase in intensity between 11:00 and 14:00 for the Sydney Basin supercluster, but with less detail than 

BRIGHT_AHI. The intensity during the South East Corner fire supercluster is the highest measured out of 

the three events as observed by BRIGHT_AHI, while MOD14/MYD14 failed to capture any data at this 

location/time. 
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Table 2.2 Superclusters of three chosen fire events, with the highest Mean FRP, Integrated FRP, number of hotspots and longest 

duration of fire in hours. 

Start End 
Duration 

(h) 

Area  

(sq km) 

Integrated 

FRP (MW) 

Mean FRP 

(MW) 

No. of 

hotspots 
Bioregion 

05/11/2019 

5PM 

09/11/2019 

11PM 
102 2871 3314865 138.0 30576 

NSW North 

Coast 

11/11/2019 

6AM 

15/11/2019 

11PM 
113.5 1607 1925086 61.8 31807 Sydney Basin 

29/12/2019 

10PM 

30/12/2019 

11PM 
25.3 5051 3122205 382.7 11612 

South East 

Corner 
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Figure 2.8 Comparison of aggregated diurnal cycles of Mean FRP from BRIGHT_AHI (left column) and MOD14/MYD14 (right 

column) during the three fire superclusters analysed at the bioregion level (NSW North Coast – top row; Sydney Basin – middle 

row; South East Corner – bottom row).  

Next, the association of the total FRP per supercluster was examined for BRIGHT_AHI and 

MOD14/MYD14 (Figure 2.9). The correlation between the two datasets is moderate positive when all 

hotspots in a supercluster are integrated and compared (r = 0.67, p < 0.01, slope = 1.38), with BIRGHT_AHI 

logging higher total values due to its more frequent observations. Meanwhile, the observed correlation is 

No observations 
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lower (r = 0.49, p < 0.01, slope = 1.29) when only hotspots that are concurrently observed by both datasets 

within 10 minutes of each other are integrated, and the bias towards BRIGHT_AHI FRP is reduced. 

 

  

Figure 2.9 BRIGHT_AHI and MOD14/MYD14 FRP aggregations at supercluster/fire event locations and association statistics, 

namely the slope of the fitted linear model passing through the origin and Pearson’s r. The scatterplots correspond to the 

integrated FRP values for the duration of the event (left) and the integrated FRP values only for concurrent hotspots (right) per-

fire supercluster as measured by each product. 

2.3.3. BRIGHT_AHI vs MD14_agg 

Over 9,0000 concurrent hotspots, between BRIGHT_AHI and MD14_agg, were identified for the nine 

bioregions used in this study.  A strong positive correlation between the FRP products (r = 0.74, Figure 

2.10) was observed, while the linear model passing through the origin and applied on the log-transformed 

data was fitted with a slope of 0.87. Despite the strong correlation, BRIGHT_AHI still underestimates the 

FRP values and saturates at around 950MW.    
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Figure 2.10 Scatter plot of BRIGHT_AHI and MD14_agg FRP at spatially (superellipse neighbourhood) and temporally (±10 

minutes) concurrent hotspots in logarithmic scale. The colour gradient depicts the kernel density of the points in the plot, where 

lighter colours denote higher density and darker colours a lower density. This is meant as a qualitative visualisation aid rather 

than a quantifiable parameter. 

Figure 2.11 illustrates the spatiotemporal progression of the fire for BRIGHT_AHI and MD14_agg in 

the form of a 2D histogram. The plots show that fires spread from North to South and from East to West 

(length of artifacts along the y-axis). Most distance was covered during the last week of December and the 

first week of January, where fire ignitions peaked through 2o of latitude and 2.5o of longitude. From 

beginning to end, December had the largest number of ignitions (length of artifacts along the x-axis) 

especially along the 150o meridian, which corresponds to the Sydney Basin IBRA region of the study area. 
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Figure 2.11 Heatmap of first detection dynamics by latitude (top row) and longitude (bottom row), BRIGHT_AHI hotspots (left 

column) and MD14_agg (right column). Plot axes correspond to coordinate (y-axis) and time (x-axis). The colour gradient 

shows the density of hotspot pixels for each point in time and space. 

On a bioregion level, the two datasets remain positively correlated with values ranging from 0.69 to 

0.86 as reported in Table 2.3. Pearson’s r is higher in NSW North Coast and Sydney Basin, and slightly 

lower in the South East Corner bioregion, compared to the overall correlation (r = 0.74, p < 0.01). 
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Table 2.3 Correlation and number of pairs per IBRA Bioregion for the BRIGHT_AHI and MD14_A FRP comparison. 

Bioregion Name Number of Pairs 𝒓 

Australian Alps 409 0.73 

Nandewar 137 0.83 

New England Tablelands 1122 0.7 

NSW North Coast 1919 0.84 

NSW South Western Slopes 282 0.7 

South East Corner 1304 0.69 

South Eastern Highlands 1152 0.74 

South Eastern Queensland 643 0.86 

Sydney Basin 2082 0.79 

 

2.4. Discussion 

Fire Radiative Power estimations from LEO (MOD14/MYD14) and GEO (BRIGHT_AHI) sensors 

were compared using different spatial and temporal constraints at three spatial aggregations. General 

agreement between FRP estimates was observed for bioregion (first level) and fire event (second level) 

stratifications of the data, with BRIGHT_AHI providing more detailed diurnal information due to its higher 

temporal resolution. Meanwhile, high agreement was shown in the fire spread patterns captured by each 

sensor and detection algorithm.  A strong positive correlation was also shown in concurrently observed fire 

hotspots by both datasets that is significant given the sensor and orbit differences (third level). This overall 

agreement is supportive of the legitimacy of BRIGHT_AHI detections and the utility of AHI to derive 

measures of FRP when compared to a higher spatial resolution product.  

BRIGHT_AHI and MOD14/MYD14 were first compared according to month and bioregion. 

BRIGHT_AHI showed clear advantages over MOD14/MYD14 in the diurnal cycle analysis, where the 

former’s high temporal resolution allowed for temporal patterns to be captured in detail while fewer insights 

were able to be extracted from the latter (e.g., Figure 2.3). This is to be expected as Himawari-8’s AHI has 

144 opportunities per day to capture the earth’s surface compared to the four of the MODIS satellite pair. 

Nevertheless, a significant difference in the number of hotspots between day and night-time was 

documented for BRIGHT_AHI, which is a finding consistent with (Engel et al., 2021a) and (Engel et al., 

2021b). Furthermore, in the case of cloud presence during the overpass of the satellite, entire fire event can 

be missed (e.g., fire supercluster in South East Corner –Figure 2.8) or sporadic high intensity fire activity 
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during the night-time compared to daytime can also be omitted (e.g., South East Corner during December 

– Figure 2.6).  The absence of an albedo check in the night-time BRIGHT algorithm relaxes detection rules 

thereby increasing hotspot detections and potentially the rate of commission errors. 

For the second level of intercomparison between the datasets, an alternative spatiotemporal constraint 

based on the work by (Lizundia-Loiola et al., 2020; Ramsey et al., 2021) was applied using superclusters 

that corresponded to specific fire events. Here, it was observed that MOD14/MYD14 data underrepresented 

or completely omitted the fire activity (Figure 2.8), unlike BRIGHT_AHI that provided consistent 

information for all the events. In the case of the South East Corner supercluster, a small number of 

BRIGHT_AHI hotspots along with high FRP values were measured, while MOD14/MYD14 missed the 

entire event. To further explore this, the cloud cover during the event was visually inspected using Japan’s 

National Institute of Information and Communications Technology (NICT) website 

(https://himawari8.nict.go.jp/). There it was observed that in the early morning and afternoon, both clouds 

and smoke were present covering parts of the coast, while the sky was clear only during the late morning 

of 30/12/2019. This could mean that MOD14/MYD14 did not observe this extreme event due to cloud and 

smoke contamination during the AQUA/TERRA overpasses, unlike BRIGHT_AHI that managed to 

provide information throughout the day utilising clear-sky moments.  

The third level of comparison was implemented on a pixel level, using a superellipse neighbourhood to 

better match the MOD14/MYD14 smaller IFOV to the coarser and differently shaped BRIGHT_AHI pixels. 

As a result, the “double counting” of MOD14/MYD14 hotspots with multiple adjacent BRIGHT_AHI was 

reduced for the pixel matching process, better aligning the different grid systems of the two products 

compared to a simpler model, e.g., Euclidean distance (circle). Further quality considerations for the 

neighbourhood definition include the varying pixel shape of BRIGHT_AHI across the observed disk, an 

artifact of the Earth’s curvature and AHI’s orbit. Adjustments to the dimensions of the superellipse in terms 

of rotation, minor and major axis length could be made when applied in continental scales to keep the pixel 

matching consistent. Nevertheless, the distortion introduced by the sub-state size of the study area presented 

here was assumed insignificant and therefore the superellipse method had high utility. 

To better appreciate the strong positive correlation (r = 0.74) between the two hotspot products for 

concurrent detections (Figure 2.10), variations in addition to the gridding systems should be considered. 

For example, while both products implement the same FRP calculation algorithm (Wooster et al., 2003), 

they each derive the background radiation differently during the hotspot detection stage. Background 

radiation is an important input in the model developed by (Wooster et al., 2003), and therefore it greatly 

affects the final FRP estimation. BRIGHT_AHI utilizes a series of dynamic seasonal, bioregional, and time-

of-day thresholds to derive the background radiation for a given hotspot, whereas MOD14/MYD14 uses 

https://himawari8.nict.go.jp/
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only spatially neighbouring “ambient” pixels from a single scene to separate the radiation from a fire hotspot 

from the radiation of the background. Furthermore, the fact that multiple MOD14/MYD14 observations are 

aggregated and compared to a single BRIGHT_AHI observation can exacerbate the differences in FRP 

magnitude that are caused by the difference in spatial resolution between AHI and MODIS. An example of 

this is the saturation at around 950MW for BRIGHT_AHI FRP that is attributed to the MIR AHI channel 

saturation at 400K (Hall et al., 2019), but also worsens through the MOD14/MYD14 aggregation, 

amplifying the positive bias towards the latter (Figure 2.10). 

Finally, the fire spread patterns derived by the two products using the first ignition per pixel analysis 

revealed similar insights about the black summer fire season.  Both datasets suggest that the fire started in 

the north and spread towards the south and south-east of the study area over time, following the findings of 

(Zheng et al., 2021). Our findings also indicate that most ignitions occurred in the south of the study area 

towards the end of December. This peak of ignitions corresponds to the South East Corner bioregion, which 

shows a low number of hotspots during daytime in December, but a large increase of hotspot number, mean 

and integrated FRP during the night-time (Figure 2.6) that is in agreement with the high night-time activity 

in East Victoria as documented by (Zheng et al., 2021).  

Several studies have compared and combined GEO and LEO FRP products that focus on biomass 

burning emissions (Freeborn et al., 2009; Li et al., 2019b, 2018b; Mota and Wooster, 2018; Zhang et al., 

2020). However, fewer studies focused in the intercomparison of FRP estimations from GEO and LEO 

sensors (Hyer et al., 2013; Xu et al., 2021, 2017). AHI and MOD14/MYD14 were compared in the work 

by (Xu et al., 2017), which was conducted for the whole disk for a single month (June 2015) and a hotspot 

aggregation to 0.5𝑜grid cells or specific fire event clusters spatial scales. In addition, (Xu et al., 2017) used 

the FTA algorithm (Wooster et al. 2015) to calculate the FRP from AHI data (FTA_AHI). These 

aggregations may be sufficient for extracting general differences and trends, however, in this study we also 

used AHI’s native resolution to perform pixel-to-pixel overlap comparison. A higher resolution comparison 

allows for more detailed information about fire activity and how it is captured by different sensors to be 

produced.  

As shown by (Engel et al., 2021a), the regionally tuned BRIGHT_AHI performs slightly better in terms 

of omission and commission errors compared to FTA_AHI, which uses global assumptions (Engel et al., 

2021a; Xu et al., 2017). The statistics provided for the FRP value comparison in terms of concurrently 

observed fire event clusters suggest an almost perfect association between the two datasets  used by (Xu et 

al., 2017) with a slope of 0.99 and an R2 = 0.98. We found a 1.29 slope for the fitted linear model through 

the origin and a Pearson’s r = 0.49 (R2 = 0.24), suggesting a low/moderate association with a clear 

underestimation of FRP for MOD14/MYD14 when it comes to concurrently observed hotspots in the spatial 
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extend of superclusters. When the data are compared on a fire supercluster level without a concurrency 

constraint, the association becomes stronger (r = 0.67, R2 = 0.45), but the bias increases with a 1.38 slope 

for the fitted linear model towards BRIGHT_AHI (Figure 2.9) as a result of temporal resolution differences. 

Similar biases in direction and magnitude were also documented by Roberts et al. (2015), in an 

intercomparison of METEOSAT SEVIRI and MODIS FRP estimates for single fire events, over Europe, 

Africa and South America. This suggests that the GEO and LEO sensor spatial resolution differences are 

systematically influencing FRP estimates. 

On the grid cell level, BRIGHT_AHI seems to perform better than FTA_AHI when both datasets are 

compared to MOD14/MYD14.  Using a 0.5𝑜 grid cell aggregation, (Xu et al., 2017)) found a slope of 0.54 

for fitted linear model. Meanwhile here, BRIGHT_AHI shows a slope of 0.87 and a Pearson’s r of 0.74 (R2 

= 0.55) on the pixel-by-pixel comparison with MOD14/MYD14 (Figure 2.9), in an approximately 20 times 

finer resolution grid than the one used in (Xu et al., 2017). The differences between BRIGHT_AHI and 

FTA_AHI in this context could be also be explained due to the fact that (Xu et al., 2017) used a shorter 

time period (1 vs 5 months), for different intensity events (mainly agricultural fires vs megafires), over a 

larger area (East Asia and Australia vs a sub-region of Australia). More research is needed to draw robust 

conclusions on algorithm suitability in different conditions. 

2.5. Conclusions 

The aim of this paper was to explore the capabilities and limitations of newly developed geostationary 

products for fire monitoring. FRP estimations from BRIGHT_AHI were compared to the widely used FRP 

retrievals from MOD14/MYD14 during the extreme Black Summer Fires that devasted South-Eastern 

Australia in 2019-2020. Intercomparison on a pixel level revealed a strong association between the two, 

something that increases the confidence of BRIGHT_AHI, whereas focusing on the temporal variability of 

FRP showcased an increased utility value when time dense measurements are available. Our findings 

suggest that geostationary products can be used in fire monitoring contexts which will also help enhance 

our understanding of wildfire dynamics from space. 
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Chapter 3. One year of near-continuous fire 

monitoring on a continental scale: Comparing Fire 

Radiative Power from polar-orbiting and 

geostationary observations 

 

This chapter is based on: Chatzopoulos-Vouzoglanis, K., Reinke, K.J., Soto-Berelov, M., Jones, S.D., 

2023. One year of near-continuous fire monitoring on a continental scale: Comparing fire radiative power 

from polar-orbiting and geostationary observations. International Journal of Applied Earth Observation and 

Geoinformation 117, 103214. https://doi.org/10.1016/j.jag.2023.103214 

 

Abstract 

Geostationary and polar-orbiting remote sensors have different opportunities to observe wildfires. 

While polar-orbiting sensors have been favoured in wildfire observations, geostationary sensors offer a 

higher observation frequency. Here, we assess the utility of the Himawari-8 AHI geostationary product and 

compare it to established polar-orbiting observations from TERRA/AQUA MODIS and SNPP VIIRS for 

12 months of fire activity in Australia (2019-2020). Fire Radiative Power (FRP) estimates from AHI 

(BRIGHT/AHI) are compared to the MODIS (MOD14/MYD14) and VIIRS (VNP14IMG) polar-orbiting 

products, through varying spatial and temporal aggregations. Results suggest that all products capture 

similar wildfire dynamics across the continent. For near-simultaneously observed hotspots, the agreement 

is high between BRIGHT/AHI and the individual polar-orbiting products (r = 0.74-0.77, p<0.01). Land 

cover and region-specific comparisons show similar FRP estimate distributions between products, although 

with scale differences due to the varying spatial resolutions. Derived diurnal FRP cycles on the other hand, 

highlight the dense temporal information that BRIGHT/AHI offers in contrast to the other products. This 

is further emphasized with individual event comparisons, where BRIGHT/AHI reports fire activity 

continuously while the polar-orbiting products only offer fragmented observations when available. In 

conclusion, AHI observes similar spatiotemporal patterns and FRP estimation distributions to MODIS and 

VIIRS during different seasons across Australia. While BRIGHT/AHI’s coarser spatial resolution 

underestimates the FRP estimations captured by its counterparts, its higher observation frequency 

demonstrates significant advantages. This analysis further raises the confidence in BRIGHT/AHI for 

https://doi.org/10.1016/j.jag.2023.103214


Chapter 3 

 

38 

 

continuous wildfire monitoring across Australia while revealing new opportunities that take advantage of 

its denser observation record. 

3.1. Introduction 

Wildfires are important phenomena with major effects on local communities and ecosystems, but also 

on a global scale as they generate carbon emissions. Remote sensing has been used extensively throughout 

the last decades to detect and monitor wildfires using mostly Low-Earth Orbiting (LEO) platforms (Giglio 

et al., 2021; Schroeder et al., 2014; Xu et al., 2020). Meanwhile, sensors on GEOstationary (GEO) platforms 

have also been studied regarding their suitability for wildfire monitoring (Engel et al., 2021a, 2021b; 

Roberts and Wooster, 2008; Wickramasinghe et al., 2020, 2016; Xu et al., 2021, 2017, 2010). 

Fire Radiative Power (FRP) describes the upward welling energy associated with a fire and may be 

considered a proxy for fire intensity (Kaufman et al., 1998; Wooster et al., 2005, 2003). Usually FRP is 

derived using the sensor’s middle-infrared (MIR) channel centred around 4𝜇𝑚 and the model developed 

by (Wooster et al., 2005, 2003); which has been used in several products such as the MODIS  

MOD14/MYD14 (Giglio et al., 2021), VIIRS VNP14IMG (Schroeder and Giglio, 2018) as well as the 

Advanced Himawari Imager (AHI) BRIGHT/AHI product (Engel et al., 2022). 

LEO platforms usually revisit a specific location on the Earth twice a day, one during daytime and one 

during night-time. In contrast, GEO platforms offer continuous daily observations for a single location in 

their observed disk, but at the expense of lower spatial resolution. The trade-off between the spatial and 

temporal resolution of hotspot observations is important for understanding the benefits and limitations of 

each when observing fire in the landscape. Examples of intercomparisons between satellite sensors with 

different spatial and temporal resolutions are reported throughout the literature (Fensholt et al., 2011; 

Martínez et al., 2013; Wickramasinghe et al., 2020). Intercomparisons of FRP products have been 

conducted in LEO-vs-LEO (Li et al., 2018a) and LEO-vs-GEO (Xu et al., 2017) settings, usually on the 

basis of fire hotspot detection and FRP estimation capabilities (Engel et al., 2020; Fu et al., 2020; Xu et al., 

2021, 2017). In general, GEO satellites omit smaller or lower intensity fires as a result of spatial resolution 

and saturation thresholds on the MIR channel (Hall et al., 2019). However, newer generation satellites (e.g., 

Himawari-8 AHI) have improved instruments with higher spatial resolution compared to older generation 

ones (e.g., METEOSAT-SEVIRI), and higher spatial resolution GEO sensors being developed (Wooster et 

al., 2021).  

Hotspot comparison studies have demonstrated some of the limitations of GEO sensors for fire 

detection. For example, 90% of fire hotspots captured by the 375m VIIRS FRP product (VNP14IMG) were 

shown to be missed by the AHI product developed by the Japan Aerospace Exploration Agency (JAXA) in 
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eastern China during 2019 (Chen et al., 2022), notably due to the region characterised mostly by smaller 

agricultural fires. Meanwhile, (Xu et al., 2017) developed their own product from AHI data using an 

adaptation of the Fire Thermal Anomaly (FTA) algorithm (Wooster et al., 2015) and found that AHI omitted 

66% of the hotspots captured by MOD14/MYD14 across Eastern Asia and Australia for June 2015. The 

more recently developed AHI product for Australia called the Biogeographical Region and Individual 

Geostationary HHMMSS Threshold (BRIGHT) (Engel et al., 2021b) reported 54% omission errors 

compared to MOD14/MYD14 for the continent of Australia between April 2019 and March 2020 (Engel 

et al., 2021a).  

Beyond the detection capabilities, studies have compared FRP estimations between LEO and GEO 

products for detected hotspots (Chatzopoulos-Vouzoglanis et al., 2022; Li et al., 2020b; Xu et al., 2021, 

2017).  Many such intercomparisons, whilst detailed in their description, are limited in their analysis to 

regional case studies (e.g., (Chatzopoulos-Vouzoglanis et al., 2022) or short time periods (Xu et al., 2017). 

To unpack the relative performance of FRP estimation capabilities, larger scale studies are required where 

the analysis can be applied across whole of continents and across seasons.  In larger spatial-scale studies 

(Xu et al., 2017) FRP estimations are usually compared across different spatial subsets, with estimations 

resampled on coarser grids with the intention to be compared to emission inventories or used as inputs to 

atmospheric models (e.g., 0.5o in Xu et al., (2017), 0.25o in (Li et al., 2019a)), 0.1o in (Andela et al., 2015))). 

Other aggregations include hotspot groupings into individual fire clusters (Roberts and Wooster, 2014) or 

broader regions (Chen et al., 2022). These studies also span across different study periods, ranging from 

days to months, enabling a detailed insight into relative performance.  

When comparing coincident observations, LEO and GEO sensors have been shown to capture 

comparable FRP trends and magnitudes. For instance, during the extreme wildfire season of the Black 

Summer of 2019-2020 in south-eastern Australia (Fryirs et al., 2021), (Chatzopoulos-Vouzoglanis et al., 

2022) found moderate and strong positive correlations of FRP estimations to exist between coincident 

observations of AHI (BRIGHT/AHI) and MODIS (MOD14/MYD14) when examining  individual fire 

clusters and  hotspot-to-hotspot comparison, respectively. Meanwhile, (Xu et al., 2017) found almost 

perfect agreement with a very strong positive correlation between Himawari-8 (FTA) and MODIS FRP 

(MOD14/MYD14) estimations during June 2015 across a variety of land covers in East Asia and Australia. 

(Xu et al., 2021) also demonstrated that in the Americas, GOES-13 and GOES-16 have high agreement for 

near-coincident FRP observations with MODIS FRP on a fire cluster and regional level. Similarly, (Li et 

al., 2020b) found a strong positive correlation between GOES16 and VIIRS FRP (VNP14) on a fire cluster 

and regional level across south-eastern USA. While the findings of these studies are significant, transferable 

conclusions are hard to be drawn as there is no consistency on the chosen spatial scales, study period lengths, 
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fire regimes, land covers and climatic characteristics of each study area. This is especially true for the 

continent of Australia, which is underrepresented in similar studies but has a unique set of fire regimes that 

are very sensitive under climate change (Fairman et al., 2016). 

Despite their spatial resolution limitations, GEO sensors provide a temporally dense FRP record that 

can assist in timely wildfire detection and provide detailed diurnal FRP information. A considerable amount 

of research (Ichoku and Ellison, 2014; Li et al., 2021; Mota and Wooster, 2018; Zheng et al., 2021) has 

been conducted using diurnal FRP profiles and temporal integrations of FRP to calculate the Fire Radiative 

Energy (FRE) and derive fuel consumption rates and biomass burning emissions, largely based on the works 

by (Ichoku and Kaufman, 2005; Wooster et al., 2005). Therefore, the use of GEO sensors and hotspot 

detection algorithms are becoming more critical, especially as the expected diurnal behaviour of wildfires 

shows increasing irregularities (e.g. high night-time intensities) caused by a changing climate and weather 

conditions (Balch et al., 2022; Freeborn et al., 2022). Meanwhile, inconsistencies in FRP peaking times 

across diverse African biomes (Mota and Wooster, 2018) and seasonal differences in agricultural fire 

peaking activity in China (Chen et al., 2022) indicate that LEO FRP might be insufficient for estimating a 

fire’s diurnal cycle.  Understanding the relative agreement between LEO and GEO derived estimates of 

FRP provides insights into how, when, and where the spatial and temporal trade-offs occur. 

This study compares GEO derived FRP estimates using the new BRIGHT/AHI FRP product (Engel et 

al., 2022) against established LEO FRP estimations from MODIS (MOD14/MYD14) and VIIRS 

(VNP14IMG), on a continental scale for an entire year. The aim is to extend previous works focused on 

specific regions, seasons and magnitudes of wildfire events and examine different spatiotemporal scales of 

FRP comparison (Chatzopoulos-Vouzoglanis et al., 2022; Xu et al., 2017). Thus, FRP estimates from April 

2019 to March 2020 across the whole of Australia are compared to identify the level of agreement between 

data sources across different seasons, land covers, and fire regimes.   

3.2. Study area and data 

3.2.1. Study area and period 

The study was conducted across the continent of Australia from 1st of April 2019 to 31st of March 2020. 

It represents a year of observations across different fire regimes including extreme fire events as observed 

in south-eastern Australia (Fryirs et al., 2021). The study area was further segmented into 12 broad land 

cover classes provided by  Geoscience Australia (Figure 3.2) (Lymburner et al., 2015). The land cover layer 

is based on a two-year (2014-2015) time-series dataset of MODIS vegetation indices and has a spatial 

resolution of 250m, which was resampled to match the spatial resolution of the examined datasets. The 

study area was also divided to north and south of the Topic of Capricorn (-23.5o of latitude, which separates 
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the northern tropics from the southern temperate zone) and east-west of the 140o of longitude using a data-

driven approach based on hotspot density breaks visually identified (see Results – Figure 3.3). Finally, four 

local-scale case studies were chosen that represented the dominant land covers of the study area and showed 

significant fire activity across the examined datasets and are depicted in Figure 3.2. 

 

Figure 3.1 Land cover map of Australia used in this study. The land cover classes are generalisations based on the original 

classes presented in the dataset by (Lymburner et al., 2015). The horizontal (east-west) dashed line corresponds to the Tropic of 

Capricorn at -23.5o latitude and the vertical (north-south) dashed line corresponds to 140o of longitude. These breaks define one 

of the major stratifications used in this study. The four labelled case studies represent different dominant land covers across the 

study area, have a significant number of hotspots across datasets and are explored in the methodology. The coordinate system 

used is WGS84. 
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3.2.2. Hotspot Data acquisition and Pre-processing 

The Advanced Himawari Imager (AHI) onboard the geostationary satellite (140.7𝑜𝐸) Himawari-8 

observes the full disk every 10 minutes, in 16 spectral channels and at spatial resolutions of 500m (channel 

3), 1km (channels 1,2,4) and 2km (channels 5-16) at nadir (Bessho et al., 2016). The BRIGHT/AHI 

algorithm utilises imagery from AHI to detect wildfire hotspots across Australia (Engel et al., 2021a, 2021b), 

while hotspot FRP estimations are derived using the methodology suggested by (Wooster et al., 2003) 

(Engel et al., 2022). The FRP estimations used in this study were derived from Himawari-8 AHI data that 

were sourced from the Australian Bureau of Meteorology and processed using the methodology described 

in (Engel et al., 2022). 

The polar-orbiting satellite hotspot datasets used for the intercomparison came from AQUA/TERRA 

MODIS and SNPP VIIRS. These include the MODIS Collection 6.1 MOD14/MYD14 FRP product at 1km 

spatial resolution (Giglio et al., 2021) and the VIIRS VNP14IMG FRP product at 375m (Schroeder and 

Giglio, 2018). The datasets were acquired using NASA’s Level-1 and Atmosphere Archive and Distribution 

System (LAADS) (https://ladsweb.modaps.eosdis.nasa.gov/). Furthermore, both datasets implement the 

(Wooster et al., 2003) FRP estimation algorithm, enabling a more detailed direct comparison with 

BRIGHT/AHI. 

MODIS hotspots with a scan angle greater than 30o were excluded due to known errors in detection 

and FRP estimation quality (Freeborn et al., 2014b; Roberts et al., 2015), a common practise in the field 

(Engel et al., 2021b; Xu et al., 2017). However, no scan angle exclusion was implemented for VIIRS 

hotspots as no errors have been identified in the literature (Li et al., 2018a). Instead, VIIRS data were 

filtered using the fire detection confidence flag by excluding the low confidence hotspots, typically caused 

by sun glint, water presence and lower relative temperature anomaly (Schroeder and Giglio, 2018). 

3.3. Methods 

The selected datasets were first compared using varying sets of spatial and/or temporal fire hotspot 

aggregations to assess whether they were capturing similar fire behaviour trends. Then, the effect of each 

dataset’s observation frequency was explored. 

3.3.1. Exploring functional equivalence between datasets 

3.3.1.1. Hotspot density and spatiotemporal progression 

As a first step, the hotspot datasets were compared based on spatial distribution and density patterns 

for the whole year. First, the observed hotspots of each dataset were aggregated to a common 0.2o regular 

https://ladsweb.modaps.eosdis.nasa.gov/
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grid over Australia. Then, the number of hotspots situated in each grid cell was normalised between 0-1. 

This way the plotted maps can be visually comparable and qualitative conclusions can be drawn about areas 

of similarity or discrepancy in hotspot density. From these data, spatiotemporal progression was visualised 

using time versus latitude/longitude graphs. 

To examine temporal change across each coordinate and highlight spatiotemporal patterns in a two-

dimensional manner, a new set of graphs were developed. The hotspots coordinates (longitude or latitude) 

were grouped in 1o bins and then grouped by week. Finally, the data were plotted into a 2D colour mesh to 

create a spatiotemporal surface that indicates the temporal spread along one coordinate. 

3.3.1.2. Hotspot matching and correlation 

MODIS and VIIRS hotspots were resampled to the AHI grid following the methodology described in 

(Chatzopoulos-Vouzoglanis et al., 2022). This allowed for a one-to-one FRP observation comparison 

between the GEO and the polar-orbiting datasets and for correlation metrics to be computed.  Resampling 

was implemented by either averaging (mean) or summing (total sum) spatiotemporal neighbouring LEO 

pixels to a BRIGHT/AHI pixel (i.e., using the superellipse spatial neighbourhood described in 

(Chatzopoulos-Vouzoglanis et al., 2022) with a time difference of <10 minutes). The summation 

resampling method corresponds to an accurate comparison in terms of energy exited per unit area alignment, 

although it does not account for sensor limitations associated with spatial resolution. As such, an averaging 

resampling method was implemented to examine the effect of sensor characteristics on the comparison. 

As the distributions were heavily skewed, the datasets were log-transformed. A power-law model 

(linear in log-space) was selected and fitted to the original data as it more accurately described the 

relationship between the datasets. Furthermore, Pearson’s correlation coefficient was used to assess the 

linear association between the log-normalised data.  

3.3.1.3. Regional comparison 

The study area was split into four regions based on natural breaks and hotspot distributions observed 

and described in section 3.3.1.1. For each sub-region, the matched observations were plotted in violin plots 

per Land Cover (LC) to visually compare summary statistics and the distribution density of the FRP 

estimations. Averaged and cumulative aggregations of MODIS and VIIRS hotspots to the AHI grid were 

used to examine the impact of pixel size on the FRP magnitudes. 

The data were log-transformed before plotting, so that the kernel-density estimation required for a 

violin plot would be computed on normally distributed data rather than the heavily skewed raw data. This 
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way the values between the different intervals of 10𝑎 (𝑎 ∈ 𝑍) are uniformly spaced and the violin plots 

become easier to visualise and interpret. 

3.3.2. Exploring temporal information differences 

3.3.2.1. Diurnal FRP cycle based on spatial and temporal subsets 

The average diurnal FRP cycles for different quadrants of the study area and period were computed to 

identify differences between the temporal coverage of each sensor. The data were filtered by location and 

period of interest (months of expected high and low fire activity), then grouped by local hour of the day, 

and their distributions were plotted as boxplots. Finally, the total number of hotspot detection per hour were 

also plotted as a measure of fire activity. 

3.3.2.2. Small area FRP time-series comparison examples 

The hotspots from each dataset were aggregated to the same 0.2o grid (Section 3.3.1.1) and subsampled 

to hourly data by taking the maximum FRP observation in an hour. Then, four locations were chosen as 

representatives of all three EO datasets and the generalised LC classes (Section 3.3.1.3) on the basis of 

hotspot density numbers and aggregated FRP magnitude.  

To explore broad time-series association, the dataset arrays were converted to equidistant hourly arrays 

for the period of available hotspots. Given the expected diurnal variability of FRP and following previous 

work on similar aggregations (Andela et al., 2015; Zheng et al., 2021), a Gaussian function was fitted to 

the LEO datasets while a rolling maximum window was applied to BRIGHT/AHI due to its higher 

observation frequency. This resulted in less noisy time-series that followed a 24-hour cycle and highlighted 

the higher observation frequency aspects of BRIGHT/AHI. 

The continuous time-series were further used to derive Fire Radiative Energy (FRE) metrics for each 

case study, in order to provide a quantifiable comparison between the datasets. FRE is a temporal integration 

of FRP that can be used to derive burning biomass emissions (Ichoku and Ellison, 2014; Ichoku and 

Kaufman, 2005; Zheng et al., 2021) and combustion completeness metrics (Li et al., 2018b; Roberts et al., 

2005). FRE was computed by evaluating the time integral of the continuous FRP measurements (Roberts 

et al., 2005; Wooster et al., 2005) for the duration of the event, as given in Eq 3.1: 

 
𝐹𝑅𝐸 = ∫ 𝐹𝑅𝑃 𝑑𝑡

𝑡𝑛

𝑡0

 Eq 3.1 
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3.4. Results 

3.4.1. Functional equivalence between hotspot datasets 

3.4.1.1. Continental scale evaluation of hotspot density and spatiotemporal spread 

The spatial distribution of the observed hotspots across the continent of Australia for each dataset is 

shown in Figure 3.2. The similarity between the maps indicates functional equivalence of fire activity as 

recorded across each of the three hotspot datasets. High density clusters appear in the south-east and north 

of Australia, while low density clusters are found in areas in the south-west and east of the continent. Upon 

closer examination some disagreement is also evident. This is most prevalent in the far north-east of the 

continent (Cape York, Far North Queensland) where VIIRS reports a lower density of hotspots compared 

to either BRIGHT/AHI and MODIS. 

   

 

Figure 3.2 Fire activity for Australia between April 2019 and March 2020 as characterised by the normalised number of hotspots 

as identified by BRIGHT/AHI (left), MOD14/MYD14 (centre) and VNP14IMG (right).  

Similarly, the spatiotemporal distribution patterns of hotspots (per week and rounded coordinate of 

longitude or latitude) appear almost equivalent for each of the hotspot datasets (Figure 3.4). All three 

datasets capture the long period of fire activity in northern Australia. Meanwhile, the beginning of the Black 

Summer Fires in September 2019 and its southerly progression is also captured by all three datasets, 

appearing as the most intense hotspot cluster (Figure 3.4 a, b, c). A similarly dense cluster is evident in the 

eastern-most part of the continent in the longitude-vs-time visualisations starting around the same period 

(Figure 3.4 d, e, f). The differences in the magnitude of the hotspot numbers between the datasets occur due 

to a combination of hotspot detection MIR threshold, spatial and temporal resolution. 
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Figure 3.3 Spatial progression of hotspots shown through time (April 2019 to March 2020) in weekly intervals across all 

latitudes (top) and longitudes (bottom) for BRIGHT/AHI (a, d), MOD14/MYD14 (b, e) and VNP14IMG (d, f). The colour bars 

are adjusted to a specific range per dataset, for visual comparison of the patterns. 

3.4.1.2. Hotspot matching and correlation 

Hotspot-to-hotspot correlations between BRIGHT/AHI and the resampled LEO datasets are shown in 

Figure 3.4. The log-space linear relationship suggests that there is a power-law relationship between 

BRIGHT/AHI and the LEO datasets. The fitted power-law model in the original data shows that MODIS 

FRP is more similar to BRIGHT/AHI than to VIIRS FRP data. Meanwhile, the LEO datasets are strongly 

correlated with BRIGHT/AHI in log-space (Pearson’s coefficients ranging from 0.74 to 0.77).  

Figure 3.4 a) and b) demonstrate that BRIGHT/AHI overestimates the equivalent LEO hotspots 

(average FRP), especially when compared to VIIRS. However, for the summation resampling method 

(Figure 3.4 c), d)), VIIRS logs higher FRP for each BRIGHT/AHI pair, while MODIS underestimates very 

low BRIGHT/AHI observations (<25MW) and overestimates the >25MW observations. In addition, 

BRIGHT/AHI reaches a saturation value around 950MW creating a cut-off value in all four cases, 

something that is attributed to the known saturation of the MIR channel. 

a) b) c) 

d) e) f) 
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Figure 3.4 Scatterplots showing the matched BRIGHT/AHI hotspots with MODIS (a,c) and VIIRS (b,d) in Australia over the 

April 2019 to March 2020 period. The superellipse aggregation of the LEO data in the top row graphs (a, b) is implemented 

using the mean FRP of the spatiotemporal neighbours, while on the bottom row graphs (c, d) using the summation of each 

BRIGHT/AHI hotspot. 

3.4.1.3. Regional and Landcover FRP distributions for matched hotspots 

The violin plots in Figure 3.5 and Figure 3.7 summarize FRP estimation statistics and distributions 

across three broad vegetation classes. The LEO datasets systematically estimate a wider range of FRP 

values compared to BRIGHT/AHI, when resampled to the latter’s grid using a summation aggregation. 

However, the FRP distribution relationships between datasets are inverted when LEO datasets are 

resampled using the averaging function instead. 

a) b) 

c) d) 
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The spatial resolution of the sensors has a notable impact on the FRP distributions throughout the study 

region, while the influence of vegetation type appears to be more regionally dependant (Figure 3.5). More 

specifically, the high-valued long-tailed FRP distributions reach a higher maximum with increasing spatial 

resolution (i.e., smaller IFOV). At the low-value end of the distributions MODIS reports the lowest minima. 

Meanwhile, vegetation type appears to mostly affect distributions in the southern regions, where the 

distribution densities are skewed towards the low-end in forests (compared to woodlands and grasslands), 

especially for BRIGHT/AHI. Finally, the truncation of the violin plots, particularly dominant in data for 

the south-west region, implies a saturation value for BRIGHT/AHI at approximately 950MW. 

  

  

 

Figure 3.5 Distributions of FRP estimations for each vegetation class separated into each of the four quadrants as defined by the 

Tropic of Capricorn (top-bottom) and the 140o of longitude (left-right) over Australia and depicted in Figure 3.1. Where a) 

represents the northwest, b) represents the northeast, c) represents the southwest and d) represents the southeast sub-region.  

MODIS and VIIRS hotspots have been aggregated to show total FRP (sum) to match the coarser BRIGHT/AHI grid. 

a) b) 

c) d) 
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Figure 3.6 shows the violin plots for FRP per LC for all hotspot datasets, and where the LEO datasets 

are resampled to BRIGHT/AHI’s grid using an averaging aggregation. BRIGHT/AHI shows overall higher 

FRP summary statistics compared to the LEO datasets, with FRP decreasing with increasing spatial 

resolution (i.e., smaller IFOV). Moreover, VIIRS FRP has a bi-modal distribution in the southern case study 

areas suggesting a larger accumulation of very low-intensity hotspots that have nevertheless been captured 

successfully by BRIGHT/AHI. Finally, on average more intense fires are being observed in the southern 

case study areas as compared to the northern case studies, this is as expected given the fuel loads associated 

with the landcovers. 

  

  

 

Figure 3.6 Distributions of FRP estimations for each vegetation class separated into each of the four quadrants as defined by the 

Tropic of Capricorn (top-bottom) and the 140o of longitude (left-right) over Australia and depicted in Figure 3.1. Where a) 

represents the northwest, b) represents the northeast, c) represents the southwest and d) represents the southeast sub-region.  

MODIS and VIIRS hotspots have been aggregated using the average FRP (mean) to match the coarser BRIGHT/AHI grid. 

 

a) 

c) 

b) 

d) 
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3.4.2. Independent dataset analysis and temporal insights 

3.4.2.1. Diurnal FRP cycles 

The average diurnal profiles of the FRP estimations for January 2020 and July 2019 (considered within 

high and low fire season for southern Australia, respectively) can be seen in Figure 3.7. Higher hotspot 

numbers and FRP summary statistics are reported for January compared to July across all hotspot datasets.  

However, BRIGHT/AHI offers a complete observation record across the whole day with clear peaks and 

troughs, and shows clear turning points of increasing and decreasing fire activity. More specifically, fire 

intensity is at its lowest range around 05:00 (local time) and then peaks around 15:00 during high fire season, 

a ten-hour difference. Meanwhile, fire intensity reaches its lowest FRP statistics around 07:00 and peaks 

around 13:00 during the low fire season. In contrast, the LEO datasets offer only a partial overview of FRP 

change per hour of day and miss certain aspects of diurnal fire activity such as the low activity in the early 

morning hours. 

The same analysis north of the Tropic of Capricorn reveals a less obvious relationship between seasons 

for observed FRP, where fire intensity was marginally higher during January 2020 (Figure 3.8). However, 

BRIGHT/AHI and MODIS data observe higher fire activity in terms of the number of detected hotspots in 

July compared to January, something that is less pronounced in the VIIRS data. In the North, fire intensity 

peaks around 13:00 North regardless of season, while it reaches its minima during 06:00 in January and 

07:00 in July. Once again, the LEO datasets do not have any observations during this time.   
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Figure 3.7 Box plots showing the diurnal FRP cycles for January 2020 (high fire season – left column) and July (low fire season-

right column) in woodlands and forests across regions south of the Tropic of Capricorn. Each row corresponds to one of the 

examined hotspot datasets (BRIGHT/AHI top row, MODIS middle row, VIIRS bottom row). Number of observed hotspots is 

shown in grey. These hotspots correspond to the original independent observations captured by respective datasets. Red and blue 

dashed lines indicate peak and low activity in BRIGHT/AHI. 
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Figure 3.8 Box plots showing the diurnal FRP cycles for January 2020 (high fire season – left column) and July (low fire season- 

right column) in woodlands and forests across regions north of the Tropic of Capricorn. Each row corresponds to one of the 

examined hotspot datasets (BRIGHT/AHI top row, MODIS middle row, VIIRS bottom row). Number of observed hotspots is 

shown in grey. These hotspots correspond to the original independent observations captured by respective datasets. Red and blue 

dashed lines indicate peak and low activity in BRIGHT/AHI. 
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3.4.2.2. Small-area FRP time-series case studies 

Four case studies across the continent as represented by individual 0.2o grid cells were used to derive 

short and event-specific FRP time-series that spanned between four and eight days. Details on the locations 

regarding coordinates and dominant LC are reported in Table 3.1. FRE metrics show that MODIS 

significantly underestimates the first three events compared to the other two datasets, while it provides the 

highest FRE for the Black Summer Fires case study. Meanwhile, VIIRS consistently sits between BRIGHT 

and MODIS with its values being always closer to the former. 

Table 3.1 Information for the small-scale case studies explored in this section. Each case study corresponds to a 0.2o grid cell 

and the time series graphs can be seen in Figure 3.9.. The locations are depicted on the map of Figure 3.1. 

Coordinates of 

grid point 

State 

Bioregion 

name 

Land Cover 

Class (mode) 

Total FRE (GJ) Duration 

BRIGHT/AHI MODIS VIIRS  

Lon: 136.62 

Lat: -35.84 

South 

Australia 

Kanmantoo Forest (Open) 198.64 26.31 132.73 8 days 

Lon: 124.02 

Lat: -17.24 

Western 

Australia  

Dampierland Grass 66.26 12.81 38.89 3 days 

Lon: 122.22 

Lat: -32.44 

Western 

Australia   

Mallee Woodland 103.91 45.28 71.59 7 days 

Lon: 150.42 

Lat: -35.44 

New South 

Wales 

South East 

Corner 

Forest (Closed) 145.92 183.25 151.86 4.5 days 

 

Figure 3.9 shows the FRP time-series captured by the four fires examined in Table 3.1. Here, there is 

general agreement between BRIGHT/AHI and the diurnal FRP peaks captured by at least one LEO at a 

time, both in magnitude and local time. More specifically, BRIGHT/AHI agrees with VIIRS, whereas 

MODIS agrees with BRIGHT/AHI approximately half of the time.  

On the coarser grid level, the datasets measure similar magnitudes of diurnal FRP, with the exception 

of the South East Corner case study, where the LEOs are in high agreement and estimate almost double the 

FRP values captured by BRIGHT/AHI. It is important to note that the time-series in Figure 3.9d) 

corresponds to a particularly intense megafire (Black Summer Fires), and MIR saturation can have a more 

significant impact on the FRP estimations. 
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Figure 3.9 FRP time-series for four fire events (Table 3.1). Aggregated by summation FRP hotspots are plotted as single markers 

and connected with a fitted function. They correspond to 0.2o grid cells in a) Open forest in Kanmantoo (Kangaroo Island), b) 

Grasslands in Dampierland, c) Woodlands in Mallee and d) Closed forest in South East Corner (during the Black Summer 

Fires). 

b) 

a) 

c) 

d) 
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3.5. Discussion 

With the increasing improvements and capabilities of GEO sensors for wildfire detection and 

monitoring, new observation opportunities are now available to better understand fire and its impact on the 

landscape and climate. Following previous work (Chatzopoulos-Vouzoglanis et al., 2022), this study 

reports on the equivalence and utility of the Himawari-8 BRIGHT/AHI hotspot product in comparison to 

commonly relied-upon LEO hotspot products.  It does so on a continental scale by comparing fire intensity 

observations from LEO and GEO satellite sensors across different fire-prone land covers and fire seasons 

in Australia. Comparisons of continental wildfire density and spread patterns over a whole year and specific 

local fire events that span a few hours or days, allow us to assess the utility of BRIGHT/AHI data for each 

landcover. 

At the continental scale, BRIGHT/AHI, MODIS and VIIRS FRP data were found to capture very 

similar spatiotemporal patterns of fire hotspot density and spread when using coarse spatiotemporal 

aggregations. However, pixel-level comparisons reveal differences due to spatial resolution variations and 

radiometric limitations of BRIGHT/AHI’s 2km IFOV (e.g., MIR channel saturation). These are highlighted 

with the hotspot matching methodology (3.3.1.2), as multiple LEO pixels are aggregated and compared to 

a single BRIGHT/AHI pixel. Nevertheless, BRIGHT/AHI shows a strong positive correlation (r = 0.76) 

with the LEO-derived FRP for spatially and temporally matched hotspots. 

When near-simultaneous FRP estimates on matched hotspots between the datasets are examined on a 

regional and land cover basis, BRIGHT/AHI captures similar FRP descriptive statistics to MODIS. In 

contrast, the higher spatial resolution and detection threshold of VIIRS result in a larger range of FRP values 

with different statistics, depending on the matching and aggregation methodology used (i.e., mean or 

summed aggregation). Overall, the results of the distribution analysis through the violin plots highlight the 

effect of spatial resolution on the FRP estimation which less evident for BRIGHT/AHI compared to MODIS 

but is more pronounced for BRIGHT/AHI compared to VIIRS. Nevertheless, other significant differences 

between the FRP estimate distributions are not easily identifiable, further increasing the confidence in the 

BRIGHT/AHI FRP estimates. 

The comparison of diurnal FRP variability amongst AHI and LEO sensors shows that BRIGHT/AHI 

reveals considerably more detail. Regional diurnal trends with hotspot numbers and FRP ranges reveal 

insights about fire activity in a more complete manner when presented continuously by GEO sensors. The 

limited opportunities that LEO sensors have for fire observation makes such profiles hard to derive, 

especially when behaviour changes rapidly throughout the day (Balch et al., 2022). With the further launch, 

development, and continuation of GEO missions such as Himawari-8 and 9 (expected), diurnal cycle 
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profiles could be established for different regions, land covers and seasons. It is hoped these enhanced 

diurnal profiles would lead to more timely active fire management, anomaly detection or long-term trend 

derivation, tools that can assist in better fire preparedness and suppression resources distribution and 

timings, as well as the quantification of the effects of a changing climate. 

The examination of case study fires showed that, at a local scale and through the span of a few hours 

or days while an event is active, BRIGHT/AHI offers an almost continuous stream of fire information. 

Reconstructing the diurnal fire activity from these observations is quite straightforward. On the other hand, 

LEO sensors might have a single opportunity to detect the peak of fire activity throughout a day, which can 

be missed by the presence of clouds and/or smoke at the moment of overpass. For applications that require 

hourly (or timely) fire information, using LEO data will require certain assumptions to model the diurnal 

fluctuation, leading to higher uncertainties. Here, GEO observations can provide much more robust 

information. 

The quantification of the uncertainties of the different products can provide more robust results when 

they are used in synergy for Fire Radiative Energy (FRE) calculation (Li et al., 2019a). Given the fire 

activity peaks that were missed by the different datasets analysed in this study, it can be inferred that 

substantial information needed for FRE calculation could be lost depending on the dataset of choice. For 

instance, MODIS FRE missed many FRE peaks and recorded significantly lower FRE than BRIGHT/AHI 

and VIIRS FRE for most 0.2o grid cell case studies, resulting in an underestimation of the total FRE by a 

significant margin. The inconsistencies of MODIS FRP estimates can also be partially attributed to the 

different levels of uncertainty introduced by the scanning angle of a fire pixel (Freeborn et al., 2014b). 

Nonetheless, BRIGHT/AHI can saturate faster and underestimate the magnitude of FRP peaks in spatially 

small hotspot aggregations. When an extremely intense event was examined, FRE magnitude relationships 

of GEO and LEO were reversed, highlighting the LEO sensor’s advantages and the impact of 

BRIGHT/AHI’s MIR channel saturation. Nevertheless, these results correspond to events that were on high 

relative agreement between the datasets and may be harder to generalise. 

In this study, at a local scale, BRIGHT/AHI tends to be in higher agreement with FRP fluctuations 

derived from VIIRS rather than with the established MODIS FRP product. This is quite interesting since 

(Li et al., 2020a) found that MODIS FRP estimations (MYD14) for wildfires across Africa are much lower 

than the respective VIIRS FRP estimations (VNP14IMG). The comparison that was implemented by (Li et 

al., 2020a) on varying spatial and temporal resolution aggregations reported up to 50% fire detection 

omissions by MODIS and a minimum of 42.8% lower FRP aggregations compared to simultaneous VIIRS 

estimations. These errors are attributed to MODIS not being as sensitive to lower intensity fires compared 
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to VIIRS, as well as to pixel size increase towards the scan’s edge (Li et al., 2018a), something that was 

accounted for in this study (see 3.2.2).  

The results from the diurnal cycle modelling and the case study fires suggest that there are key periods 

of fire activity missed by LEO observations. These periods are significant because they can include rapid 

changes between low and high FRP, something that can be crucial for fire management. For example, the 

diurnal cycle graphs (e.g., Figure 3.7) show that LEO sensors have gaps in their records in the early morning 

and evening hours that correspond to rapid changes in fire intensity, due to fixed overpass times. The 

temporal continuity of GEO observations allows us to identify these periods of low and high fire activity 

without the need to make assumptions and regardless of geographical location and extent. 

Our assessment is that BRIGHT/AHI FRP estimates are useful for characterising fire activity at a 

continental scale, across various land covers and seasons with a high observation frequency. Nevertheless, 

AHI’s MIR channel saturation and its coarse spatial resolution tend to leave out low intensity fires and/or 

underestimate very high intensity ones, compared to the established LEO FRP datasets. With the imminent 

retirement of the TERRA/AQUA MODIS sensors, newer LEO sensors like VIIRS can still provide valuable 

information on fire activity, although more infrequently. Therefore, further validation of each dataset’s 

omissions and drawbacks is needed, with possible multi-sensor fusion opportunities arising to take 

advantage of the different data streams. 

3.6. Conclusions 

In this paper, the BRIGHT/AHI FRP product was compared against the equivalent MODIS and VIIRS 

products. Despite its spatial resolution limitations, BRIGHT/AHI provides a good approximation of the 

MODIS and VIIRS FRP for simultaneously observed hotspots, while offering a much more detailed diurnal 

cycle of FRP due to its higher temporal resolution. The results suggest that newer geostationary products 

like BRIGHT/AHI can provide new information for fire monitoring that is lacking form Low-Earth orbiting 

sensors, especially when it comes to monitoring specific small-scale events through their rapidly changing 

life cycle. While this is not the first study to do such a comparison, it is the first do so on a continental scale. 

Hence, we argue that GEO sensors may be more suitable for fire monitoring beyond the timely detection 

stage and towards the fire severity and climate change direction. This new information should be used in 

conjunction with other data streams for better emission monitoring, fire preparedness and response, burn 

severity estimation and ecosystem recovery studies.
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Chapter 4. Are fire intensity and burn severity 

associated? Advancing our understanding of FRP 

and NBR metrics from Himawari-8/9 and Sentinel-2 

 

This chapter is based on: Chatzopoulos-Vouzoglanis, K., Reinke, K.J., Soto-Berelov, M., Jones, S.D., 

2024. Are fire intensity and burn severity associated? Advancing our understanding of FRP and NBR 

metrics from Himawari-8/9 and Sentinel-2. International Journal of Applied Earth Observation and 

Geoinformation 127, 103673. https://doi.org/10.1016/j.jag.2024.103673  

 

Abstract 

Burn severity has been widely studied. Typical approaches use spectral differencing indices from 

remotely sensed data to extrapolate in-situ severity assessments. Next generation geostationary data offer 

near-continuous fire behaviour information, which has been used for fire detection and monitoring but 

remains underutilized for fire impact estimation. Here, we explore the association between remotely sensed 

fire intensity metrics and spectral differencing severity indices to understand whether and where they 

describe similar wildfire effects. The commonly used Differenced Normalised Burn Ratio (dNBR) severity 

index was calculated for Advanced Himawari Imager (AHI - 2km) and Sentinel-2 (20m) data and compared 

to different Fire Radiative Power (FRP) metrics derived from fire hotspot detections from AHI data across 

Australia. The comparison was implemented through different stratifications based on biogeographical 

region, land cover, fire type, and percentage of AHI pixel burned (fire fractional cover). The results indicate 

that FRP and dNBR metrics do not correlate in most scenarios, noting correlations being marginally 

stronger for hotter fires. However, correlations become significantly stronger when data are grouped using 

fire type information and fire fractional cover, with correlations peaking (r = 0.75) for large fires that burned 

41-60% of an AHI pixel. In conclusion, remotely sensed fire intensity and severity proxies capture different 

aspects of wildfire impact, that only correlate with each other after using auxiliary data. Spectral 

differencing severity metrics have been used extensively during the past decades, however high-frequency 

fire intensity estimations have the potential to augment the existing information and reveal new ways of 

characterizing wildfire impact over large areas. 

 

https://doi.org/10.1016/j.jag.2024.103673
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4.1. Introduction 

Climate change and the projected worsening of fire weather are expected to increase the occurrence 

and severity of wildfires (Abatzoglou et al., 2019; Abram et al., 2021; Calheiros et al., 2021; Fairman et al., 

2016). These events are important as they can cause rapid adverse changes to local environments with 

potential global effects (Fairman et al., 2022a). Remote sensing can offer information about vegetation 

condition over large spatial and temporal scales and it has been used to monitor wildfire impact and 

recovery dynamics (Gerrevink and Veraverbeke, 2021; Hislop et al., 2018). 

Two important wildfire monitoring parameters used in remote sensing are related to the intensity and 

severity of a wildfire. Here, these two variables are described as the radiative power released by an active 

fire and the magnitude of spectral change that the burn caused, respectively. The Normalised Burn Ratio 

(NBR) is a spectral index that was developed for burned area and burn severity estimation (Key and Benson, 

2006; López-García and Caselles, 1991). Field assessments of burn severity, such as the Composite Burn 

Index (CBI) (Key and Benson, 2006) and the Geometrically corrected version (GeoCBI) (De Santis and 

Chuvieco, 2009), are often used to establish an empirical relationship with NBR and extrapolate to larger 

areas for specific fire events and vegetation types. Differenced NBR (dNBR) values from pre- and post-fire 

scenes have been used to assess spectral change due to fire, as they demonstrate a strong correlation with 

GeoCBI compared to other spectral differenced indices (Gerrevink and Veraverbeke, 2021). However, pre-

fire conditions, such as extremely low vegetation moisture can greatly influence the results of NBR-based 

burn severity indices, possibly deeming NBR unsuitable for use as a generalized burn severity metric (Gale 

and Cary, 2022). This is also the case in denser canopy forests, where spectral burn severity indices are 

more sensitive to top-of-canopy fire responses making it harder for NBR to be associated to different 

stratification of CBI and therefore harder to extrapolate (Fernández-Guisuraga et al., 2023a). 

Bi-temporal spectral indices, such as dNBR, have become the tool of choice for assessing burn severity 

(Gale et al., 2022; Gibson et al., 2020). This results from a historical lack of continuously available satellite 

data that could capture other aspects associated with the rapidly evolving nature of wildfires (Keeley, 2009). 

For instance, fire intensity describes the energy released from burning biomass during a wildfire (Keeley, 

2009), and it has been linked to direct effects on the fuel and ecosystems, such as biomass consumed by 

fire (Roberts et al., 2005; Wooster et al., 2005), and indirect effects on trees by heat exposure (Smith et al., 

2016). Furthermore, brief exposure to low heat via radiation can affect the growth and survival of eucalypt 

tree species, subject to the bark moisture content (Subasinghe Achchige et al., 2022), as well as the net 

primary productivity of fire-resistant and mixed species (Sparks et al., 2018, 2017). Field burn severity 

classifications often fail to predict the mortality of trees that have been burned more recently, while 
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remotely sensed spectral indices carry high uncertainties regarding tree mortality as well (Furniss et al., 

2020; Volkova et al., 2022). Therefore, the estimation of only direct post-fire effects, such as dNBR, might 

be insufficient to quantify longer term tree survival and recovery (Sparks et al., 2016). Meanwhile, bi-

temporal spaceborne LiDAR metrics examining forest recovery after wildfire do not show significant 

correlations with Landsat NBR and other spectral metrics, further stressing the need to complement severity 

studies with additional fire information (Huettermann et al., 2023).  

Some remote sensors can estimate wildfire intensity by measuring the upwelling middle-infrared (MIR) 

radiation of a fire and converting it to Fire Radiative Power (FRP) (Wooster, 2002; Wooster et al., 2005, 

2003). FRP and its time integration metric Fire Radiative Energy (FRE) are widely used for fire intensity 

monitoring and emission studies (Freeborn et al., 2014b; Ichoku and Ellison, 2014; Ichoku and Kaufman, 

2005; Li et al., 2022; Nguyen et al., 2023). Despite the extensive literature on FRP/FRE studies regarding 

emissions and biomass consumption, the association between FRP and NBR metrics has only briefly been 

explored, with mostly non-significant associations being recorded (Henry et al., 2019; Heward et al., 2013). 

However, when data were aggregated to a coarser spatial resolution of ~0.5o, MODIS FRE and 

NOAA/AVHRR dNBR showed significant correlations in Siberian forests (Ponomarev et al., 2023). 

Meanwhile, some studies are already using integrated FRP metrics from polar-orbiting sensors to describe 

severity (Sloan et al., 2022), with newer geostationary FRP products, such as the Biogeographical Region 

and Individual Geostationary HHMMSS Threshold (BRIGHT) (Engel et al., 2021a), enabling enhanced 

monitoring and estimation of FRP/FRE  (Chatzopoulos-Vouzoglanis et al., 2023, 2022).  

Fuel structure is also an important consideration when studying wildfire and its effects from space. 

Dense canopy cover can obstruct the line-of-sight of the sensor and lead to fire intensity underestimation 

or even a late detection (Johnston et al., 2018). The need to account for this complexity was shown by 

Roberts et al. (2018) where ancillary variables such as the Leaf Area Index (LAI) and tree cover percentage 

were used to make adjustments to improve intensity estimations. Changes in the total fuel load due to fire, 

captured by airborne LiDAR, have also been found to be linearly correlated to MODIS FRE, with even 

stronger correlations observed through the addition of canopy obstruction information and more frequent 

fire intensity observations (McCarley et al., 2020). Recent studies (Sparks et al., 2023a) provide further 

argument for the use of ancillary data, showing that the rate of spread and maximum FRP of small area 

fires is correlated to the rate of tree height growth. Each of these studies reveal opportunities for estimating 

fire impact across larger spatial areas via the use of additional variables. When coupled with an increasing 

frequency of observations of fire activity through geostationary satellites and constellations, there may be 

further improvements to these estimates.   
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As near-continuous active fire intensity information is becoming available from next-generation 

geostationary sensors, we have new opportunities to understand wildfires and their impacts. However, the 

association between wildfire intensity and burn severity is not well-understood nor documented. In this 

study we provide the first comprehensive investigation into the association of fire intensity measures with 

widely used remote sensing observations of burn severity. We define fire intensity as FRP and FRE and 

burn severity as NBR and dNBR. We explore the association between fire intensity metrics and spectral-

differencing severity indices according to biogeographical region, vegetation type, land cover, fire type, 

and fire fractional cover. We test the following assumptions:  

1) A strong positive correlation exists between fire intensity and burn severity,  

2) Correlations increase as the fire fractional cover area increases, 

3) Correlations are stronger for higher intensity fires, 

4) Correlations are stronger when the height of the burned vegetation is low, canopy cover is sparse 

and fire observations are not obstructed by the canopy. 

To test these assumptions, we compare geostationary (Himawari-8) and polar-orbiting (Sentinel-2)  

dNBR information with geostationary products of FRP (Engel et al., 2022) across the whole of Australia 

(~7500 wildfire hotspots) over a 12 month period  (April 2019 and March 2020). We stratify the study area 

according to regional biophysical characteristics, land cover, fire type, and AHI pixel fire fractional cover 

-in order to investigate the relationship between fire intensity and severity as observed via satellites and 

help reveal underlying factors that drive these associations.  

4.2. Methods 

4.2.1. Study area and stratification 

Australia was chosen as the study area as it includes a variety of land covers, vegetation types and fire 

regimes. Following previous work, data from April 2019 to March 2020 were used to account for seasonal 

variability across the continent (Chatzopoulos-Vouzoglanis et al., 2023). The study area was stratified using 

biogeographically homogenous regions (bioregions), defined as the Interim Biogeographic Regionalization 

for Australia (IBRA) (DAWE, 2000). In addition, the Australia’s State of the Forests Report (SOFR, 2018) 

was used to stratify the analysis based on canopy cover and density in forested areas (Table 4.1), as well as 

land cover information from Lymburner et al. (2015). Auxiliary raster data were resampled to a 2km 

resolution to be comparable to Himawari data. 



Chapter 4 

 

62 

 

Table 4.1 Description of datasets used to spatially stratify the study area. 

Stratification dataset Description Reference 

Interim Biogeographic 

Regionalization for 

Australia (IBRA) 

A regionalization framework based on continental 

and regional climate information, ecological data, 

geology, and geomorphology.  

(DAWE, 2000) 

Australia’s State of the 

Forests Report 

The report includes a variety of forest variables (e.g., 

canopy cover and density, canopy height, tree 

species). It is derived from data captured between 

2011 and 2016.  

(SOFR, 2018) 

Geoscience Australia Land 

cover 

Land cover information derived by MODIS data for 

2015. 

(Lymburner et al., 

2015) 

 

4.2.2. Wildfire hotspot selection and fire intensity 

Wildfire detections from Advanced Himawari Imager data that were processed using the BRIGHT 

algorithm (BRIGHT/AHI) and their associated FRP metrics were chosen for the study area and period 

(Chatzopoulos-Vouzoglanis et al., 2023; Engel et al., 2022, 2021a, 2021b). The dataset consists of ~170,000 

hotspot locations (~2kmx2km pixels), 30,000 of which were randomly selected to manage data storage and 

processing restrictions. The 30,000 hotspots were cross-referenced using VIIRS hotspots (VNP14IMG) 

(Schroeder and Giglio, 2018) as a quality measure, resulting in ~7,500 high confidence BRIGHT/AHI 

hotspots. The time-series of FRP observations for each hotspot was used to derive additional metrics. The 

peak wildfire intensity was described by the Maximum FRP (MaxFRP) of the time-series, while FRE was 

calculated to describe the total (integrated) energy emitted by one hotspot.  FRE was calculated on a 10-

minute interval (FRE10) using the following model:  

𝐹𝑅𝐸10 = ∫ 𝐹𝑅𝑃𝑡

𝑡𝑛

𝑡0

𝑑𝑡 

4.2.3. AHI burn severity index  

For the examined BRIGHT/AHI hotspot locations, full-disk reflectance data for NIR and SWIR 

channels from AHI (Bessho et al., 2016) were downloaded from Australia’s National Computational 

Infrastructure (NCI) (https://nci.org.au). The pre- and post-fire conditions were defined by taking the 

median spectral value of each pixel in the seven days before the first detection and after the last detection, 

respectively. In the absence of a cloud mask for AHI during the study period, this was deemed an effective 

https://nci.org.au/
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way to exclude clouds and other outliers. Finally, the pre- and post-fire NBR values were used to compute 

the dNBR (Key and Benson, 2006). 

4.2.4. K-Means clustering used for determining fire type 

The 7,500 BRIGHT/AHI hotspot locations were classified into four clusters using the K-Means 

clustering algorithm implementation in the Python programming language (Pedregosa et al., 2011).  The 

variables used as inputs for the clustering included the MaxFRP for each location, the  FRE10, the duration 

of the fire in days (Persistence), and the dNBR information from the AHI data (4.2.3). 

The probability density function of each of the four variables (MaxFRP, Persistence, dNBR, and FRE10) 

was plotted to inspect their statistics and modality for each vegetation type (canopy height and density). 

After visual inspection of the distributions and the K-Means clustering result, the maximum separation was 

achieved on the MaxFRP and Persistence of the fires axes. These four clusters were then given a qualitative 

label by interpreting their value ranges over the two axes (hot and cool, long and short). This stratification 

was used to examine how the dNBR and FRP association fluctuates between fire types. The different fire 

type hotspots were also plotted on a map to examine their spatial distribution and density. 

4.2.5. Sentinel-2 burn severity and fire fractional cover analysis 

4.2.5.1. Sentinel-2 dNBR  

Sentinel-2A and 2B data were acquired using the Geosciences Australia infrastructure (Krause et al., 

2021),  to increase the confidence in the dNBR metrics and extract the burned area within the BRIGHT/AHI 

pixel extent. For each fire type, ~400 random samples were selected (4.2.4) ensuring that each land cover 

would be represented with at least 30 hotspot locations, when available. This resulted in ~1700 locations, 

for which Sentinel-2 SWIR (Band 12) and NIR (band 8A) data were downloaded.  

The pre- and post-fire periods were defined for each hotspot individually, by examining the first and 

last BRIGHT/AHI hotspot detection time and allowing a 30-day period buffer before and after the fire, 

respectively, to account for data scarcity. To achieve an acceptable tradeoff between data quality and 

completeness, Sentinel-2 scenes with at least 90% cloud-free conditions were chosen. Finally, data gaps 

and outliers were filtered out using the median of each pixel’s time-series within the period of interest. 

Sentinel-2 dNBR was calculated as the average dNBR of all the pixels situated within a single AHI pixel. 

4.2.5.2. Sentinel-2 fire fractional cover 

The fire fractional cover (FFC) for each of the ~1700 BRIGHT/AHI pixels was calculated using the 

higher resolution dNBR from Sentinel-2. The burned and unburned areas within the BRIGHT/AHI pixels 
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were separated using dNBR thresholds specific to each fire type (4.2.4). These thresholds were calculated 

using binary K-Means clustering on the Sentinel-2 dNBR values (20m pixels) within each BRIGHT/AHI 

hotspot (2km pixel). Subsequently, the minimum dNBR values for each burned area cluster were grouped 

by fire type. Finally, the average of the minimum dNBR values for each fire type was used as a threshold. 

The burned area percentage was calculated using the ratio of burned area estimations and the total area of 

the AHI pixel to represent the FFC. 

4.2.6. Statistical analysis between intensity and severity metrics 

Pearson’s correlation coefficient (R) was used to assess the linear association between variables in each 

stratification (bioregion, fire type, FFC, land cover). For each grouping, Pearson’s R was calculated 

between dNBR and FRE10 or MaxFRP pairs, where each pair corresponded to the extent of individual AHI 

pixels and the duration of the fire within each pixel. As the relationship between FRE10 and dNBR is not 

linear, FRE10 was log-transformed (Chatzopoulos-Vouzoglanis et al., 2023). The same metric was used for 

all other stratifications. Only significant correlations with a p-value smaller than 0.05 and a sample 

population (n) of at least 25 are used, while where possible correlations were calculated and compared for 

equally sized populations to reduce bias. 

4.3. Results 

4.3.1. Continental scale comparison of intensity and severity  

Figure 4.1 shows correlation between dNBR and FRE10 or MaxFRP in the bioregions that had over 25 

hotspots (40 out of 89 bioregions). FRE10 correlates to dNBR moderately or strongly more often than 

MaxFRP, in 7 out of 40 compared to 2 out of 40 bioregions respectively. Central Mackay Coast in the 

northeast demonstrates the highest correlation of r = 0.78 (p = 0.00) between both FRP metrics and dNBR.  
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Figure 4.1 Correlation between dNBR and FRE10 (left) or MaxFRP (right) for the BRIGHT/AHI hotspots within each bioregion, 

where sample size is significant (n>=25). Very strong correlation corresponds to r>0.8, Strong to 0.6>r>0.8, Moderate to 

0.4>r>0.6, Weak to 0.2>r>0.4 and No correlation to r<0.2. 

Table 4.2 shows information about the bioregions where FRE10 and dNBR demonstrated a strong or 

very strong correlation as well as showing the dominant land cover and fire persistence. The most common 

land cover at hotspot locations is closed forest and woodland, while most of the fires burned for one to three 

days with highly variable FRE10. When MaxFRP and dNBR correlations are examined however (Table 4.3), 

their correlation is strong and very strong only in two bioregions, both represented by mostly closed forest 

fires with high MaxFRP and Persistence. 

Table 4.2 FRE10-vs-dNBR statistics per bioregion where the correlation is strong or very strong (Figure 4.1). Only bioregions 

with n>=25 and a r>= 0.6 are included.  

Bioregion r P Count Dominant land 

cover 

Persistence 

(days) 

FRE10 

(MJ) 

Central Mackay Coast 0.78 0.00 38 Closed forest 2.8 16088 

Tiwi Cobourg 0.78 0.00 39 Closed forest 3.1 6733 

Esperance Plains 0.74 0.00 51 Open forest 1.2 22974 

Arnhem Plateau 0.66 0.00 117 Woodland 1.4 5802 

Mount Isa Inlier 0.65 0.00 58 Sparse vegetation 1.1 6706 

Gulf Coastal 0.64 0.00 118 Woodland 1.7 6889 

Jarrah Forest 0.63 0.00 79 Closed forest 2.1 18956 
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Table 4.3 MaxFRP-vs-dNBR statistics per bioregion where the correlation is strong or very strong (Figure 4.1). Only bioregions 

with n>=25 and a r>= 0.6 are included. 

Bioregion r P Count Dominant 

land cover 

Persistence 

(days) 

MaxFRP 

(MW) 

Central Mackay Coast 0.83 0.00 38 Closed forest 2.8 674 

Jarrah Forest 0.66 0.00 79 Closed forest 2.1 893 

 

4.3.2. Density of hotspots according to vegetation height and canopy cover 

Figure 4.2 shows the probability density functions of the BRIGHT/AHI hotspots classified by 

vegetation height. The distribution of dNBR values does not change significantly between categories, 

although progressively lower values of dNBR are observed as the vegetation height increases in forests. In 

contrast, the observation of persistence of fires along with their FRE10 increase with increasing vegetation 

height. The distribution of MaxFRP appears to be bimodal while the remaining variables present unimodal 

distributions.  
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Figure 4.2 Probability Density Functions (PDF) of the BRIGHT/AHI hotspots classified according to the vegetation height. Tall 

class corresponds to >30m canopy height, Medium to 10-30m, Low to 2-10m and Non-forest to lower vegetation (SOFR, 2018). 

The variables dNBR, Persistence, MaxFRP and FRE10 are derived from AHI and BRIGHT data for individual and continuous 

wildfires that occupy a single AHI pixel. 

Similarly, Figure 4.3 depicts the probability density functions of the BRIGHT/AHI hotspots classified 

by forest canopy cover. Once again, dNBR does not show significant differences between categories, while 

observed fire persistence increases with increasing canopy cover. MaxFRP and FRE10 also seem to increase 

with canopy density, although closed canopies that account for a small percentage of the hotspot population 

show lower statistics. 
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Figure 4.3 Probability Density Functions (PDF) of the BRIGHT/AHI hotspots classified according to the vegetation canopy 

cover. Closed canopy class corresponds to >80% forest crown cover, Open canopy to 50-80%, Sparse canopy (Woodlands) to 

20-50% and Non-forest to <20% (SOFR, 2018). The variables dNBR, Persistence, MaxFRP and FRE10 are derived from AHI 

and BRIGHT data for individual and continuous wildfires that occupy a single AHI pixel. 

4.3.3. K-Means clustering of fire types 

The ~7500 VIIRS-validated BRIGHT/AHI hotspots were classified into four clusters using K-Means 

clustering and the variables dNBR, MaxFRP, FRE10, and Persistence. The optimal visualization of the 

clusters in two dimensions where the maximum separation is achieved was defined using MaxFRP and 

Persistence (Figure 4.4) and their individual statistics can be seen in Table 4.4. Here, fires that burn for less 

than three days are classified as “short”, while the ones that burn for four days on average are classified as 

“long”. Similarly, fires that peaked at around 740MW are classified as “hot”, with “cool” fires peaking at 

220MW on average. 
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Figure 4.4 K-Means clustering applied to the dataset (n=~7500) and labelled to different fire types. White crosses represent the 

centroid of each cluster. Black crosses (n=~1700) represent the randomly sampled hotspots for later analysis that was conducted 

with coincident Sentinel-2 data. 

Table 4.4 Mean cluster values (centroids) derived by K-Means. A qualitative description is added to make clusters easier to 

interpret. 

Cluster FRE10 (MJ) Max FRP (MW) dNBR Dt (days) 𝝈𝒅𝑵𝑩𝑹 

Hot-and-short 10846.56 745.51 0.16 1.05 0.13 

Hot-and-long 18874.15 738.35 0.15 4.26 0.12 

Cool-and-long 5466.24 222.05 0.12 4.35 0.09 

Cool-and-short 2742.16 213.77 0.12 1.08 0.09 

 

Figure 4.5 shows the spatial distribution, kernel density and population of the different fire types over 

Australia. During the study period, hot fires occurred with a higher frequency in the south while most hot-

and-long fires were observed in the southeast (Black Summer Fires). Cool-and-short fires are the most 

common across the continent, but they are particularly dense in the north. Hot-and-short, and cool-and-long 

fires have similar populations, while hot-and-long fires are the least frequent fires. 
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Figure 4.5 Spatial distribution and density of fire types over Australia. Fire types are derived using K-Means to cluster the 

dataset based on MaxFRP, FRE10, Persistence and dNBR. 

4.3.4. Sentinel-2 burn severity index and fire fractional cover analysis 

The FRP and the Sentinel-2 Fire Fractional Cover (FFC) association varies depending on the fire type 

and is shown in Figure 1.1.1. Although FFC between fire types does not change significantly, there is a 

notable trend for hot-and-short fires where two groups are evident consisting of very low or very high FFC. 

Here, one group demonstrates high MaxFRP and seems to burn over 80% of the AHI pixels, while the 

second group of hotspots corresponds to a 20% FFC or less. Cool-and-short fires do not show any 

significant patterns, burning variable portions of the pixels. Finally, the correlation between FFC and 

MaxFRP is significant (r = 0.35-36) only in the case of hot fires. Results for FRE10 show a similar behaviour. 
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Figure 4.6 FRE10 (top row) and MaxFRP (bottom row) metrics plotted against Sentinel-2 FFC, showing kernel density and 

reporting the FFC median and correlation statistics for each plot.  

The comparison between FRP-metrics and dNBR per fire type shows non-significant correlations for 

AHI data (Table 4.5). Meanwhile, Sentinel-2 data demonstrate weak correlations with MaxFRP in hot-and-

short and hot-and-long fires, and a weak correlation only within the hot-and-short fires in the case of FRE10. 
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Table 4.5 Correlations of dNBR and FRP metrics based on fire type. Pearson’s correlation coefficient (R) and associated p-value 

(p<0.05 indicates a statistically significant correlation), and sample size (n) are provided. Green denotes significant 

correlations. 

dNBR vs 

MaxFRP 

Cool-and-long Cool-and-short Hot-and-long Hot-and-short 

R p n R p n R p n R p n 

Sentinel-2 0.02 0.69 440 0.15 0.00 493 0.33 0.00 353 0.39 0.00 456 

AHI 0.07 0.12 440 0.15 0.00 493 0.27 0.00 353 0.17 0.00 456 

 

dNBR vs FRE10 

Cool-and-long Cool-and-short Hot-and-long Hot-and-short 

R p n R p n R p n R p n 

Sentinel-2 0.08 0.09 440 0.21 0.00 493 0.11 0.05 353 0.33 0.00 456 

AHI 0.04 0.43 440 0.14 0.00 493 0.10 0.07 353 0.14 0.00 456 

 

The binary K-Means clustering used for the burned/unburned area classification (4.2.5) resulted in 

varying thresholds for the different fire types (Table 4.6). MaxFRP has a significant effect on the threshold 

derivation as the hot fires have a higher dNBR threshold compared to the cool fires. However, the 

persistence of the fire does not have a clear impact on the thresholds, as seen by the difference (0.01) among 

long and short fires. 

Table 4.6 dNBR thresholds used to define burnt and unburned area based on Sentinel-2 data within a BRIGHT/AHI hotspot, 

derived by K-Means clustering (4.2.5) 

 dNBR threshold 

Hot-and-long 0.23 

Hot-and-short 0.24 

Cool-and-long 0.16 

Cool-and-short 0.15 

 

When setting equal sample sizes across groups, FFC reveals moderate and strong correlations between 

the FRP metrics and Sentinel-2 dNBR, and weak correlations with AHI dNBR (Table 4.7). A peak in 

correlations is observed between 23% and 60% of FFC, which is higher for MaxFRP for both dNBR 

datasets. Moreover, the FFC interval range for the constant sample size is increasing from 7% in the first 

group, to 20% in the 60-80% and 80-100% groups, indicating that the frequency of fires occupying larger 

percentages of an AHI pixel is decreasing with increasing FFC. 



Chapter 4 

 

73 

 

Table 4.7 Correlations of dNBR and FRP metrics based on groups equal number of observations (n=~290) and FFC interval. 

The FFC percentage corresponds to the percentage of an AHI pixel that was burned based on Sentinel-2 data. Green denotes 

weak, yellow moderate, and red strong correlations. For all correlations p<0.0.5. 

dNBR vs 

MaxFRP 
FFC 0-7% FFC 7-23% FFC 23-41% FFC 41-60% FFC 60-80% FFC 80-100% 

Sentinel-2 0.45 0.58 0.71 0.75 0.67 0.54 

AHI 0.13 0.31 0.34 0.32 0.21 0.24 

 

dNBR vs FRE10 FFC 0-7% FFC 7-23% FFC 23-41% FFC 41-60% FFC 60-80% FFC 80-100% 

Sentinel-2 0.37 0.51 0.66 0.59 0.56 0.42 

AHI 0.12 0.20 0.31 0.14 0.08 0.24 

 

A further stratification based on land cover types (Table 4.8 and Table 4.9) repeats the correlation 

statistics for the FFC groups. Again, the correlations between Sentinel-2 dNBR and MaxFRP are higher 

compared to AHI dNBR and most land covers peak between 7% and 60% FFC. Furthermore, correlations 

are higher in land covers with more complex vegetation (woodlands and forests), while simpler structure 

vegetation lacks significant populations in higher FFC groups. The same analysis for FRE10 shows similar 

but less significant associations and therefore was not included here to avoid repetition. 

Table 4.8 Sentinel-2 dNBR and MaxFRP association statistics per combination of FFC and land cover. Significant correlations 

are highlighted based on their strength, the p-value and sample size (>=25). Green denotes weak, yellow moderate, and red 

strong correlations. 

S2 dNBR vs 

MaxFRP 

  

FFC 0-7% FFC 7-23% FFC 23-41% FFC 41-60% FFC 60-80% FFC 80-100% 

R p n R p n R p n R p n R p n R p n 

Agriculture 0.65 0.08 8 0.50 0.10 12 0.20 0.67 7 -0.63 0.57 3 - - - -1.00 1.00 2 

Pasture 0.48 0.01 27 0.74 0.00 13 0.80 0.00 11 0.68 0.01 13 0.66 0.05 9 0.51 0.11 11 

Shrubs 0.53 0.00 82 0.64 0.00 47 0.82 0.00 26 0.94 0.00 9 0.95 0.05 4 - - - 

Sparse 

vegetation 
0.65 0.00 64 0.79 0.00 28 0.83 0.00 16 0.50 0.07 14 0.69 0.00 17 1.00 1.00 2 

Grass 0.20 0.56 11 0.66 0.00 20 0.84 0.00 23 0.80 0.00 24 0.37 0.01 44 0.32 0.14 23 

Open 

woodland 
0.16 0.51 20 0.44 0.00 45 0.63 0.00 39 0.71 0.00 47 0.53 0.00 35 0.39 0.07 23 

Woodland -0.03 0.88 28 0.60 0.00 40 0.65 0.00 39 0.85 0.00 46 0.80 0.00 50 0.85 0.00 39 

Open forest 0.34 0.07 30 0.56 0.00 48 0.75 0.00 56 0.79 0.00 63 0.71 0.00 60 0.64 0.00 75 

Closed 

forest 
0.53 0.01 21 0.44 0.01 38 0.73 0.00 74 0.75 0.00 72 0.63 0.00 71 0.47 0.00 111 
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Table 4.9 AHI dNBR and MaxFRP association statistics per combination of FFC and land cover. Significant correlations are 

highlighted based on their strength, the p-value and sample size (>=25). Green denotes weak, yellow moderate, and red strong 

correlations. 

AHI dNBR 

vs 

MaxFRP 

  

FFC 0-7% FFC 7-23% FFC 23-41% FFC 41-60% FFC 60-80% FFC 80-100% 

R p n R p n R p n R p n R p n R p n 

Agriculture 0.14 0.74 8 0.18 0.58 12 -0.08 0.86 7 -0.91 0.27 3 - - - -1.00 1.00 2 

Pasture 0.31 0.12 27 0.50 0.08 13 0.53 0.09 11 0.33 0.27 13 -0.02 0.95 9 0.08 0.82 11 

Shrubs 0.06 0.59 82 0.40 0.01 47 0.50 0.01 26 0.86 0.00 9 -0.27 0.73 4 - - - 

Sparse 

vegetation 
0.26 0.04 64 0.51 0.01 28 0.54 0.03 16 0.19 0.52 14 0.34 0.18 17 -1.00 1.00 2 

Grass 0.13 0.71 11 0.43 0.06 20 0.64 0.00 23 0.74 0.00 24 0.44 0.00 44 0.25 0.26 23 

Open 

woodland 
0.15 0.52 20 0.08 0.61 45 0.19 0.25 39 0.32 0.03 47 0.06 0.72 35 0.36 0.10 23 

Woodland 0.07 0.73 28 0.48 0.00 40 0.39 0.01 39 0.52 0.00 46 0.54 0.00 50 0.30 0.06 39 

Open 

forest 
0.44 0.02 30 0.26 0.08 48 0.17 0.22 56 -0.04 0.73 63 0.02 0.91 60 0.26 0.02 75 

Closed 

forest 
0.28 0.22 21 0.23 0.16 38 0.21 0.07 74 0.29 0.01 72 0.39 0.00 71 0.30 0.00 111 

 

4.4. Discussion 

Following previous work that established the confidence in fire intensity metrics derived by the 

BRIGHT algorithm (Chatzopoulos-Vouzoglanis et al., 2023, 2022; Engel et al., 2022), we explored the 

association of BRIGHT/AHI FRP to spectral differencing metrics used for burn severity estimation (dNBR). 

Similar studies compared MODIS FRP and Landsat NBR metrics, however, for a limited amount of case 

study fires (Henry et al., 2019; Heward et al., 2013). These demonstrated weak associations between metrics, 

due to temporal resolution limitations of polar-orbiting FRP observations. Our study expands the 

comparison beyond case study fires to encompass a continental scale for fires observed throughout an entire 

year, while including near-continuous geostationary FRP observations from AHI. The advantage of the 

higher temporal resolution of AHI enabled instantaneous FRP to be calculated in higher frequency from 

which estimations of MaxFRP and FRE10 could be derived with higher confidence. The results are stratified 

spatially using different variables representing biogeographical characteristics, land covers, vegetation 

types (height and density), and fire types. Our findings show that the two measures, FRP and dNBR, do not 
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correlate well in general.  However, slightly stronger correlations may be observed when hotter fires are 

examined, and when the dataset is stratified into subsets based on fire fractional cover using finer resolution 

Sentinel-2 data. 

More specifically, FRP metrics and dNBR correlations do not reveal any significant patterns when 

examined for biogeographically homogeneous regions over the Australian continent (Figure 4.1). FRE10 

shows moderate agreement with dNBR in more regions as compared to MaxFRP, especially on the east and 

north coast of Australia. FRE10 and MaxFRP correlations with dNBR are similar in the southwest coastal 

regions, while neither is correlated with dNBR in the southeastern corner of the continent, where the Black 

Summer Fires of 2019-2020 were particularly extreme and devastating (Fryirs et al., 2021). In general, 

these results indicate that for extreme events the two metrics capture different fire effects. Meanwhile the 

relatively higher agreement in the northern regions (Tiwi Cobourg, Arnhem Plateau, Gulf Coastal, Mount 

Isa Inlier - Table 4.2), which have dominant vegetation types with a complex structure (Table 4.2) and 

wildfires that burn cooler (Figure 4.5), suggests that dNBR and FRP metrics capture similar effects in these 

conditions.  

The distributions of the dNBR values across different vegetation structure stratifications (Figure 4.2, 

Figure 4.3) demonstrate a low variability between categories and a negative association with vegetation 

complexity, i.e., simpler structure shows higher NBR change. On the contrary, the FRP and persistence 

values derived by the active fire information show a higher variability between vegetation types and a 

positive association. More established and complex vegetation burns for longer on average, with a higher 

average FRE10, and a bi-modal distribution of MaxFRP where the higher mode increases with canopy height. 

This is significant as dNBR captures smaller changes for more intense and persistent fires in more complex 

environments, possibly due to canopy obstruction of the ground. The active fire metrics are more useful 

than dNBR to derive physically meaningful fire types to stratify the dataset (4.3.3), yet the correlation in 

this setting remain non-significant. 

With the addition of Sentinel-2 data, we see that Sentinel-2 dNBR and AHI FRP metrics show more 

significant but weak correlations in the hotter fire types. Using the Fire Fractional Cover (FFC) information 

for each fire type the correlations become stronger, especially for partially burned AHI pixels. Among these, 

Sentinel-2 dNBR and MaxFRP correlate strongly in Woodlands and Forests, while moderate correlations 

are observed in the remaining land covers in the cases where data scarcity does not affect the statistics. AHI 

dNBR and MaxFRP demonstrate a similar behaviour but on fewer occasions. Overall, geostationary FRP 

metrics correlate well with Sentinel-2 dNBR after stratifying the analysis based on the percentage of the 

pixel burned (FFC). Since the same FRP estimate can result from a weakly burning large fire or a high 

intensity small fire, FRP estimates can be interpreted to be a function of both the fire intensity and the 
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burning area. Stratifying by FFC helps reduce this ambiguity, leading to stronger correlations between FRP 

and dNBR. More complex vegetation type land covers also offer higher correlations, although this may be 

due to small population size in the other categories. In contrast to our initial assumptions, vegetation type 

appears to play an inverse role as correlations are stronger where vegetation is more structurally complex.  

We expected higher correlations between the spectral differencing severity index and the fire intensity 

metrics, as these variables are commonly used independently to map wildfires effects. Nevertheless, the 

two metrics rarely correlate at continental or regional scales, with weak correlations being found when 

examining hotter fires only. Stronger correlations are achieved by introducing higher spatial resolution data 

(Sentinel-2 dNBR) and following a complex stratification methodology. The inclusion of the extreme Black 

Summer Fires in the dataset could have introduced bias for hotter fire types or land covers that were under-

represented due to limitations on the dataset sizes. While our results are significant, future research could 

use larger datasets to explore different land cover effects and fire seasons in more depth. 

Studies that used geostationary FRE to derive biomass burning emissions, suggest that biomass 

consumption estimation is possible for spatial resolutions that are typically coarse (between 0.1o and 0.5o) 

(Mota and Wooster, 2018; Nguyen et al., 2023). However, fire effects that play a role in the mortality and 

growth of individual trees require very fine spatial resolutions, which are typically not achievable with 

freely available satellite data (Sparks et al., 2023a). Meanwhile, the size and patchiness of burn scars along 

with the diurnal fluctuations of temperature and humidity can affect the ecology and vegetation recovery 

of local environments (Morgan et al., 2014; Williamson et al., 2022). Our results promote a synergistic use 

of the high-frequency FRP estimations from AHI and dNBR from Sentinel-2 for fire impact estimations 

that can potentially be finer than a 2km spatial resolution. By complementing existing burn severity 

assessment techniques with fire intensity data, we can increase our understanding of wildfire effects across 

large areas.   

4.5. Conclusions 

This study compared remotely sensed measures of wildfire intensity (FRP, FRE) and burn severity 

(dNBR). Contrary to our expectations, the findings demonstrate the lack of strong correlations between the 

two wildfire effect metrics. Sentinel-2 dNBR was weakly correlated to FRP metrics especially for lower 

intensity fires, however, AHI dNBR and FRP did not demonstrate significant correlations. Results show 

that when fire type and Fire Fractional Cover (FFC) information is combined, correlations can become 

strong between MaxFRP and dNBR in FFC groupings. Further stratification based on land cover and 

vegetation type does not reveal new insights, partially due to small sample sizes in some land cover 

categories. The limitations of dNBR to capture fire effects of the observed fire activity raise concerns 
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regarding its utility in large area studies and in the absence of in-situ data. Future burn severity studies 

should consider incorporating active fire intensity information, especially when it is available at a high 

temporal frequency. Combining spectral difference and fire radiative power information may provide new 

insights into wildfire impact. 

  



Chapter 5 

 

78 

 

Chapter 5. Composite Wildfire Impact (CWI) 

rating: Integrating fire intensity and burn severity 

earth observations 

Abstract 

Current wildfire impact assessments at the landscape scale often overlook the complexity of active fire 

behaviour, focusing only on pre- and post-fire spectral differencing, despite remotely sensed active fire data 

being readily available. This study integrates high temporal resolution active fire intensity measures from 

geostationary satellite sensors and high spatial resolution normalised spectral differencing index products 

from polar-orbiting satellite sensors to produce a new approach for describing wildfire impact. Himawari-

8 BRIGHT/AHI active fire detections and intensity estimations are combined with spectral differencing 

measures from Sentinel-2, to derive wildfire impact categories over Australia for one year of data, using a 

dimensionality reduction and clustering approach. The wildfire impact categories summarise fire hotspot 

commonalities based on their maximum and total fire intensity, duration, differenced Normalised Burn 

Ratio (dNBR), burned area patchiness, and pre-fire vegetation conditions, and reveal expected 2019-2020 

Australian fire season patterns. Furthermore, land cover and vegetation type emerges as an important factor, 

with forests and woodlands reflecting more impactful fires compared to grasslands and shrublands. 

Comparisons with state government burn severity assessment projects reveal a moderate agreement, further 

stressing the need for more diverse information inclusion in such assessments. The proposed wildfire impact 

framework combines diverse remotely sensed wildfire behaviour information and can assist in a better 

understanding of wildfire effects on a continental scale. More research, leveraging longer temporal and 

spatial baselines and fire ecology expertise, is needed to refine the used nomenclature, as well as to reduce 

seasonal and regional biases for the improvement of wildfire impact assessments. 
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5.1. Introduction 

Wildfires are a critical global environmental issue, with increasing frequency and severity, shifting fire 

regimes, and exacerbated by extreme fire weather conditions in the face of a changing climate (Calheiros 

et al., 2021; Cunningham et al., 2024; Jones et al., 2022). The detection, monitoring and characterisation of 

wildfires over large spatiotemporal scales is possible with earth observing satellites (Key and Benson, 2006; 

Wooster et al., 2021).   Fire activity in the landscape can be described according to measures of fire intensity, 

i.e., the energy released from burning biomass, fire severity, i.e., the loss of biomass, and burn severity, i.e., 

a term that combines fire severity and ecosystem responses and is often used when remotely sensed and in-

situ data are combined to describe fire effects (Keeley, 2009).   

The severity of a fire is often quantified over large areas using remotely sensed normalised spectral 

difference indices to compare pre- and post-fire conditions (Collins et al., 2020; Fernández-Guisuraga et 

al., 2023a; Gerrevink and Veraverbeke, 2021). The Normalised Burn Ratio (NBR) and its pre- and post-

fire difference (dNBR) have been associated with field-based and in-situ severity estimates, such as the 

Composite Burn Index (CBI) (Key and Benson, 2006) and the geometrically corrected CBI (De Santis and 

Chuvieco, 2009), with a plethora of studies using these metrics for burn severity assessments (Fernández-

García et al., 2018; Meng et al., 2017; Parker et al., 2015; Viedma et al., 2020b).  

Burn severity classification is usually implemented using simple thresholds (Finco et al., 2012; Sparks 

et al., 2015) or via aerial photo interpretation to train machine learning models (Collins et al., 2020, 2018; 

McCarthy et al., 2017). Nevertheless, spectral differencing methods can be limited, as thresholds need to 

be separately adjusted for each fire (Sparks et al., 2015), and dense canopy cover can cause underestimation 

of lower severity classes due to line-of-sight obstruction from the optical sensors (Gibson et al., 2020). Pre-

fire vegetation conditions can also significantly affect burn severity estimations (Gale and Cary, 2022; Lee 

et al., 2024; Viedma et al., 2020b). For this reason, pre-fire NBR is often incorporated into indices such as 

the Relativised Burn Ratio (RBR) (Parks et al., 2014) and the Relative dNBR (RdNBR) (Miller and Thode, 

2007) to normalise dNBR values for vegetation type and condition differences. However, the association 

between spectral indices and in-situ estimations of severity varies significantly across vegetation types due 

to combustion completeness and burned fraction of the observed area, species, height and vertical fuel 

connectivity differences, as well as fire history (Fernández-Guisuraga et al., 2023a; Miller et al., 2023; 

Parker et al., 2015; Roy and Landmann, 2005; Saberi and Harvey, 2023). These limitations of spectral 

differencing techniques, which commonly assess wildfire effects by comparing two static states (before and 

after the fire), highlight the need for more adaptive and robust methods that account for variations in fire 

behaviour, vegetation and environmental conditions when assessing wildfire effects.   
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In contrast to spectral differencing, active fire satellite observations provide snapshots of fire intensity 

during the course of the event. Fire hotspots can be detected by measuring the upwelling radiation of an 

active fire in the middle-infrared (MIR) part of the spectrum and use this information to estimate the fire 

intensity (Wooster et al., 2021). Certain low-earth orbiting (LEO) satellites, such as Aqua/Terra and SNPP, 

carry MIR-sensitive sensors that capture global fire intensity estimations twice a day at spatial resolutions 

ranging from 375m to 1km (Giglio et al., 2021; Schroeder and Giglio, 2018). Where near-continuous 

observations are available, integrated measures of fire intensity can also be described in more detail and 

with greater accuracy than those derived from sparse temporal observations. Newer geostationary sensors, 

such as the Advanced Baseline Imager (ABI) and the Advanced Himawari Imager (AHI), also have fire 

detection and intensity estimation capabilities, providing data every 10 minutes at 2km (Engel et al., 2022; 

Xu et al., 2021).  

The instantaneous fire intensity of a fire can be described by the Fire Radiative Power (FRP - MW), 

while its time integration corresponds to the total exerted energy in the form of Fire Radiative Energy (FRE 

- MJ) (Wooster et al., 2005, 2003). Active fire earth observations are often used for timely fire detection 

(Engel et al., 2021b; Xu et al., 2021, 2020), fire intensity and burning biomass emissions estimations 

(Ichoku and Ellison, 2014; Li et al., 2022; Nguyen et al., 2023). Additionally, fire intensity and radiative 

transfer of heat to tree trunks have been linked to adverse effects on their growth, survival rates and a 

decrease in net primary productivity (Smith et al., 2016; Sparks et al., 2023b, 2018, 2017; Subasinghe 

Achchige et al., 2022). Active fire data can provide valuable insights into fire ignition, progression, and 

duration, offering opportunities for more informed wildfire characterisation. 

Despite the value of active fire data, there remains a notable disconnect between fire intensity metrics 

and burn severity indices. Studies have shown unexpectedly weak correlations between FRP and spectral 

indices such as dNBR (Chatzopoulos-Vouzoglanis et al., 2024; Heward et al., 2013). For example, 

Himawari-8 AHI-derived fire metrics such as maximum FRP and FRE exhibited weak associations with 

Sentinel-2 dNBR during Australia's 2019-2020 fire season. This weak relationship persists, though it 

slightly improves for high-intensity fires (Chatzopoulos-Vouzoglanis et al., 2024). These findings suggest 

there may be utility in combining active fire observations with burn severity metrics to provide a more 

comprehensive characterisation of wildfires and typology of impact than either one alone. Nonetheless, we 

recognise that the combination of active fire and reflectance data is not a new concept (Roy, 1999), and it 

is implemented in the MODIS burned area calculation (MCD64A1) (Giglio et al., 2018). 

In this study, we investigate the outcomes of integrating fire intensity estimates with burn severity data 

using a clustering approach and propose a new wildfire impact rating system. We coin the term “composite 

wildfire impact” (CWI) to mean the composite effects on vegetation, ecosystems and the landscape as 
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described by remotely sensed spectral changes and the release of energy from burning biomass. The rating 

system is applied to Australia, utilising active fire data from BRIGHT/AHI (Engel et al., 2022) and burn 

severity metrics from Sentinel-2 over one year (April 2019 – March 2020). Our aim in combining active 

fire and burn severity metrics is twofold: i) to propose a new classification scheme for describing and 

categorising fire impact, and ii) to demonstrate the insights gained from this integration. 

5.2. Data and Methods 

5.2.1. Study area and period 

The study area encompasses Australia (including Tasmania), covering a variety of climatic regions and 

land covers, from savannas in the north, to temperate forests in the southeast, and arid shrublands in the 

west. The land cover was characterised using the Dynamic Land Cover Dataset (DLCD v2.1) provided by 

Geoscience Australia. The dataset includes 22 land cover classes, mapped using MODIS data at 250m over 

the continent using observations made between January 2014 and December 2015. The overall accuracy of 

the dataset is 81.5% (Lymburner et al., 2015). The study period extends from April 2019 to March 2020 

and includes one of the most extreme wildfire seasons experienced on the continent (Abram et al., 2021; 

Collins et al., 2021; Fryirs et al., 2021). 

5.2.2. Geostationary and polar-orbiting derived wildfire data 

 Active fire detections and FRP estimations from the Himawari-8 BRIGHT/AHI dataset (Bessho et al., 

2016; Engel et al., 2022, 2021b, 2021a) are chosen as a high-confidence dataset following past work by 

Chatzopoulos-Vouzoglanis et al. (2024, 2023, 2022). Each data record corresponds to a 2km AHI pixel that 

includes a fire, which is cross-referenced by checking co-occurrence with VIIRS VNP14IMG fire 

detections (Schroeder and Giglio, 2018). A randomly selected subset of the original dataset (~170,000 

active fire detection records) comprised of ~1700 records is used, including only fires with a maximum 

duration of seven days, to further limit the effect of outliers and false detections in the analysis 

(Chatzopoulos-Vouzoglanis et al., 2024). From this dataset, the maximum FRP, the FRE and the duration 

of a fire hotspot were selected for analysis (Table 5.1), as they were considered to adequately describe the 

important aspects of each continuous fire event. 

Sentinel-2 Near Infrared (narrow bandwidth NIR centred at 865nm – band 8A) and Short-wave Infrared 

(SWIR centred at 2190nm – band 12) data at a spatial resolution of 20m were acquired from the Geoscience 

Australia Open Datacube (ESA, 2015; Krause et al., 2021). The Geoscience Australia Sentinel-2 data is 

already atmospherically corrected and transformed into surface reflectance values using the MODTRAN4 

radiative transfer model (Li et al., 2010). These datasets were used to compute the NBR pre- and post-fire 
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at 20m spatial resolution for the extent of each 2km BRIGHT/AHI pixel, using the first and last 

BRIGHT/AHI detection to define the active fire phase. Consequently, the average dNBR over the 2km 

BRIGHT/AHI pixel extent was computed (similar to Chatzopoulos-Vouzoglanis et al. (2024)). The Fire 

Fractional Cover (FFC) was calculated as the percentage of Sentinel-2 pixels within each 2km 

BRIGHT/AHI pixel extent classified as burned, defined by applying a threshold of dNBR≥0.15. Finally, 

the pre-fire NBR was also separately included as an indicator of pre-fire vegetation health (Table 5.1). This 

choice was made as the data was already available from the dNBR calculation, and as it is often included 

in different burn severity indices such as RBR and RdNBR  (Miller and Thode, 2007; Parks et al., 2014). 

Table 5.1 Summary table of the BRIGHT/AHI and Sentinel-2 variables used in the analysis, including a brief description of each 

variable and measurement units. 

Variable Description Unit Dataset 

MaxFRP Maximum FRP from a fire in a single AHI 

pixel 

MW BRIGHT/AHI 

hotspots 

FRE Integrated FRP from a fire in a single AHI 

pixel. This is log-transformed in the analysis 

(𝐹𝑅𝐸𝑙𝑜𝑔) as the value distribution is highly 

skewed. 

MJ BRIGHT/AHI 

hotspots 

Duration The duration of fire in a single AHI pixel Days BRIGHT/AHI 

hotspots 

dNBRμ The average dNBR value for all the Sentinel-2 

pixels situated within a BRIGHT/AHI 

pixel/hotspot 

Unitless Sentinel-2 bands 

8A and 12 

FFC Fire Fractional Cover, or the percentage of the 

AHI pixel that was burned based on a dNBR 

threshold 

% Sentinel-2 bands 

8A and 12 

NBRpre The average NBR value for all Sentinel-2 

pixels within an AHI pixel before a fire 

Unitless Sentinel-2 bands 

8A and 12 
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5.2.3. State-issued burn severity data 

Burn severity data issued by state authorities are used to gauge the CWI ratings developed in this study. 

The New South Wales Department of Climate Change, Energy, the Environment and Water (NSW 

DCCEEW, 2020) and Victorian Department of Energy, Environment and Climate Action (VIC DEECA, 

2020) in Australia conducted burn severity mapping following the 2019-2020 Black Summer fires using 

Sentinel-2 data. The data is classified into ordinal severity ratings at a 20m spatial resolution using a 

Random Forest classifier and training data collected through aerial photo interpretation (Collins et al., 2018; 

Gibson et al., 2020). While these datasets might be biased towards the after-fire reflectance and normalised 

spectral differencing methods, they are the only source of ground truth data available for comparison with 

the results of this study. The two burn severity datasets also differ in terms of severity ratings, descriptions, 

and derivation methods. For this study, the two rating schemes were reclassified into a single scheme (Table 

5.3) to match each other’s class descriptions.  

Table 5.2 Severity rating description and matching nomeclature of the VIC and NSW Black Summer Fires (2019-2020) severity 

assessments (NSW DCCEEW, 2020; VIC DEECA, 2020). Excluded classes were not used in this study. 

VIC severity ratings and description NSW severity ratings and 

description 

Matched Severity 

Rating  

6 Canopy Burnt (> 20% of 

canopy consumed) 

5 Extreme (full canopy 

consumption)  

6 

5 High canopy scorch (> 80% 

of canopy scorched) 

4 High (complete canopy 

scorch, partial canopy 

consumption) 

5 

4 Medium canopy scorch (20-

80% of canopy scorched) 

3 Moderate (partial canopy 

scorch) – 3  

4 

3 Low canopy scorch (<20% 

of canopy scorched but 

understorey burnt) 

2 Low (burnt understorey, 

unburnt canopy)  

3 

2 Unburnt (>90% canopy and 

understorey unburnt) 

1 Unburnt 2 

1 Non-woody vegetation 

(Unclassified) 

- - Excluded* 

0 No data - Reserved class Excluded* 
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5.2.4. Data analysis 

The methodology is summarised in the flow chart of Figure 5.1. Following the data selection, pre-

processing and construction of the dataset described in 5.2.2 and Table 5.1, dimensionality reduction and 

clustering techniques were applied to the dataset. Then an ensemble clustering technique was used to 

combine all the outputs and the CWI ratings were derived using the consensus clusters. Finally, the CWI 

ratings were compared to the burn severity ratings described in 5.2.3 and Table 5.3. 

 

Figure 5.1 Flowchart of the methodology used to derive the composite wildfire impact ratings in this study. 

5.2.4.1. Dimensionality Reduction and Clustering (DRC) techniques 

Wildfire characterisation studies often use unsupervised methodologies to categorise large and diverse 

datasets. The methods followed in such studies include a dimensionality reduction (DR) technique which 

is most often a Principal Component Analysis (PCA) followed by a clustering technique to create 

meaningful fire categories in the absence of ground truth data (Fernández-Guisuraga et al., 2023b; Viedma 

et al., 2020a; Zubkova et al., 2022). While PCA does not require any assumptions regarding the feature 

distribution, it produces components that are a linear combination of the original features (Jolliffe and 

Cadima, 2016) and therefore is unable to model non-linear associations that may be present in diverse 

environmental datasets.  



Chapter 5 

 

85 

 

Meanwhile, there exist DR techniques that can deal with non-linear feature associations and reproject 

a dataset in two dimensions, while preserving local and global neighbourhood between data records. Such 

techniques include the t-distributed Stochastic Neighbour Embedding (t-SNE) (van der Maaten and Hinton, 

2008; Van Der Maaten and Hinton, 2012), the Uniform Manifold Approximation and Projection for 

Dimension Reduction (UMAP) (McInnes et al., 2020, 2018) and the Pairwise Controlled Manifold 

Approximation (PaCMAP) (Wang et al., 2021), which are popular tools in various fields e.g.,  machine 

learning, and bioinformatics (Becht et al., 2019; Belkina et al., 2019; Huang et al., 2022; Mallick et al., 

2023). t-SNE and UMAP are better at preserving the local structure of the data, with t-SNE being more 

computationally expensive than UMAP (McInnes et al., 2020). Meanwhile, PaCMAP is one of the latest 

non-linear DR techniques developed to preserve both the local and global data structure (Wang et al., 2021). 

An in-depth review and comparison of these tools is beyond the scope of this paper and is already covered 

in some of the cited studies, however, they were chosen as representative examples of what the state-of-

the-art DR can offer to wildfire characterisation compared to PCA. In this study, dimensionality reduction 

was applied prior to clustering to reduce noise due to collinear features, while improving the performance 

of distance-based clustering methods that are known to perform poorly when applied to high-dimensional 

datasets (Aggarwal et al., 2001). 

5.2.4.2. Dimensionality Reduction Implementation 

Each dataset variable (Table 5.1) was standardised independently to have a zero mean and a unit 

variance and then processed with PCA, t-SNE, UMAP and PaCMAP. For PCA, the first three principal 

components (PCs) had an eigenvalue equal or greater than one, and thus were  retained for further analysis 

as their variance was greater than the variance of any single feature (Fernández-Guisuraga et al., 2023b; 

Kaiser, 1960; Zubkova et al., 2022). In the case of t-SNE, the hyperparameters were chosen based on the 

default value or upper ranges suggested by the Python library scikit-learn, i.e., perplexity (similar to number 

of neighbours) was set to 50, number of iterations to 1000 and the dataset was reduced to two dimensions 

(Pedregosa et al., 2011). Similarly, for UMAP and PaCMAP the number of neighbours was set to 50 and 

10 respectively, while the other hyperparameters were kept to their default values. While there is a wide 

range of possible values for these hyperparameters, minimal experimentation was conducted as small 

changes in their range did not affect the results significantly, and fine tuning these models is beyond the 

scope of this study. However, as the initialisation conditions can have a more significant impact on the 

results of t-SNE, UMAP and PaCMAP (Wang et al., 2021), the initial conditions for the embedding were 

set based on PCA and the random-state parameter was selected through an iterative process that maximised 

cluster similarity across all DRC outputs. 
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Agglomerative Hierarchical Clustering (Pedregosa et al., 2011) using the ward linkage criterion (Ward, 

1963) to minimize the variance of the clusters that are being merged was implemented to the three PCs and 

the two dimensional components of t-SNE, UMAP and PaCMAP. The clustering method was chosen based 

on previous studies (Fernández-Guisuraga et al., 2023b; Zubkova et al., 2022) and visual inspection of the 

resulting clusters compared to other methods (e.g., K-Means).  

The optimal number of clusters used was set as the one that maximized the cluster similarity among the 

DR methods. First, a contingency table was constructed for each pair of clustering outputs, where the cluster 

labels from one clustering method were arranged along the rows and the ones from the second method 

along the columns. The values in each cell represented the number of records corresponding to the 

intersection of labels from the two clustering outputs, capturing the co-occurrence of labels between the 

methods (Agresti, 2019). Next, the cluster labels between each pair of clustering outputs were aligned using 

the Hungarian algorithm (Kuhn, 1955), which identifies the optimal one-to-one matching between two sets. 

The alignment was based on the Jaccard Index (ratio of intersection over union) between the two cluster 

outputs to ensure that the clusters with the highest overlap were matched (Kotu and Deshpande, 2015). 

Finally, the similarity score between the aligned outputs was calculated as the ratio of commonly clustered 

records over the total records, and the number of clusters that provided the higher similarity was chosen. 

While the above methodology assumes a similar sensitivity to cluster number across the DR outputs, it is 

acknowledged that this was a practical compromise, as the structure of each DR output may respond 

differently to the same number of clusters. 

5.2.4.3. Ensemble clustering 

The lack of validation data made it difficult to determine the optimal DRC technique. As a result, an 

ensemble clustering technique was employed to integrate and preserve information from multiple outputs, 

using the methodology proposed in Fred and Jain (2005). The co-association matrix was calculated by 

counting the occurrence in the same cluster for each pair of records between two different clustering outputs. 

This was repeated for all possible pairs of clustering outputs and resulted in an 𝑛 × 𝑛 matrix for 𝑛 records 

where each cell had the ratio of total occurrences divided by total possible occurrences (number of 

clustering outputs in the ensemble). Then, agglomerative hierarchical clustering was applied on the co-

association matrix to map the different data partitions and produce the consensus labels of the ensemble 

clustering (Fred and Jain, 2005). 

5.2.4.4. Composite wildfire impact calculation 

The median of each variable for the data in each cluster was used as a descriptive statistic to summarise 

the central tendency of each cluster variable. This cluster-specific median was then compared to the global 
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dataset median for that variable. A binary flag was assigned based on whether the cluster median was higher 

or lower than the global median. Subsequently, the binary flags for each cluster were aggregated into an 

impact rating 𝑅 (where 𝑅 ∈ [0, 𝑛], with 𝑛 representing the total number of variables). The ratings were then 

manually assigned six ordinal labels ranging: “Very Low”, “Low”, “Medium”, “High”, “Very high”, and 

“Extreme”.   

5.2.4.5. Assessment  

The calculated CWI ratings were compared to the reclassified state-issued burn severity ratings (Table 

5.3). The state-issued burn severity ratings (20m) within the extent of each BRIGHT/AHI hotspot (2km) 

were aggregated using the mean value of the ordinal values to achieve a consistent spatial resolution 

between the two datasets and retain the effect of all severity ratings into the final aggregation. This approach 

addresses potential bias that a median or majority voting aggregation method would introduce, especially 

for smaller fires.  

5.3. Results 

5.3.1. Data exploration 

Reporting both Pearson’s and Spearman’s correlation for every pair of variables, Figure 5.2 presents 

the results in a pairwise plot that includes scatterplots illustrating the association between the BRIGHT/AHI 

and Sentinel-2 variables. 𝑀𝑎𝑥𝐹𝑅𝑃 and 𝐹𝐹𝐶 have bi-modal distributions, while log-transformed 𝐹𝑅𝐸 and 

𝑑𝑁𝐵𝑅 values are pseudo-normally distributed, and Duration and 𝑁𝐵𝑅𝑝𝑟𝑒 values are left-skewed. Strong 

correlations were found between 𝑀𝑎𝑥𝐹𝑅𝑃 and 𝐹𝑅𝐸, 𝑑𝑁𝐵𝑅 and 𝐹𝐹𝐶, however their scatterplots reveal a 

non-linear aspect in their associations. 𝑀𝑎𝑥𝐹𝑅𝑃 and 𝑑𝑁𝐵𝑅 have a moderate correlation that increases non-

linearly as values increase. Additionally, relationships between 𝑀𝑎𝑥𝐹𝑅𝑃 -𝑁𝐵𝑅𝑝𝑟𝑒 , 𝑀𝑎𝑥𝐹𝑅𝑃 − 𝐹𝐹𝐶 , 

𝐹𝐹𝐶 − 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 reveal clusters with varying point densities. 
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Figure 5.2 Pairwise variable comparison. The diagonal presents each variable’s probability density function, Pearson’s (𝑅𝑝) 

and Spearman’s (𝑅𝑠) correlation coefficients are shown above the diagonal, and the pairwise scatterplots are shown below the 

diagonal. The colour gradient in the scatterplots signifies density, with lighter colours representing higher density and vice 

versa. 

5.3.2. Dimensionality reduction and clustering tuning 

While the components of the non-linear methods were harder to interpret, PCA offered insights for the 

dataset through its components (PCs) (Figure 5.3). Using the Kaiser criterion (5.2.4.2) the first three PCs 

were analysed, describing 45%, 23% and 18% of the variance, respectively. PC1 explained 45% of the 

variance in the dataset, with 𝑑𝑁𝐵𝑅𝜇, 𝐹𝐹𝐶 and 𝑁𝐵𝑅𝑝𝑟𝑒 contributing most, while 𝑀𝑎𝑥𝐹𝑅𝑃 and 𝐹𝑅𝐸 also 

played a role. This relation is reversed in PC2, with the active fire metrics contribution being more 

significant, however, this component only described 23% of the variance. Finally, PC3 explained 19% of 

the variance and was mostly affected by the fire duration variable. 

In addition, the PCA biplot revealed that the contribution of most of the variables was roughly equal in 

the components, except for the duration that had a much smaller contribution, as signified by the arrow 

length in Figure 5.3. Moreover, the direction of the arrows suggests that the active fire metrics and 
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normalised spectral differencing metric groups did not correlate with each other (almost perpendicular to 

each other), while the intra-group correlations are positive (pointing in the same direction). 

  

Figure 5.3 First three components of PCA (Kaiser criterion) and component loadings (left). PCA biplot of dataset fires across 

the first two principal components, with arrows indicating the direction and contribution of each variable, scaled by a factor of 

10 for readability (right). 

After trialling cluster numbers between 2 and 16 (step = 2), the maximum average similarity among 

pairs of clustering outputs was achieved using 8 clusters for all DR techniques. Additionally, limited 

experimentation with the random state parameter, using values ranging from 0 to 100, identified that a 

random state of 6 produced the highest similarity when evaluated on an eight-cluster output (Figure 5.4). 

The random stat e parameter affects the random number generator used for the various stochastic processes 

followed in the different DR technique computations. Setting its value to be constant increases 

reproducibility and eliminates randomness, as the same results are produced with each run (Pedregosa et 

al., 2011). 
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Figure 5.4 Total similarity between cluster outputs using a different number of clusters and initialisation parameter of random 

state. The red line corresponds to the random state number that maximised the similarity in the 8th cluster. 

Table 5.3 shows the pairwise similarity scores between DRC results (5.2.4.2) along with each 

method’s average similarity score. While the optimal number of clusters was selected based on maximising 

overall similarity among DR outputs, these results are informative as they quantify how consistently each 

DR method agrees with the others in assigning records to clusters. Higher similarity indicates that the DR 

outputs yield comparable cluster structures, implying robustness to methodological variations. UMAP is 

the method with the highest average similarity (72.9%) and it is 79.2% similar to PaCMAP that has an 

average similarity of 71.1%. PCA is the least similar method with an average similarity of 64.5%, followed 

by t-SNE with 65.4%. Overall, the range of the average similarities is 8.4%, suggesting moderate 

differences in how each DRC method captured the data’s cluster structure. 

Table 5.3 Similarity between clustering outputs, represented by the percentage (%) of records that have been clustered together 

in each pair of methods. Some cells are left empty to avoid repletion of values. The last column corresponds to the average 

similarity for each method. 

 NoDR PCA t-SNE UMAP PaCMAP Average 

NoDR - - - - - 67.5 

PCA 61.2 - - - - 64.5 

t-SNE 59.4 65.3 - - - 65.4 

UMAP 73.9 67.9 70.7 - - 72.9 

PaCMAP 75.5 63.5 66.0 79.2 - 71.1 
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5.3.3. Ensemble clustering 

 The co-association values corresponding to each pair of records are presented in Figure 5.5. These 

values were derived from applying ensemble clustering to the six-variable dataset, to preserve common 

information among the different DRC outputs. Clustering the co-association matrix and sorting the records 

along the x and y axes according to the consensus labels, creates a clearer representation of the consensus 

clusters. The nine consensus clusters are also presented in Figure 5.5, and they are shown by the light green 

co-association value squares. The number of clusters was chosen as the one that maximised the average 

inter-cluster co-association values, minimised the average intra-cluster co-association values, and did not 

allow for the creation for disproportionally small clusters, which was the case for higher values.   

 

Figure 5.5 Co-association matrix before clustering (left) and after clustering and sorting of the record indices according to the 

consensus clusters (right). The clusters are represented by the red boxes on the right graph. 

5.3.4. Wildfire impact assessment 

The variable distributions per consensus cluster are presented in Figure 5.6. The clusters are sorted 

from top to bottom based on decreasing 𝑑𝑁𝐵𝑅𝜇, while the green and red shades signify whether the variable 

median is higher or lower than the global variable median, respectively. Clusters 5 (C5) and 3 (C3) have 

the highest statistics overall, signifying wildfires of high impact, while C9 and C2 include fires with low 

values in most variables, most likely corresponding to lower impact fires. However, the remaining clusters 

have nuanced differences between each other, that make them less straightforward to characterize based on 

a single notion. For example, the fire intensity variables of C4 and C1 were low, with higher normalised 

spectral differencing variables, while C6 had high fire intensities and lower normalised spectral differencing 

values. 
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Figure 5.6 Variable distribution per consensus cluster. The x axis of the graph corresponds to the six variables of the datasets, 

while the y axis corresponds the different cluster labels. The shade indicates whether the cluster variable median is higher 

(green) or lower (red) than the global variable median. 

In addition, the generalised land covers in each cluster were derived and presented in Table 5.4, as 

they correspond to an assumed gradual increase in accumulation of biomass. Clusters C1, C3 and C5 

represent locations where forests are the major land cover, woodland and mixed cover clusters are 

represented by C2, C4, C7, C8, and C6 includes mostly grassland and shrublands.  

Table 5.4 Distribution of land covers (Lymburner et al., 2015) in each cluster. 

Land covers Clusters 

 1 2 3 4 5 6 7 8 9 

Agriculture 0% 4% 0% 1% 1% 4% 0% 0% 6% 

Grasses and shrubs 2% 43% 11% 39% 1% 68% 34% 33% 48% 

Woodlands 3% 32% 38% 31% 1% 22% 53% 47% 23% 

Forests 95% 21% 51% 29% 97% 6% 13% 21% 23% 

 

Figure 5.7 presents the relationships arising from combining the information from Figure 5.6 and 

Table 5.4, and reveals a connection between land cover and impact. Here, forests occupy the higher impact 
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space, while grasslands/shrublands are represented by medium impact ratings. Table 5.5 shows the majority 

impact category and the number these occurred per land cover type. Specifically, forests had predominantly 

extreme CWI ratings and the most occurrences (307), woodlands had a majority of high CWI impact ratings 

(128), grasslands and shrublands had a majority of medium CWI ratings (142), and agriculture had a 

majority of very low ratings and the fewest occurrences (14). 

 

Figure 5.7 Qualitative representation of the variable medians per cluster. The clusters are sorted from highest to lowest fire 

impact, which corresponds to the flag accumulation. The variable medians are categorised qualitative as Very High (VH), High 

(H), Medium (M), Low (L) and Very Low (VL). 

Table 5.5 Majority (mode) composite wildfire impact rating and number of occurrences within each land cover type. 

 CWI rating mode Occurrences 

Agriculture Very Low 14 

Grasses and Shrubs Medium 142 

Woodlands High 128 

Forests Extreme 307 
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 The CWI ratings were also visualised over Australia, revealing spatial patterns of specific ratings 

(Figure 5.8). Namely, the fires in the southeast that correspond to the Black Summer Fires have extreme 

ratings, with very high and extreme ratings also being present in the southwest. The fires in the north are 

mostly of high impact, while the fires closer to the middle (border of Western and South Australia) create 

a medium impact cluster. Finally, lower impact fires are spread randomly across the continent. 

 

Figure 5.8 CWI rating map of Australia for the fires observed between April 2019 and March 2020. The histograms showcase the 

density of the hotspots along the longitude (top) and latitude (left). 

5.3.5. Composite wildfire impact and state-issued severity ratings comparison 

When the CWI ratings were compared to the matched state ratings for NSW and VIC (5.2.3), they showed 

moderate agreement, with a Spearman’s R of 0.46 (Table 5.6). The PCA clustering exhibited a slightly 

stronger correlation with the state ratings with a Spearman’s R of 0.52. Kendall’s 𝜏  also indicated a 

moderate association between the two groups of ratings, with PCA being the closest to the state ratings 

(0.44), while the NoDR clustering was the least associated (0.36). The total number of fire events situated 

within NSW and VIC were 580, and all statistics presented were statistically significant (p <0.01). 
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Table 5.6 Comparison of the harmonised VIC and NSW state burn severity ratings to the composite wildfire impact rating from 

all dimensionality reduction and clustering techniques presented in this study. As the CWI and severity ratings are ordinal data, 

two rank correlation metrics are presented, namely Spearman’s R and Kendall’s τ. All p-values from the coefficient calculations 

are below 0.01 and therefore the statistics are significant. The statistics correspond to 580 fire events situated within NSW and 

VIC. 

 Spearman's R Kendall's 𝝉 

NoDR 0.43 0.36 

PCA 0.52 0.44 

t-SNE 0.47 0.40 

UMAP 0.48 0.42 

PaCMAP 0.46 0.40 

Consensus 0.46 0.40 

 

5.4. Discussion 

This study demonstrated how near-continuous active fire information from geostationary satellites can 

complement current methods based on pre- and post-fire normalised spectral differencing, advancing our 

understanding of wildfire impact on a continental scale. By combining and aligning two cohorts of wildfire 

metrics from Himawari-8 and Sentinel-2 into a single dataset, this approach builds and expands on ideas 

from fire regime characterization studies  (Fernández-Guisuraga et al., 2023b; Zubkova et al., 2022). The 

fire intensity and spectral differencing dataset was transformed and clustered into six distinct wildfire 

impact categories, often aligned with specific dominant land cover types. The association between the 

proposed wildfire impact ratings and state-issued burn severity ratings, which rely exclusively on 

normalised spectral differencing, was moderate. This suggests that the two rating systems capture somewhat 

different dimensions of wildfire impact, highlighting potential limitations in both approaches. The moderate 

correlation implies that integrating active fire metrics from geostationary satellites may provide 

complementary insights not fully captured by traditional spectral-based severity methods alone. 

Traditional and state-of-the-art dimensionality reduction techniques were used to transform the fire 

intensity and spectral differencing dataset into a space where fire hotspot similarities could be more 

effectively modelled through clustering. The different DRC techniques produced similar but not identical 

results, with similarity scores ranging from 65% to 73%. Therefore, ensemble clustering was employed to 

amplify shared patterns and retain diverse information. However, PCA, rather than the ensemble approach, 

aligned more closely with the ground truth when compared to the state-issued burn severity ratings from 

VIC and NSW. This was expected, as the first principal component (PC), which accounted for 45% of the 

dataset’s variance, was influenced primarily by the Sentinel-2 NBR just as the state ratings did.  
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While the ensemble method was sufficiently close to the ground truth (NSW and VIC burn severity 

ratings) to boost confidence in its results, it differed enough to warrant rethinking wildfire impact 

assessments by integrating this new perspective. Nonetheless, UMAP could be a promising candidate for a 

simplified, single-model approach, as it had the highest average similarity with the other models and was 

positioned between PCA and the consensus clustering in terms of performance (Table 5.3). Thus, future 

studies should consider using UMAP to streamline their methodology and reduce the need for multiple 

complex models. 

The interpretation of the CWI clustering results can be further developed by combining the information 

from Figure 5.6 (variable distribution per cluster) and Table 5.4 (land cover types per cluster) into a 

qualitative description of each cluster. For example, clusters with denser vegetation and potentially higher 

biomass availability demonstrated high fire intensity metrics, accompanied by equally high 𝑑𝑁𝐵𝑅𝜇 and 

𝐹𝐹𝐶  (C3, C5). However, even when fire intensity metrics were low in forested areas, the impact was 

significant based on the normalised spectral differencing information (C1). Meanwhile, areas with mostly 

grassland and shrubland fires and potentially lower biomass, demonstrate lower 𝑑𝑁𝐵𝑅𝜇  and 

𝑁𝐵𝑅𝑝𝑟𝑒  values, and patchier fires (C2 and C9), even when fire intensity increased (C6). Finally, areas with 

medium biomass availability were the most variable but included consistently shorter fires, higher 𝑑𝑁𝐵𝑅𝜇  

and higher 𝐹𝐹𝐶  than the global medians. Having these additional dimensions of information when 

describing fire could potentially be helpful when trying to assess the effects on ecosystem functioning, 

especially when multi-year periods are examined (Marcos et al., 2021). 

In this study, composite wildfire impact refers to the composite effects of wildfires on vegetation, 

ecosystems, and the landscape, as quantified by remotely sensed fire intensity and spectral differencing 

metrics. It encompasses the immediate physical intensity of the fire using FRP metrics, fire duration, pre-

fire vegetation health indicators, burned area patchiness (fire fractional cover), and subsequent vegetation 

damage measured by NBR metrics. Although the proposed impact ratings currently lack a clearly defined 

ground truth, we offer a conceptual definition for each rating as a first step, based on interpreting the 

variable distributions within each cluster and within the limits of our dataset (Table 5.7).  We recognise that 

the CWI ratings follow a similar trend to spectral-differencing burn severity, with nuanced differences 

within each category, distinguishing hotter fires from cooler fires, shorter from longer durations, and 

fragmented from wall-to-wall burns, occurring in areas with varying vegetation condition. The impact 

ratings are also biased towards denser vegetation, with forests occupying the upper range of ratings and 

grasslands the lower. 
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Table 5.7 Conceptual description of the different composite wildfire impact ratings based on the median and variable 

distributions of the clusters used in this study. The dominant land cover classes are also presented. 

CWI Rating Intensity Duration Severity Fire 

Fractional 

Cover 

Pre-fire 

vegetation 

LULC 

Majority 

Cluster 

Extreme (a) Hotter Long High Any Any Forests 3 

Extreme (b) Hotter Any High Wall-to-wall Healthy Forests 5 

Very High (a) Hotter Short High Wall-to-wall Not healthy Woodlands 8 

Very High (b) Cooler Long High Any Healthy Forests 1 

High (a) Hotter Short High Wall-to-wall Not healthy Woodlands 7 

High (b) Cooler Long High Wall-to-wall Healthy Mixed 4 

Medium Hotter Short Low Patchy Not healthy Grasslands 6 

Low Cooler Long Low Patchy Not healthy Grasslands 2 

Very Low Cooler Short Low Patchy Not healthy Grasslands 9 

 

Examining the spatial distribution of CWI ratings across Australia reveals familiar patterns of the 2019-

2020 fire season. Most extreme and very high impact ratings overlap with the southeastern Australian 

forests and the Black Sumer fires, which were one of the most extreme wildfires on record in Australia 

(Collins et al., 2021; Levin et al., 2021; Rumpff et al., 2023). Extreme ratings are also found on Kangaroo 

Island off the coast of South Australia, where nearly half of its area was burned during the 2019-2020 fire 

season (Bonney et al., 2020). Another notable cluster of high impact rating is observed in the southwest, 

particularly in the southern portion of the Great Western Woodlands, where younger woodlands prevail due 

to frequent fires over recent decades (Jucker et al., 2023). The medium impact cluster in the south-central 

part of Australia is the lowest impact cluster with a consistent spatial pattern, and it corresponds to 

shrublands and sparse vegetation based on the 2015 land cover map by Lymburner et al. (2015) and is in 

line with Table 5.5 (CWI rating mode per land cover). Lastly, the tropical savannahs of northern Australia 

are a distinct and recurring fire zone (Maier and Russell-Smith, 2012; Oliveira et al., 2015), with 2019-

2020 likely experiencing intense fire weather conditions influenced by the preceding year's El Niño-

Southern Oscillation (Bui et al., 2024).  

In line with findings from other studies (Gale and Cary, 2022; Lee et al., 2024), pre-fire vegetation 

height and density, broadly represented by the pre-fire NBR and the land cover layer in our study, had an 

influence on severity (dNBR) and impact (CWI). Areas with taller, denser vegetation and higher pre-fire 
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NBR (e.g., forests) exhibited the highest dNBR values within the extreme impact clusters, while grasslands 

and shrublands demonstrated the lowest severity and CWI ratings. However, this may be partially an 

artefact of the extremity of the 2019-2020 fire season, which disproportionally affected the forested regions 

of southeastern Australia. Other sources of uncertainty in the CWI ratings arise from the influence of post-

fire surface residues, such as ash and char, on dNBR values independently of vegetation impact. These 

reflectance effects follow a non-linear pattern with increasing fire intensity and duration, with char initially 

reducing surface reflectance, and white ash at higher intensities increasing it again  (Roy et al., 2010; Smith 

et al., 2005). This may distort the interpretation of dNBR and it could be a consideration for future work. 

Moreover, the length of the study period, which does not account for intra-seasonal variations, as well as 

the spatial constraints of this study would require further investigation to replicate to other areas of the 

world. Repeating this methodology with data from different years and regions could provide a deeper 

understanding of how weather, seasonal and geographical variations influence wildfire impact. 

Additionally, incorporating biomass availability, fuel structure and condition data could allow for a more 

robust interpretation of the wildfire impact differences across land cover types. Future research should focus 

on refining the ground truth definition of composite wildfire impact and could benefit from incorporating 

validation sources not limited to pre- and post-fire spectral differencing assessments. Furthermore, the 

binary flag attribution based on the cluster and global variable median comparison (5.2.4.4) could be 

improved by developing more nuanced fuzzy rules for variable ranges and thresholds and adjusting the 

ordinal labels to better reflect wildfire impact in collaboration with fire ecology experts or local authorities. 

5.5. Conclusions 

This study presents a novel conceptual framework for assessing wildfire impact by integrating near-

continuous active fire data from Himawari-8 (BRIGHT/AHI) with normalised spectral differencing 

information from Sentinel-2. Combining these two cohorts of independent metrics that describe different 

aspects of fire behaviour and activity can offer a more comprehensive view of wildfire effects on vegetation, 

ecosystems, and the landscape. Our approach expands on traditional pre- and post-fire burn severity 

assessments, capturing factors such as fire duration, burned area patchiness and pre-fire vegetation 

conditions. Future research should further refine the conceptual definition of wildfire impact, incorporating 

feedback from fire ecology experts and using additional validation sources. This framework offers a 

promising path for improving the characterisation of wildfire effects, particularly as climate variability 

increasingly shapes fire behaviour and impacts ecosystems. Expanding this methodology across different 

regions and timeframes can enhance our understanding of wildfire dynamics and contribute to more 

effective fire management strategies. 
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Chapter 6. Summary and Synthesis 

This chapter concludes this dissertation’s work by discussing and connecting key findings of the 

research objectives set in the introduction. It also situates the findings within the current body of knowledge, 

and discusses the implications, as well as future research avenues. In addition, it outlines the steps needed 

to progress this research into an operational global framework for wildfire impact characterisation.

6.1. Summary 

This dissertation explored the utility of geostationary (GEO) active fire observations, available with a 

significantly higher temporal frequency than equivalent polar orbiting products, for better-informed 

wildfire impact characterisation. The suitability of geostationary sensors, particularly AHI, was first 

assessed and a conceptual framework that utilises this information in conjunction with burn severity 

Sentinel-2 data was proposed. The research aim was divided into four research questions corresponding to 

chapters 2 through 5. The main findings and implications of each research question are presented below. 

Research Question 1: How do measures of fire radiative power from geostationary satellites 

compare with those from polar-orbiting satellites for an extreme wildfire event?  

During the 2019–2020 southern hemisphere summer, south-eastern Australia faced extreme fire 

weather conditions, including prolonged drought and record high temperatures, which led to dry fuel 

accumulation and the catastrophic Black Summer Fires (Fryirs et al., 2021). Studying such events enables 

insights to be derived within these extreme conditions. This is important as extreme wildfires are becoming 

more frequent and having devastating consequences (Godfree et al., 2021; Wintle et al., 2020). The first 

research question assessed the Fire Radiative Power (FRP) estimation capabilities of Himawari-8 AHI 

compared to the established AQUA/TERRA MODIS data (Giglio et al., 2021). AHI data processed with 

the BRIGHT/AHI active fire detection algorithm (Engel et al., 2022, 2021b, 2021a) and the FRP model 

developed by Wooster et al. (2005, 2003) were compared to equivalent FRP estimations from MODIS 

(MOD14/MYD14). The intercomparison focused on concurrent and overlapping hotspot FRP estimations, 

and fire superclusters representing temporally and spatially continuous events. Additionally, the complete 

diurnal FRP cycles were compared between the two products for the entire region, in different seasonal 

settings, and biogeographically uniform subregions, providing a more independent perspective on the 

strengths and limitations of these products during extreme fire events.  

The results revealed a strong correlation between the concurrent and overlapping hotspots of the 

BRIGHT/AHI and MOD14/MYD14 products (Pearson’s r = 0.74), with a constant FRP underestimation 
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from BRIGHT/AHI due to AHI’s MIR channel saturation at 400K (Hall et al., 2019). Within the extent of 

fire superclusters, comparing the integrated FRP of only concurrent hotspots between BRIGHT/AHI and 

MOD14/MYD14 shows a moderate correlation (r = 0.49), while the correlation increases to 0.67 when all 

the detected BRIGHT/AHI hotspots are included. Additionally, both products capture similar spatio-

temporal spread patterns, yet BRIGHT/AHI significantly outperforms MOD14/MYD14 when comparing 

complete FRP records. The higher temporal resolution of BRIGHT/AHI highlights diurnal cycle variations, 

consistently capturing maximum and minimum FRP periods throughout the day, unlike MOD14/MYD14, 

which lacks such temporal continuity.  

The findings of Chapter 2 established the relative confidence and utility of BRIGHT/AHI to monitor 

spatial and temporal fire intensity patterns during extreme wildfires via satellite observations. This study 

also sets the stage for broader testing of BRIGHT/AHI FRP across Australia over a year of fire activity, 

covered in Research Question 2. 

Research Question 2: How do measures of fire radiative power from geostationary satellites 

compare with those from polar-orbiting satellites when examining an entire year of wildfire activity, 

for the whole of Australia to capture seasonal and geographical variations? 

The second research question expanded on the work conducted in the first research question by 

intercomparing GEO FRP estimations of the BRIGHT/AHI with equivalent polar-orbiting products from 

AQUA/TERRA MODIS (MOD14/MYD14) and SNPP VIIRS (VNP14IMG) (Schroeder and Giglio, 2018). 

The study assessed the effect of different land covers, seasons, and fire regimes on the BRIGHT/AHI FRP 

estimations. Thus, it was conducted for fires across Australia between April 2019 and March 2020. 

When compared, BRIGHT/AHI and the established low-earth polar orbiting (LEO) products, 

MOD14/MYD14 and VNP14IMG, captured similar hotspot density and fire spread patterns across 

Australia. Strong correlations (r = 0.74-0.77) were observed between concurrent active fire hotspots from 

the GEO and LEO products, although with the known underestimation of FRP by BRIGHT/AHI caused by 

the saturation of the MIR channel of AHI (Hall et al., 2019). On a regional and land cover level, 

BRIGHT/AHI captured similar FRP descriptive statistics to MODIS, while the higher spatial resolution 

(375m) and sensitivity of VIIRS to smaller fires resulted in a broader range of FRP values.  

BRIGHT/AHI’s continuous observations provided detailed insights into diurnal fire activity, unlike 

LEO sensors, which often missed key periods of fire activity due to their limited temporal coverage. These 

findings were consistent across different fire seasons and climatic regions (northern and southern Australia). 

The seasonal average diurnal FRP cycle analysis further emphasised the completeness of the BRIGHT/AHI 

FRP record, in contrast to the LEO products that entirely missed the low fire activity time during the early 
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morning hours.  Such information provides valuable insights that can assist with fire suppression efforts 

and management. Additionally, after a temporal analysis of wildfires in four example subregions (0.2o by 

0.2o), BRIGHT/AHI and VNP14IMG showed stronger agreement in capturing the temporal FRP patterns 

compared to MODIS, which missed a significant portion of peak fire activity. 

Results from Research Question 2 highlight the temporal resolution advantage of BRIGHT/AHI, 

further increasing the confidence in its ability to characterise fire activity. BRIGHT/AHI data allowed for 

better reconstruction of fire activity over time, particularly during rapid fluctuations in fire intensity, which 

are critical for fire management and response efforts. 

Research Question 3: What is the relationship between different earth observation measures of 

fire intensity (i.e., active fire) and burn severity (i.e., impact of fire)? 

For the third research question, commonly used burn severity metrics, i.e., the Normalised Burn Ratio 

(NBR) and the differenced NBR before and after a fire (dNBR), were compared to GEO (BRIGHT/AHI) 

FRP metrics, based on the hypothesis that these two cohorts of metrics of wildfire behaviour would be 

expected to correlate. To date, the association between spectral differencing and FRP derived fire metrics 

have not received much attention in the literature. Furthermore, no studies have examined GEO data, which 

provide a superior temporal FRP record (as seen in Chapters 2 and 3). The study was conducted over 

Australia for a year of fire activity (2019-2020), similar to that used in Chapter 3, enabling the comparison 

of BRIGHT/AHI FRP to AHI dNBR and Sentinel-2 dNBR over various fire types, biogeographical regions, 

and land covers. 

The correlations between FRP metrics and dNBR across biogeographically homogeneous regions were 

generally low. The Fire Radiative Energy (FRE), which corresponds to the time-integrated FRP of a pixel-

area fire, showed a moderate agreement with dNBR in certain bioregions, particularly along Australia’s 

east and north coasts (r = 0.4-0.59). Meanwhile, the Maximum FRP of a fire pixel (MaxFRP) and FRE 

performed similarly in southwest Australia, with only one region demonstrating a strong correlation (r = 

0.63-0.66).  

In extreme events such as the Black Summer Fires of 2019-2020, which represented the majority of 

hotter fires, neither FRP metric correlated well with dNBR. This suggests that FRP and dNBR metrics 

capture different aspects of fire activity in extreme weather and complex vegetation conditions (forests). 

Meanwhile, a higher agreement between FRP metrics and dNBR was observed in northern regions, where 

wildfires burned at cooler temperatures and across simpler structure vegetation (savannah grasslands and 

woodlands). 
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The correlations at the hotspot level were also weak, with a marginal increase for the hotter fires. The 

correlations were stronger when the Sentinel-2 dNBR was used instead of the AHI dNBR, suggesting that 

AHI dNBR was compromised by its significantly lower spatial resolution as compared to Sentinel-2 and 

the fact that dNBR calculation is not as time-sensitive to justify its usage. The fire fractional cover (FFC), 

or the percentage of the AHI pixel classified as burned using a dNBR threshold value based on fire type 

was computed and used to stratify the analysis into less and more burned AHI pixels. Although this 

approach significantly increased the FRP-dNBR correlations, fire-type-specific dNBR thresholds for burnt 

area classifications introduce a bias between hotter and cooler fires. As such, hotter and cooler fires with 

the same dNBR would be classified into different FFC groups and always have a gradient between their 

dNBR values, forcing the correlations to rise. 

This Research Question (detailed in Chapter 5) reveals the diversity in wildfire information that can be 

extracted by different LEO and GEO metrics. Traditionally, burn severity metrics, such as NBR, have been 

used to assess wildfire effects on vegetation in conjunction with in-situ severity assessments (De Santis and 

Chuvieco, 2009; Gerrevink and Veraverbeke, 2021; Key and Benson, 2006). Meanwhile, active fire metrics 

describe active fire intensity that has been linked to a variety of fire effects on the vegetation, e.g., tree 

growth alterations and mortality (Smith et al., 2017; Sparks et al., 2023a, 2018, 2017; Subasinghe Achchige 

et al., 2022), and atmosphere, through emissions (Ichoku and Ellison, 2014; Li et al., 2022; Nguyen et al., 

2023). The lack of correlation between the two groups of metrics suggests that an opportunity exists in 

combining the two to better understand fire effects. 

Research Question 4: How can cross-platform fire intensity and severity measures be used to 

derive new metrics of wildfire characterization and impact in the landscape?  

Burn severity and active fire metrics each have their own distinct advantages and limitations as explored 

in Research Question 3. Research Question 4 extends this work by proposing the combination of these two 

cohorts of metrics into a new, comprehensive fire impact rating. A conceptual framework that integrates 

the independent wildfire-relevant metrics studied in chapters 2-4, using an unsupervised dimensionality 

reduction and clustering (DRC) method is presented. As explained in section 5.2.4.1, dimensionality 

reduction was applied prior to clustering to reduce noise, and improve the performance of the chose 

distance-based clustering. A new rating was derived for the Australian continent for one year of fire activity 

(2019-2020) and then compared with local state burn severity assessments from Victoria (VIC) and New 

South Wales (NSW). This new rating is named Composite Wildfire Impact (CWI) and it represents the 

composite effects on vegetation, ecosystems and the landscape as observed by remotely sensed spectral 

changes and the release of energy from burning biomass. 
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The BRIGHT/AHI variables (MaxFRP, FRE, Duration) were combined with Sentinel-2 variables 

(dNBR, FFC, pre-fire NBR) into a single dataset. Exploratory data analysis revealed weak and non-linear 

correlations between the active fire and spectral differencing variables, prompting the use of DRC methods 

to identify clusters of similar fires. Namely, PCA and state-of-the-art non-linear methods (i.e., t-SNE, 

UMAP, PaCMAP) were employed alongside hierarchical clustering to group similar fire types. While the 

clustering outputs of each DRC method showed moderate similarities (65-73%) with one another, the 

absence of validation data prevented us from drawing firm conclusions about the actual fire impacts they 

represented. As a result, an ensemble clustering approach was used to aggregate results that preserves 

commonalities but also retains some divergent information.  

Each ensemble cluster's variables were compared against global statistics, with clusters classified based 

on the central tendency of their variables. Fires in clusters with higher values were labelled as having a 

higher CWI rating. Key findings show that the most impactful fires during the study period were 

concentrated in southeastern Australia, Kangaroo Island, and the Great Western Woodlands, aligning with 

known extreme wildfires and fire-prone regions. The CWI rating showed a moderate agreement with VIC 

and NSW state fire management assessments, which are based on aerial photo interpretation and a random 

forest classification of dNBR values. These results indicate the confidence in the proposed methodology 

and its capacity to capture diverse fire-related information that is not always described by spectral 

differencing techniques alone.  

The findings of Chapter 5 contribute to the broader understanding of wildfire dynamics in Australia, 

with global application opportunities. Near-continuous geostationary active fire data in conjunction with 

traditional spectral differencing indices can enhance post-fire impact assessments and help to understand 

ecological processes of recovery, offering a comprehensive approach to wildfire characterization and its 

impacts. 

6.2. Synthesis 

This thesis challenges the paradigm of assessing wildfire impact based only on spectral differencing 

methods. Remotely sensed spectral differencing measurements of burn severity, such as the Normalise Burn 

Ratio  (NBR), often lack generalisability and can be prone to errors due to inconsistencies in vegetation 

type and structure, fuel moisture, fire history (Fernández-Guisuraga et al., 2023a; Gale and Cary, 2022; 

Gibson et al., 2020; Miller et al., 2023; Parker et al., 2015; Saberi and Harvey, 2023). We have shown that 

Fire Radiative Power (FRP) metrics can be reliably estimated with high-temporal-resolution geostationary 

satellite sensors, offering critical advantages for modelling active wildfire behaviour dynamics. 

Furthermore, these FRP metrics were found to not correlate with NBR-based metrics across varied 
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Australian ecosystems – ranging from dry savannas and rainforests in the north to temperate and alpine 

forests in the south. These findings presented an opportunity for proposing a novel conceptual framework 

that integrates multi-sensor earth observations active fire and burn severity metrics to describe the impact 

of wildfires on vegetation, ecosystems, and landscapes. 

6.2.1. Limitations 

While the work conducted in this dissertation from 2020 to 2024 provides novel insights, several 

limitations must be acknowledged. The selected 12-month study period captured seasonal variation in fire 

activity at a continental scale, but it coincided with an extreme fire season in southeastern Australia. This 

likely skewed the dataset towards higher intensity fires. Using a longer study period with fire seasons of 

varying intensity could alleviate the current bias towards extreme events and reveal more transferable 

insights between the fire seasons.  

Secondly, FRP metrics derived from geostationary thresholds have inherent limitations compared to 

equivalent LEO sensors, primarily based on their coarser spatial resolution. These include biases due to 

sensor saturation during very intense fires, underestimation of energy release from smaller or lower-

temperature fires, and detection thresholds influenced by satellite view angle and atmospheric conditions 

(Freeborn et al., 2014b; Hall et al., 2019; Roberts et al., 2015). 

Thirdly, spectral severity indices such as the differenced Normalized Burn Ratio (dNBR) have known 

constraints. These metrics are often hard to correlate with in-situ measurements of severity and generalise 

over large areas (Fernández-Guisuraga et al., 2023a; French et al., 2008; Gale and Cary, 2022), while their 

signal can be affected by processes not related too wildfire effects (Roy et al., 2010, 2006; Smith et al., 

2005). 

In the absence of an established wildfire impact definition in the literature, we proposed a new 

conceptual definition focused on the combined effects of fire on vegetation, ecosystems, and landscapes, 

quantified through remotely sensed fire intensity (FRP) and burn severity (NBR) metrics. However, 

incorporating ground truth measurements and additional ecological metrics in future studies would further 

enhance accuracy, reliability, and ecological relevance. 

6.2.2. Proposing a conceptual framework for wildfire impact 

Here, we propose a novel conceptual framework for assessing wildfire impact on a large scale using 

available earth observations. This framework combines geostationary estimations of active fire intensity, 

available in high temporal frequency, with high spatial resolution spectral differencing metrics that quantify 

the effects of wildfires on surface reflectance. We know that these two sources of information offer different 
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insights on wildfire effects (Chatzopoulos-Vouzoglanis et al., 2024), alluding to possible benefits stemming 

from their combination. Furthermore, wildfire risk, behaviour, and effects are heavily dependent on 

variables such as weather, climate, pre-fire vegetation condition, density, and structure (Fernández-

Guisuraga et al., 2021; Gale et al., 2023; Jucker et al., 2023; Lin et al., 2024). While our Composite Wildfire 

Impact rating utilises pre-fire reflectance information in the form of NBR as a proxy of pre-fire vegetation 

condition; fuel structure and available biomass cannot be accurately captured by pre-fire reflectance, 

especially in denser canopies (Gale et al., 2021). Therefore, this conceptual framework could be expanded 

using other available sources of information about wildfire drivers and effects (Figure 6.1), which can 

contribute to new holistic ways to measure, map, and record wildfire impact. 

Figure 6.1 illustrates the conceptual framework for wildfire impact characterisation proposed in this 

dissertation. It combines remotely sensed information of pre-, during, and post-fire attributes with wildfire 

drivers. The incorporation of fuel condition before the fire, biomass availability and change due to fire, fire 

history, local fire weather and broad climatic drivers can expand each of the concepts surrounding wildfire 

impact and greatly enhance the proposed wildfire impact metric. 

 

Figure 6.1 Concept of a wildfire impact assessment framework. The framework combines various information sources that affect 

wildfire behaviour pre-, post- and during the wildfire. It also incorporates wildfire drivers that can affect wildfire impact 

substantially.  

Active remote sensing sensors, such as LiDAR and Synthetic Aperture Radar (SAR), can measure 

variables describing fuel and biomass attributes and improve the composite wildfire impact concept. In 

particular, airborne LiDAR estimates of understory fuel have been linked to burn severity (Gale et al., 2023), 

while spaceborne LiDAR, such as the Global Ecosystem Dynamics Investigation LiDAR (GEDI), have 

been used for above ground biomass estimation (Dubayah et al., 2020; Silva et al., 2021). Meanwhile, many 

studies have experimented with C- and X-band SAR from the current satellite missions (e.g. Sentinel-1, 
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TerraSAR/TanDEM-X) to detect and model biomass changes (Qi et al., 2019; Santoro et al., 2022). 

However, the available C- and X-band SAR sensors do not penetrate the canopy due to their small 

wavelength (Ji et al., 2024). This will improve with future satellite missions, such as ESA’s BIOMASS and 

NASA’s NISAR, which will include polarimetric P- and L-band SAR systems that can penetrate the 

different canopy layers and deliver better biomass indicators (NISAR, 2018; Quegan et al., 2019). 

Additionally, repeating such measurements before and after a fire can be used to derive biomass 

consumption rates whose uncertainty is often an issue in biomass burning emissions studies (Li et al., 

2018b; Nguyen et al., 2023; Wooster et al., 2021). Accurate measures of biomass and biomass consumption 

can also improve the calculation and validation of the CWI rating, by creating an association between active 

fire and burn severity metrics to biomass change. 

Fire history is another variable to consider when assessing wildfire impact, as it affects the fuel 

availability and how well the ecosystem can bounce back (Dixon et al., 2023; Tortorelli et al., 2024). This 

information can be particularly useful in the case of short-interval reburns, where the burn severity is often 

over- or underestimated by CBI and NBR-based indices based on past severity (Saberi and Harvey, 2023). 

High-frequency and high-confidence geostationary FRP information could help assess wildfire effects 

when field and spectral differencing information fail to capture the whole picture in the case of short reburns. 

Meanwhile, fire history layers can become more comprehensive by integrating the record of fire intensity 

or wildfire impact and improve our understanding of the compounding fire effects on future vegetation 

distributions, risks, and fire regimes. 

Multi-year cycles of variability in local sea surface temperatures and atmospheric pressure have been 

linked to the extremity of fire seasons worldwide. These periodic phenomena are called climate 

teleconnections (CTs), and they have been associated with fluctuations in wildfire-relevant variables, such 

as biomass accumulation, fuel moisture, soil evapotranspiration, burned area and fire weather (Cardil et al., 

2023). For instance, the Australian 2019/2020 fire season was heavily influenced by the Indian Ocean 

Dipole (IOD) and the El-Niño Southern Oscillation (ENSO) CTs in the preceding two years, which led to 

unprecedented droughts (Wang and Cai, 2020). With wildfire activity intensifying under climate change 

globally (Jain et al., 2024; Jones et al., 2024; Mariani et al., 2018; Richardson et al., 2022), monitoring the 

potential feedback loops created between climate and wildfires (Liu et al., 2019) can assist in forecasting 

the impact of fire seasons and even the magnitudes of FRP and FRE. A few studies have already 

experimented with the latter using machine learning models trained on fuel, topography, population density, 

vegetation indices and weather variables; however, these models still have significant errors (Dong et al., 

2024; Thapa et al., 2024). Meanwhile, certain wildfire attributes (i.e., duration, spread rate, size, intensity, 

impact), which can be captured effectively by GEO sensors as shown in this dissertation, have been linked 
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to increasing land surface temperatures of burned areas (Zhao et al., 2024). Therefore, more effort is needed 

to assess climate effects on wildfires and vice-versa to assist with the adaptation of new climatic norms. 

The proposed wildfire impact metric can benefit a variety of end users. Fire managers and ecologists 

currently assess biodiversity loss and ecosystem recovery trends using the extent and patchiness of high 

severity fires (Haslem et al., 2024). These assessments could be expanded to include fire intensity and 

emissions (Balch and Williams, 2024), and potentially impact, to better describe wildfire effects. Moreover, 

post-fire ecosystem recovery, tree mortality and emission studies could be enhanced by including the 

composite fire intensity and severity effects into their methodologies, on the basis that fire intensity and 

radiative heat have been shown to harm tree growth regardless of burn severity (Smith et al., 2017; Sparks 

et al., 2023a, 2018, 2017; Subasinghe Achchige et al., 2022), inevitably affecting carbon sequestration 

(Fairman et al., 2022b). We believe this dissertation can push for a paradigm shift in how we assess wildfire 

effects, towards a more holistic approach. 

Figure 6.2 presents a flowchart illustrating the framework, distinguishing between wildfire drivers, 

remotely sensed indicators, and the resulting effects that contribute to wildfire impact. Drivers include long 

term climate change, with CTs being intertwined with local fire weather extremes that affect biomass and 

fuel conditions, as well as fire history. The remotely sensed information includes the variables used in this 

dissertation, which could be expanded to include biomass/fuel information extracted from LiDAR and SAR 

data. Finally, ecosystem responses, emissions, biomass loss and recovery could be used to interpret the 

composite impact of all the above. The dashed lines indicate this framework is also dynamic and can be 

expanded with the help of new and emerging information and technology. 
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Figure 6.2 Implementation scheme of the proposed framework, along with the distinction between drivers, effects, and available 

remote sensing data around wildfire impact. The solid lines indicate the data and concepts used in this dissertation, while the 

dashed lines indicate additional parameters that can be incorporated.  

Adopting this proposed framework for wildfire impact assessments could set the wildfire research 

community in a better position to holistically characterise the impacts of wildfires on a range of ecosystem 

services, enhancing our capacity to monitor, model, and mitigate these impacts on both a regional and 

global scale. By combining multi-sensor, active fire metrics with traditional spectral indices, this approach 

provides a nuanced view of ecosystem functioning, capturing both immediate fire dynamics as well as 

longer-term ecological responses and effects on the local and global climate. This framework can also 

inform adaptive management strategies and improve our understanding of ecosystem resilience and 

recovery processes, thus supporting informed policy and conservation efforts. 

6.2.3. Technology outlook 

The current generation of geostationary sensors consists of nearly identical instruments that make 

wildfire-relevant MIR observations (3.9μm) over the full earth’s disk every 5-15 minutes at 2km covering 

different regions of the earth. Such instruments include the ABI (Advanced Baseline Imager) on board the 

GOES-R satellites over the Americas (Schmidt et al., 2020; Schmit et al., 2005), while over east Asia and 

Australia we have the AHI (Advanced Himawari Imager) of Himawari-8 and 9 (Bessho et al., 2016), the 

AMI (Advanced Meteorological Imager) of Geo-Kompsat-2A (Kim et al., 2021), and the AGRI (Advanced 
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Geosynchronous Radiation Imager) of Feng-Yun 4a and 4b (Yang et al., 2017). Another available GEO 

sensor is the SEVIRI (Spinning Enhanced Visible and Infrared Imager) onboard Meteosat’s Second 

Generation (MSG) platform that provides geostationary wildfire observations over Europe and Africa at a 

lower spatial resolution of 3km (Wooster et al., 2015). In 2022, the European Space Agency (ESA) launched 

a satellite with the third generation of Meteosat’s satellite imagers (MTG-I), which will offer two products 

in wildfire-relevant channels (3.8μm) at 1km and 2km spatial resolution (Holmlund et al., 2021), while a 

second satellite is scheduled to launch soon (Lekouara et al., 2024). These instruments and their 

predecessors are vital for meteorological as well as wildfire applications. 

 Meanwhile, future GEO missions are planned that aim to improve this legacy. The United States’ 

National Oceanic and Atmospheric Administration (NOAA) has designed a new mission to substitute and 

improve the GOES-R record and provide the next generation of GEO observations for environmental 

monitoring from the early 2030s into the mid-2050s (Lindsey et al., 2024). This GEO constellation of two 

satellites is named Geostationary Extended Observations (GeoXO), and it will offer MIR observations at a 

1km spatial resolution (Lindsey et al., 2024). This 2-fold improvement in ground sampling distance will 

benefit future fire detections and FRP estimations, bridging the gap between polar-orbiting fire detections 

(e.g., MODIS, VIIRS and Sentinel-3 SLSTR) and current generation GEO sensors, thus allowing for the 

detection of smaller and cooler burning fires (Lindsey et al., 2024). As the geostationary technology 

progresses and bridges the spatial resolution gap with the polar-orbiting sensors, wildfire variables that are 

linked to wildfire impacts on the wildland-urban interface, such as the daily fire growth rate (FGR) based 

on MODIS burned area data (Balch et al., 2024), will be available in much smaller intervals providing an 

additional lens for tracking and managing wildfires and their effects. 

In parallel with geostationary missions, the remote sensing industry has started to invest in micro-

satellite constellations (CubeSats) for wildfire monitoring. These constellations aim to reduce fire detection 

times through large member rates in their constellations, higher spatial resolution and on-board processing. 

However, there is evidence suggesting that their advertised spatial resolution is over-estimated by a few 

orders of magnitude compared to what they actual can sample on the ground (Valenzuela et al., 2024). In 

addition, most CubeSat missions for wildfire detection and monitoring are still at an early, sometimes even 

conceptual, stage and we will have to wait and see what this new technology has to offer. Notable examples 

are a philanthropic Google-backed activity named FireSat (Earth Fire Alliance, 2025), which aims to detect 

fires of 5x5m size and assist fire suppression efforts, University of South Australia’s Kanyini satellite 

mission, which will be able to detect fire smoke (Lu et al., 2024), as well as Forest-2 of OroraTech (Schöttl 

et al., 2024). While these technological advancements are quite promising, we are cautious that the further 

commercialisation of information may push us away from the open-source data model followed by the large, 
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centralised missions of national space agencies (NASA, ESA, JAXA etc.). We hope that through 

international collaboration and initiatives, these data can be used for the improvement of wildfire 

monitoring in a non-for-profit manner.  

6.3. Conclusion 

This research has combined active fire products with spectral differencing data used to assess burn 

severity and proposed a novel dynamic conceptual framework of wildfire impact. This framework is a 

foundational step in assessing the composite impacts of wildfire on vegetation, landscapes, and ecosystems 

at broader spatial scales, as these are captures by remote sensing data. It is hoped that the work completed 

in this dissertation will inspire and generate a new paradigm of wildfire impact products and research, which 

will be vital for adapting our understanding of ecosystem resilience and wildfire dynamics within the 

context of climate change. 
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