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Abstract

For decades, satellites in outerspace have been designed as monolithic
systems, which are extremely integrated systems that are aimed to
accomplish a set of objectives that match specific user needs. These systems
are made up of specific space, control, and ground elements that may go
unused or be deactivated once the mission is over. Since space missions have
typically been seen as highly customized endeavours, engineers have always
worked on developing systems that do not share data and information with
other satellites. The space industry is increasingly considering technologies
such as Distributed Satellite Systems (DSS), particularly when combined
with monolithic satellite systems, where studies indicate that performance is
considerably improved while costs are reduced. Recent advancements in
Artificial Intelligence (AI) technologies reveal that autonomy is vital in this
modern era of space applications. Autonomy is required for enhanced
implementation and operation, which can be accomplished by integrating
Al techniques to satisfy space mission objectives. These tactics have proved
their ability to perform, adapt, and respond to external environment changes
without human intervention. Autonomy is provided because it is a critical
attribute for steering the new distributed activities that require collaboration
and coordinated approaches, allowing new structural functions such as
opportunistic coalitions, resource sharing, and in-orbit data services.
Trusted Autonomous Satellite Operations (TASO) is required within the DSS
infrastructure to accomplish this. This research focuses on developing and
using Al technologies for the TASO in DSS, which endows intelligent DSS
(iDSS). Specifically focused on the evolution of space and control (on-board)
segments required to maximize the performance of iDSS operations through
advancements in Cyber-Physical Systems (CPS) and autonomous system
designs. The Earth Observation (EO) missions based on iDSS have been
investigated and analysed. A genericiDSS design optimisation methodology
for EO that provides persistent coverage of the Australian territory is
developed from the investigation.
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Chapter 1

Introduction

This chapter provides the context for the doctoral thesis work, including the
research background, potential research gaps, research questions, and objectives. A
methodology for carrying out the research is presented. The limitations of the thesis

work, as well as the structure of the article, are also discussed.

1.1 Background

The previous two decades have been an exciting time for space missions, with
major participants in the space domain making a concerted effort to create and build
autonomous mission ideas and concepts that are more difficult than ever. Owing to the
continual success of interplanetary and Earth-orbiting missions, space engineering has
pushed the boundaries for constant development, conceptualizing increasingly
ambitious missions on a daily basis. Conventional, monolithic, high-performance
spacecraft are not the only category of satellite systems impacted by this drive for
innovation and ambition; smaller satellites are gaining traction due to newly developed
technologies and a synthesis of the current state of the art. Small satellites, nanosatellites,
and CubeSats are seeing renewed and never-before-seen interest and utilisation due to
the game-changing properties possessed by this class of space systems. The major

agencies and enterprises share the effort to use smaller satellites in the global landscape.

Significant reductions in space and launch segment costs of entry-level spacecraft are
possible thanks to efforts in technology miniaturisation, the appearance of radiation-
hardened Commercial-Off-The-Shelf (COTS), and tighter system integration. Small
satellites frequently employ high computational capabilities within low power
consumption and small form factors due to faster development cycles of COTS
components. Compared to larger missions, this allows advanced and computationally-

intensive autonomy methodologies to be run on-board [1].



Future space mission concepts are filled with low-cost Distributed Satellite Systems
(DSS) working together to achieve complex mission objectives. Real-time multi-
spacecraft coordination, data processing, and prioritization will not only optimise
mission science return by establishing observational parameters of interest or success, but
it will also facilitate outer solar system missions and missions in extreme environments
(e.g., Io, Venus, subsurface Europa) where communication with ground operations and
ground-based analysis times are limited. Through unparalleled levels of autonomy, this
capacity will enable hitherto inconceivable classes of missions [2-4]. Implementing these
envisaged space missions will necessitate considerable advancements in the capabilities
of the architectures that implement them. DSS comprises numerous spacecraft that work
together to fulfil a common mission goal [5]. In some circumstances, the DSS combine to
generate a sensory system that would be impossible to create on a monolithic platform
[6, 7]. In other configurations, they use distributed measurements to extract data on the
spatial and temporal consequences of phenomena far larger than a single spacecraft can
observe [8, 9]. Significant interest has been shown in addressing the technology required
to support developing applications as missions requiring DSS become more and more
important. On-board data processing, inter-satellite networks (often referred to as Inter
Satellite Links (ISL)), and autonomous orbit control are the main topics of this thesis.
These three technologies depend on one another. For instance, the processors on-board
must have sufficient processing capability to process the data required to make
conclusions as well as any calculations that may be involved in time-sensitive or
computationally intensive decision-making. Moreover, the DSS spacecraft can
communicate and coordinate among themselves without immediate ground control due
to the inter-satellite networks. This functionality is essential because the ground link has
limited bandwidth and latency, especially for far-space applications [10]. Additionally, it
provides the option to gradually build the system in orbit, allowing for the construction
of various modules at various stages. The modular architecture theory serves as the
foundation for DSS architecture. The study by the Research and Development (RAND)
shows that [11]:

a) Distributed constellations may weigh less and cost less to launch.
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b) Distributed satellites may perform better during deployment.

c) Distributed satellite constellations may be able to fail more gracefully.

d) Distributed satellite constellations may be more survivable in an attack.

DSS's primary goal is to deliver a more responsive and resilient solution to meet the
expanding demands of the scientific community and also the defence sector by aiding in
the measurement and prediction of Earth Observation (EO) missions [12], Space-Based
Space Surveillance (SBSS) missions [13-16] and Astronomy and Astrophysics missions [9,
17]. DSS has several advantages (i) Simultaneous multipoint data collection, (ii) Increased
availability, (iii) DSS can look at different things at once, (iv) Reduced downtime and
graceful degradation. A DSS that includes these enabling technologies can provide four
major benefits [4]:

a) Distributed Coordination: can share data and change what they prioritize.

b) Autonomous Re-tasking: can respond to environmental stimuli autonomously

without requiring intervention from a ground operator.

c) Increased Availability: when only a single spacecraft can be reached, it can relay
commands to the others.

d) Workload Balancing: can re-task satellites based on available computation, power,
and communications resources.

This research aims to demonstrate the DSS Trusted Autonomous Satellite Operations
(TASO) for Mission Management (MM), such as wildfire detections. The findings of such
analyses could be helpful for future time-critical missions, i.e., disasters and rare events,
and the following novel contributions have been made from an intelligent DSS (iDSS)
perspective:

a) Mission Astrionics: Reactive elements, such as Artificial Intelligence (Al), is
integrated with the DSS to achieve TASO for on-board data processing to provide
real-time/near real-time alerts. To accomplish the same, a Deep Learning (DL)
model is developed and demonstrated for detecting wildfires on-board the
satellite using optical payload, i.e., hyperspectral imagery.

b) Service Astrionics: For the TASO, the intelligent DSS (iDSS) will reconfigure
either based on the (i) detection of disaster event (wildfire), (ii) based on the

requirements of the owner/operator for the requested duration, (iii) to evade from
3



the Resident Space Objects (RSO), (iv) to avoid the collision between the

satellites/modules.

It is essential to mention that the detection of wildfires and Maritime Domain
Awareness (MDA) should be treated as an example test case and that the suggested
methodology (or ones similar to it) can be successfully applied to other scenarios or

activities, as has already been explored and shown in other publications [18].

Figure 1: DSS operations (a) without ISL (b) with ISL.

Sharing information about the acquired data is made possible by iDSS, allowing
maximum scientific output to be achieved through opportunistic research. The
operational requirements can be lowered with iDSS autonomy, allowing for human-in-
the-loop operations to be converted into human-on-the-loop activities. Humans will be
responsible for overseeing the operations in some capacity. Despite the loss of one
spacecraft, iDSS is able to continue working at normal levels, and its trusted autonomous
reconfiguration capabilities allow it to redistribute workload without interference from
the ground. Figure 1 illustrates the differences between the current DSS and iDSS

operations. Figure 1 (a) illustrates how the data is transmitted to the human operators on



the ground before being relayed to the remaining satellites, which is not ideal for time-
sensitive applications like rare events and disasters. In Figure 1 (b), where the ISL allows
for data sharing, and reactive elements allow on-board processing, allowing the system

to respond quickly.

1.2 Motivation

Satellite systems provide a wide variety of services, which can be easily accessed from
almost any global location. These systems have rapidly evolved over the last few decades
and have become essential in various application domains, such as communications,
navigation, EO and astronomy [19]. However, certain aspects of satellite technology, such
as trusted autonomous operations, remain to be explored due to the increasing
complexity of hardware/software components and associated safety, integrity and cyber-

physical security concerns [20].

Present-day autonomous systems can execute intelligent functions (e.g., decisions
and/or actions traditionally performed by humans) using various computer-based
algorithms, such as Al This requires the ability to gather real-time data from the external
operational environment (i.e., sensing), to perform inference and/or decision-making
functions, and to execute proper actions if and when required. Despite the significant
progress made in hardware and software technologies, TASO is still largely a research
topic and significant investments are needed to fully exploit the anticipated safety and
efficiency and sustainability benefits that such operations would bring, possibly leading
to the progressive removal of present-day socio-political barriers such as Al ethics,
liability and public trust [21]. In many applications, fully autonomous satellite operations
are either impractical or undesirable, mainly because a minor error can result in the loss
of millions of dollars and, in some cases, lead to human casualties (point-to-point
suborbital space transport, Earth-orbiting inhabited space stations, etc). Therefore, an
acceptable level of trust is required for near-Earth operations, especially considering the
steady increase of RSO in Low-Earth Orbits (LEO) and Geostationary Orbits (GEO) [4,
22]. Furthermore, to facilitate further progress in TASO research, it is essential to address

the implications of trusted autonomy and Al in the evolution of Cyber-Physical Systems



(CPS) for space applications, including the co-evolution of system-level requirements
(i.e., communication, control and computing) and human-autonomy interactions.
Current research trends in this area show that Cyber-Physical-Human (CPH)
architectures are evolving with the widespread adoption of Machine Learning (ML) and
hybrid Al techniques (e.g., neuro-fuzzy inference engines) and becoming progressively
more capable of modulating both the levels of autonomation and the human
command/control functions towards achieving specific goals. In this context, the current
generation's participation is in an evolutionary process, where humans are progressively

transitioning to a high-level supervisory role [23].

Clearly, Al will play a significant role in easing the transition to TASO. A radical
departure from conventional system design and development is required to meet the
intelligence requirements of future trusted autonomous space system vehicles and
intelligent operation in highly integrated and information-rich environments. Going
forward, certification and explainability of these Al systems will be critical, particularly
in outer space operations where liability is required for the damages these systems cause.
As a result, there is a need to understand the associated technical and legal challenges

with this system.

1.3 Research Gaps and Questions

There is currently no comprehensive classification of satellite systems in the body of
published work, which is one of the most serious shortcomings in the existing DSS.
Second, when looking at Australia, wildfires have become a significant problem over the
course of the last few years. In addition, indigenous capabilities are lacking to provide
disaster event management in real-time/ near real-time. There is the potential to develop
iDSS solutions that can change their structure and function and reconfigure mission

profiles in response to operational and environmental indicators.

The design of a state-of-the-art satellite system has not yet accounted for the
contingency planning aspect of iDSS, which is an essential component of the system. This
refers to the capability of the satellite to perform data processing on-board and detect a

disaster event or monitor a particular Area of Interest (AOI), and then downlink only the
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actionable information to the receiver with enough time to dynamically determine which
appropriate restorative or reconfiguration actions to take in order to ensure that the

system can continue to perform its mission objective.

In addition, the optimal combination of physics-based methodologies and data-
driven/Al inference techniques for different engineering application domains to deliver
TASO has not been determined. This is a problem because physics is the foundation of
engineering. This thesis focuses on the following research questions in order to address

these gaps in the literature:

RQ1: How can Artificial Intelligence (Al) techniques be employed in DSS architectures
for Earth Observation (EO) operations to enhance the performance of both service

and mission astrionics systems?

RQ2: How can intelligent DSS (iDSS) be designed for Disaster Management and Maritime

Domain Awareness (MDA)?

RQ3: How can we develop a generic iDSS design optimisation methodology for EO that

provides persistent coverage of the Australian territory?
1.4 Research Aim and Objectives

This research aims to enhance the development of DSS systems intended to function
in information-rich and networked environments. The following set of clear objectives
has been established in order to accommodate the intelligence requirements for future

autonomous aerospace vehicles.

e Conduct a thorough and in-depth review of the DSS current state-of-the-art to
tind new requirements for TASO.

e Identify Alinference techniques for wildfire detection and develop an iDSS for
real-time/near real-time disaster management. Finally, identify and implement
mission management and reconfiguration options to ensure an acceptable level
of operational capability for wildfire management.

e Develop an iDSS mission for monitoring Australia’s Maritime with

autonomous orbit control.



e Develop a Multidisciplinary Design Optimisation (MDO) methodology for

iDSS to ensure persistent coverage over Australia.

Exploring the role and capabilities of Al-based algorithms to increase the mission and
system autonomy of iDSS missions significantly. To this end, Al-based methods and
algorithms can be integrated into space missions with the intention of boosting the self-
sufficient decision-making functionalities of the space segment. This can be accomplished

by improving the space segment's capabilities in the following areas:

e Execution of tasks that were not defined during the development of the
spacecraft,

e Optimisation of on-board resources and execution of specific tasks, such as on-
board data processing,

e Emulation of the expert knowledge that is necessary for mission operations.

Therefore, it ultimately reduces operations costs for future iDSS operations through
relatively small operations teams and far less frequent usage of massive deep space

ground station network antennas.
1.4.1 Limitations

The research presented in this thesis centred on identifying and implementing
algorithms for EO intelligent DSS operations. However, it is important to remember that
the thesis was developed as part of the doctoral thesis and that the research was not
conducted to determine which of the available algorithms is the best for performing
TASO on a specific type of task; rather, the research aimed to demonstrate the

practicability of TASO in iDSS.

This research project also used commercial hardware components, free EO data
for academic research, and open data sets. This investigation aims to identify the
emerging design features that characterize iDSS, develop iDSS for EO missions over the
Australian territory and extract lessons of general applicability for establishing an MDO

methodology. More investigation and comparisons will be necessary to ascertain



whether the suggested iDSS architecture and algorithms are the best solutions for

resolving the issue addressed in the case studies.

1.5 Research Methodology and Thesis Outline

Following the completion of a comprehensive review of the relevant prior
research, an in-depth investigation into the DSS was carried out to determine its
applicability in space operations. The research questions and objectives are framed to
support the research work after identifying the key areas where DSS may be beneficial.
The current space research priorities of SmartSat CRC and the Australian Space Agency
and future advances in related areas (particularly emerging intelligent space system
opportunities and EO Road map) are taken into consideration when framing the research
questions and objectives. Initially, a DSS was developed to provide continuous coverage
over Australia for wildfire management. The subsequent step was to enable real-time or
near real-time management of wildfires using the Al techniques that were used to deliver
data processing on-board the satellite, from which only actionable information that can
be acted upon is downlinked. After it has been proven that on-board capability is feasible,
iDSS operation can be accomplished by integrating these astrionics, i.e., hardware
accelerators in the iDSS architecture. It has been proposed to endow TASO with an iDSS
so that real-time Intelligence, Surveillance, and Reconnaissance (ISR) operations can be
carried out to support maritime monitoring. The results have been presented at
conferences and published in peer-reviewed scientific journals to accomplish the
objectives and answer the questions being investigated. The detailed research
methodology of the thesis work is shown in Figure 2. This project's research work is
divided into phases that accomplish the objectives outlined in Section 1.4. An extensive
literature review is conducted, and the second chapter of the thesis contains a review of
the current state-of-the-art in DSS, as well as key advancements and contributions to

knowledge in the field of iDSS for the aerospace industry.
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Figure 2: Research methodology.

Figure 3 depicts the thesis structure. In Chapter 3, the review's focus is broadened to
include a thorough analysis of autonomous space operations. Chapter 4 discuss the real-
time/ near real-time disaster management using iDSS, for the same Australian Bushfire
has taken as case study. Chapter 5 is devoted to maritime management using iDSS. In
Chapter 6, multidisciplinary iDSS design and optimisation is carried out to provide
persistent coverage over Australia. Chapter 7 summarises the key findings and provides

recommendations for future research.
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Chapter 2

Review of Satellite Systems

This chapter provides a review of spaceflight systems, with a particular emphasis on
Earth orbit systems, where the DSS is expanded and reviewed further. A detailed
discussion of DSS unified classification is presented. The DSS hardware and software

architecture is also presented.

Thousands of active satellites are currently orbiting Earth [24]. The satellite's size,
orbital parameters, and design depend on its intended purpose. The classification of
spaceflight systems adopted in this article is presented in Figure 4. Broadly, spaceflight
systems can be grouped into three categories: (1) Space exploration systems [4]; (2) Earth
orbital/sub-orbital transport system [25]; (3) Earth orbit satellite systems. Earth satellite
systems can be further divided into the following categories: (i) Monolithic satellite
systems, and (ii) Distributed satellite systems which are discussed broadly in the

following sections.

— Constellation
Space exploration || Federated
systems
Spaceflight systems Earth suborbitaliorbital — Fractionated
transport systems
Monolithic satellite
systems
Earth orbit satellite | ] Modular
systems
Distributed satellite ||
systems
- Swarms — Trains
- Formation Cluster
— Hybrid '~  LeaderFollower
Constellation of
formations

Figure 4: Classification of spaceflight systems.
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2.1 Monolithic Satellite Systems

If a satellite system has modules or subsystems and is physically independent of other
space assets, it is classified as a monolithic system. Adding redundant components
increases their reliability while also increasing the system's overall weight, making it
more expensive. Monolithic systems are still a large fraction of spacecraft being deployed
in missions such as deep space exploration, technology demonstration, universities and
research centres [11, 26]. A typical monolithic satellite system has the following modules
PR: Processor, PL: Payload, DL: Downlink, CM: Communications Module, BUS, which
carries all the modules as depicted in Figure 5. Monolithic satellite systems are

comprehensively detailed in the works [27, 28].

(" )

PR PL

CM DL

BUS

Figure 5: Monolithic satellite system. Adapted from [28].

2.2 Distributed Satellite Systems

A DSS consists of multiple spacecraft working together to achieve one or more
common objectives. A DSS is a type of satellite architecture in which the functional
capabilities are shared among many space assets that communicate via wireless networks
[29]. The DSS concept is gradually changing the physical connectivity of various
components in a satellite system into wireless connections, typically using optical
communication methods, i.e., Inter Satellite Links (ISL). DSS is a mission architecture that
shifts away from monolithic systems and more towards multiple spacecraft/modules of
elements that communicate, interact, and cooperate with one another. They communicate
via ISL, resulting in new systemic properties and/or emerging functions. Dividing a
spacecraft over many launches reduces risk, ensuring that the whole system is not lost

when a launch fails. It also offers the flexibility to gradually construct the system in orbit,
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which allows the development of different modules/satellites at distinct stages. DSS are
mission designs comprised of several spacecraft modules that cooperate, communicate,
and interact with one another, resulting in the emergence of novel system attributes
and/or functions [30]. The following concepts of modularity are required in order to have

a better understanding of the DSS concept.

2.2.1 Modular Architecture

Modularity is a feature of systems that quantifies the degree to which a system's
functionalities can be subdivided into distinct modules or clusters which interact more
with each other [31, 32]. Damage to one module can cascade to subsequent modules in a
highly interconnected system with minimal modularity, enhancing the risk of a system-
wide failure [33]. On the other hand, a disturbance to one component may be best
controlled in a system along with a high level of modularity. Modularity is often explored
as a spectrum of several levels and forms of a system that exist as a continuum within the
system and not a binary property [34, 35]. Further, continuous modularity can be
intuitively and methodically represented and quantified for some satellite systems that
are now being introduced for a subset of elements in a network system [32, 36]. However,
it can be challenging for other engineered systems to deal with the continuous spectrum
in system architecture decisions for several reasons. One reason for this is that it would
transform the decision problem into an optimisation problem. This uses a general
continuous spectrum that becomes computationally intractable and may not reconcile
with the engineering design required for such decisions. Furthermore, interpreting
modularity as a continuum does not fit hierarchical and layered structures, which results
in a discontinuity in the level of modularity when a new layer is added. A hybrid method
is mostly utilised to handle this issue since it preserves the spectral aspect of modularity
while discretising it into many stages, each reflecting a distinct class of modularity.
Modularity can be conceived as continuous inside each level (or, if necessary, further
discretised), whereas changes in the stage of modularity are viewed as discontinuous

shifts [37].
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2.2.2 Modularity Spectrum and Decision Operators

In accordance with the broad concept of modularity [31], the framework consists of
five modularity stages identified from M, to M,, as shown in Figure 6. The spectrum is
discretised into five key modularity stages, which allows for computational feasibility of
the framework. This category comprises fully integral architectures (M,), integral yet
decomposable architectures (M;), modular yet monolithic architectures (M,), static
distributed architectures (M), and dynamic distributed architectures (M, ). A set of value
operators to quantify the net operator (M* Operator), which modifies the modularity
levels between two neighbouring stages on the spectrum. When used in conjunction with
M™* Operators, the spectrum can help designers choose appropriate parameters and put
together a system-specific computational tool using a number of pre-existing tools and
approaches [28, 31, 35-37]. To comprehend how distributed satellites are distinct from
monolithic satellites, one must understand the concept of Modularity. The transition from
M, to M, is referred to as Decomposition, from M; to M, as Splitting, from M, to M3 as
Fractionation and from M3 to M, as Resource Sharing. In satellite architecture, My, M;, and
M, are considered monolithic systems, whereas M; and M, represent distributed

architecture systems.

SPLITTING

‘ RESOURCE SHARING ‘

*Dynamic-Distributed
LBl e *Decomposable *Internal/physical #Static-Distributed *Fractional/Functional
o S .
Eg., System on a eInternal/Functional *E.g.. Monalithic eFractional/Physical ®L.g.. Federated Satellite
Satellite System System

chip

*E.g.. On-Board Data

Handling Subsystem \ m

‘ DECOMPOSITION ‘ Monollthl C

*E.g.. Fractionated

ettt bbbt

(

Distributed

Figure 6: A five-stage modularity with distributed architecture spectrum and M* operations. Adapted from [37].
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While M,, M;, and M, cover all instances of modularisation for monolithic systems
(systems with only one physical unit), M3 and M, cover systems with multiple units
(distributed systems) and the possibility of communication between them [38]. M*
decision operators express the modularity of any architecture by adding a decision layer
to a model; as a result, the conceptual framework has been transformed into a
computational tool. This determines the best level of modularity for a certain system's
functionality in a given environment profile. The decision entails both the modularity
phase and the design implementation inside that phase. By including a set of operators
(M* operators) for calculating the transition value from one stage of modularity (M,) to
its next immediate phase (M,,,). By computing the probability distribution of the
difference in value between two consecutive phases, the suggested decision-making
operators evaluate the performance of the system before and after operation [38]. This
will allow conclusions to be drawn based on an average value difference as well as the
level of risk tolerance. For most engineering systems, M, is the lowest modularity, so the
splitting operation, the first decision operation, suggests the changeover from M; to M,
through the development and use of proper standard interfaces. Fractionation operation
by shifting one or more of its subsystems to other fractions takes a system from M, to
M;. Although M* evaluation specifics a procedural algorithm which is dependent on
particular systems and its parameters, which acts as a decision-making evaluation

engine [37].
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Figure 7: Quantifying the value of the M* operation. Adapted from [37].
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Figure 8: Calculating the value of the decentralisation operation (M3 to M4). Adapted from [37].

The M* value is measured by comparing the system’s value prior and post its operations.

Such assessment involves knowledge of the system and its settings [28, 31, 32, 35, 37, 38].
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Figure 7 shows the input and output characteristics for evaluating M* Operators. At each
level of modularity, the system's value is determined using one of the common system
assessment methods (e.g., discounted cash flow analysis, scenario analysis) while taking

the subsequent criteria into account [37, 38]:

a) Technical Parameters: For instance, the probability density of a failure, the time
required for an upgrade to become available, the highest number of modules
allowable, and the maximum transmission bandwidth permitted.

b) Economical Parameters: For instance, the number of modules in need at a given
time, the cost of launching and operating a module, and the rate at which distinct
module types generate value.

c) Life Cycle Parameters: Total time required for operation, budget, as well as

maximum time required for initial deployment.

A high-level sketch for calculating the decentralisation values from M3 to M, is depicted
in Figure 8. Because of the underlying network structure, designers must use multi-agent

techniques that blend system dynamics and evolution with autonomous behaviour [39].

2.3 DSS Classification

DSS are categorised based on the type of mission and function they perform. Activities
required to meet local objectives (i.e., those specific to each module) or small bits of a
global objective's functioning (i.e., particular to the infrastructure) may be included in
modules performing activities in a distributed infrastructure, whether in monolithic
systems or distributed spacecraft. As a result, the function type is measured in terms of
how dispersed the mission's goals are, ranging from no collaboration between modules

(i.e., local functionality) to a fully functional symbiosis (i.e., distributed functionality).
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Figure 9: Distributed Satellite system classification. Adapted from [40].

As a result, different distributed missions are characterised according to their degree
of distribution in terms of the system's capabilities or goals and resource interdependence
between modules. A bi-dimensional space can be formed using the analysis of these two
domains, as shown in Figure 9, with values in the range [0,1]. The x-axis shows the degree
of mission goal distribution, which ranges from missions in which satellite modules work
together to advance a single global function to goals in which each satellite module
develops its own local activity. The y-axis shows the degree of fractionation among
scenarios where modules are totally reliant on one another and cases where nodes are
completely resource self-sufficient [40, 41]; both axes are independent. The following are

the classification of DSS.

e Constellation

e Fractionated
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e Federated

e Modular

e Swarms

e Formation

e Constellation of formations

e Hybrid Missions

2.3.1 Constellation

A satellite constellation is a collection of human-made spacecraft that operate as a
unified system. A satellite constellation, as opposed to a single satellite, can provide
continuous global or near-global coverage, as shown in Figure 10 (a). This means that at
any given time, at least one of the satellites in the constellation will be visible somewhere
on Earth. Satellites are often positioned inside sets of orbital planes that are
complementary to one another and connected to ground stations spread across the world.
It's also possible that they communicate with one another via satellites. A satellite
constellation is a system of artificial units that are identical to one another or of a similar
sort, all of which share the same purpose and control. These groups communicate with
ground stations placed all over the world and, at times, even communicate with one
another. They are designed to function together as a system and complement one another
in some way. The works of literature provide descriptions of some of the satellite

constellations [42-46].

2.3.2 Fractioned

Fractionated satellite is a system in which a spacecraft is divided into smaller units or
fractions collaborated to achieve a common mission objective. The satellite consists of co-
dependent modules that require system resources to be exchanged to function, as shown
in Figure 10 (b) [47]. Two extremes can be thought of for this category based on task
achievement. In the first instance, the satellite's functionalities are implemented by the
satellite fractions, which need services such as data processing, power, communication
link, etc., to complete the functions calling for dedicated fractions to provide these

services. Fractionated systems have mission objectives that are specific to each of their
22



fractions/modules. Though there is minimal cooperation between them, each fraction is
still highly dependent on the infrastructure of the system. Secondly, fully fractionated
satellite systems have modules that collaborate on accomplishing the mission's global

objective. There is considerable resource dependency in this scenario and functionalities

of the modules [40, 48-53].

(a) (b) (c)

~.

Leader
' "g/‘ Follower

'Payload Module &

@Infrastructure module

(d) (e) (€9

Figure 10: DSS types (a) constellation (b) fractionated (c) formation (d) modular (e) swarms (f)

constellation of formations.

2.3.3 Federated

In a federated system, a group of satellites work together to provide a specific service,
but each satellite operates independently, with its own mission and communication
capabilities. A Federated Satellite System (FSS) is a network of satellites that coordinate
by exploiting the potential of their resources, with each satellite having all the
infrastructure needed (i.e.,, not a fraction) to operate, and so being completely self-
contained. Independent satellites are built and placed in orbit for specific objectives,
allowing them to employ their resources and capabilities for an opportunistic distributed
mission [54]. Federated and Fractionated satellites share some features, combining some
of their capabilities and resources for a global mission [54-57]. Because the transferred

resources are always underutilised in a module's primary mission, the nodes are
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complete and form heterogeneous systems, allowing for a new category of distributed

mission to be categorized, as shown in Figure 11 [40].

e - -

Figure 11: Federated satellite system.

2.3.4 Modular

Modular concepts are relatively new DSS classifications in which the
satellites/modules are disintegrated, as shown in Figure 10 (d). Based on the CubeSat,
Jiping et al. presented a new type of DSS with a reconfigurable construction and
customizable function, dubbed Space Modular Self-Reconfigurable Satellite (SMSRS)
design concept as shown in Figure 12, which shows the SMSRS configuration and the
deployment from the folded state to work state. The following are some of the features
of SMSRS: (1) Modularity, (2) Scalability, (3) Structural Reconfigurability, (4) Risk

Resistance, and (5) Functional Adjustability are all critical characteristics [58].
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(d)

Figure 12: i) Model of SMSR, ii) Configurations of SMSRS (a) Folded state, (b) Unfolding, (c) Unfold state, (d)
Work state. Adapted from [58].

Optical cameras, SAR, communication payloads, and other payloads are among the
payloads carried by SMSRS. SMSRS, while carrying several payloads, arranges and
reorganises these payloads in a variety of space orientations through structural
reconfiguration, allowing it to carry out a variety of space missions. SMSRS is commonly

used in the following scenarios [58]:

a) When SMSRS transports numerous optical cameras, joint motions may cause these
cameras' spatial orientations to alter. By stitching together their field of view, these
cameras might accomplish a larger imaging area, as shown in Figure 13 (a), or
reconnaissance of numerous targets, as shown in Figure 13 (b).

b) As illustrated in Figure 13 (c), SMSRS can achieve multi-area communications to the
ground by carrying several communication payloads and adjusting them to different

orientations.

SMSRS application scenarios are not restricted to these, and there are broader
expansions available. Simultaneously, a considerable amount of space debris is produced,
endangering the survival of satellites in orbit. SMSRS's multi-functional feature, which

allows individual satellites to execute many functions adaptively, can cut down on satellite



launches. It eases the strain on space traffic management and minimises the amount of

space debris produced [58].

()

Figure 13: Application scenarios for SMSRS (a) SMSRS carries numerous optical cameras and stitches
together fields of view. Multi-camera SMSRS surveillance of multiple targets (c) SMSRS provides multi-area
communication to the earth [58].

2.3.5 Swarms

Swarm intelligence studies how natural (and artificial) multi-agent systems
cooperate via decentralised control and self-organization, as shown in Figure 10 (e). Bloom
[59] coined the term while researching complex adaptive systems, and it is made up of
several  principles  (distributed  parallel  processing, = superorganism, group
selection, apoptosis). A typical swarm system has specific characteristics, such as a large
number of homogenous agents (either identical or belonging to several typologies) that
interact with one another via fundamental rules that exploit only local information.

Information is exchanged either directly with another agent or indirectly through the
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environment. Stigmergy is the name given to this indirect coordinating mechanism [60].
The system's overall behaviour finally organises the group. This type of individual
behaviour is commonly stated in probabilistic terms based on local neighbourhood
perception. This ensures that the system can be scalable, parallelised, and fault resistant. It
also includes consideration for any Swarm Intelligence system. It is distributed (executed
by each agent in the system) and integrates randomization through each node's decision
process. This is the reason, why the system is not stuck in "local compressed states" [61].
This allows a swarm divided into multiple isolated subgroups to have a single module
eager to leave the group and keep the interaction process alive. In reality, swarms are very
adaptable while also being extremely resilient (the system continues to work even if certain
components fail) and completely decentralised and unsupervised. It works whether they
are being used to describe natural or man-made agents. Satellite swarms are distributed
missions in which the infrastructure modules are autonomous satellites conducting their
own functions without the interchange or collaboration of resources (such as data). A
distributed satellite of this kind comprises homogenous modules with the same or similar
capabilities [62]. By increasing the number of modules dedicated to a certain task (i.e.,
adding redundancy), the set of constellation-conforming modules increases the system's
usability, benefiting the system's robustness. For example, a deteriorating sensor in one of
the modules of an EO mission does not prevent the operators from obtaining images.
However, the amount of resources transferred (i.e. power, computational resources) is
almost minimal in this situation. This type of distributed spacecraft can still communicate
with one another to preserve flight formation or to relay critical trajectory information (e.g.
to avoid collisions) [41, 62-64]. Nonetheless, their functions are limited to local, and their
activities are done autonomously, as shown in Figure 9, without transferring any resources

altogether [40, 41].

2.3.6 Formation

The coordination of multiple satellites to achieve the objective/goal is known as a
formation. The flight of multiple objects in formation is known as formation flying, as
shown in Figure 10 (c). In an effort to match the user's requirements, different

configurations of formation flying missions are available. Small differences in the orbital
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parameters of the deputy satellite in relation to the nominal parameters of the chief satellite
produce each configuration. Satellite formation flying has many architectures based on
configuration, operation mode, and other parameters. References for more information can
be found in the literature [65, 66]. In any case, the following sections cover the most critical

aspects of the classification.

Cluster formation: A cluster configuration occurs when a set of satellites are organised in
a close formation and positioned in orbits that keep them near together. Satellites in a
cluster normally travel close together; however, this is not always the case in a trailing

formation [52, 65].

Trailing formation: The satellites share the same orbit and follow one another with
constant mean anomaly differences, keeping a predetermined relative angular separation
from the Earth's centre. Notice that in terms of the mean anomaly the relative phase
between satellites on a trailing formation is always constant, regardless of the eccentricity.
The relative angular spacing in elliptic orbits, on the other hand, changes depending on the
satellite's location. As a result, while the primary satellite is at perigee, these angles must

be determined [65].

Leader-Follower formation: When describing two spacecraft, the term ‘Leader-Follower'
has the clearest meaning when one (the follower) is forced to fly in formation with the
leader. In some works of literature, the term ‘Leader-Follower' can also refer to a group of
spacecrafts led by a single hierarchical leader. The following is the list of alternative terms
for describing a leader-follower formation hierarchy. (i) Chief-Deputy, (ii) Master-Slave,
(iii) Mother-Daughter, (iv) Primary-Secondary, (v) Hub/Combiner-Telescopes/Mirrors [65-
68].

2.3.7 Constellation of Formations

A constellation of formations is a set of formations, where each formation has flight
coordination between neighbouring satellites. In the constellation view, each formation
can be described by the centre of mass of each formation, flying far away from each other

but with a common mission goal, as shown in Figure 10 (f). Within the formation, there is
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typically relative navigation, guidance and control to acquire and reconfigure the relative
orbits. On the other hand, the constellation objective is stated in terms of the desired orbit
of certain selected satellites (sometimes called chief) or some weighted position average as
the centre of mass of each formation in the constellation. Notice that each satellite must
obey two objectives: to keep the formation relative geometry and to belong to the

constellation [69].

2.3.8 Hybrid Missions

Hybrid Mission architecture categories are theoretical extremes, ie., a mix of
distributed systems generates this type, which is more complicated in most real
circumstances and tends to be located in the centre of Figure 9. A fractionated satellite is a
spacecraft unit capable of building a constellation with the other satellites (fractionated
satellite swarm) or cooperating with other units in more heterogeneous and complex
situations (federation of fractionated satellites). It is worth mentioning that mission designs
can change quadrants in some situations, depending on the mission goals enforced by the
ground segment [40, 41]. Hybrid mission objectives may alter because of a technical issue
(unit maintenance, repair, replacement, research potential) or for commercial reasons
(exploitation of modules, sporadic provision of services). Federated satellite systems with
modules that can function individually or in formation in flight are excellent examples of
this dynamism [40]. Table 1 provides a detailed description of different types of DSS
architecture. The level of the operational independence of a satellite or a fraction of
distributed spacecraft is characterised as Operational/Functional Independence. Individual
spacecraft or fractions of a distributed spacecraft's Homogeneity is defined as the degree of

similarity between them. [10, 11, 30, 41].

Jacqueline et al. [2] studied a variety of DSS attributes and classified them
according to the taxonomy shown in Figure 14, and defined all of the concepts used

in this taxonomy.
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Table 1: Types of distributed mission architectures. Adapted from [30].
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Autonomous

From autonomous to
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dependent
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A methodology for the bottom-up design of a distributed architecture is widely used,

where elements of each layer are built up to reach the desired distributed architecture.

The basic units arise from the bottom layer's objects and elements. At the top, there is a

launch plan that shows which vehicle will launch each module [53]. DSS hardware and

software architecture is discussed in the following sections.
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Figure 14: DSM Terminology Adapted from [2].

2.4.1 Hardware Architecture

Modules can be defined as constituents of a distributed system, such as payload
modules, which include mission-specific instruments, functionalities, and infrastructure
(or resource) modules that support the mission-specific payload modules [11, 26, 41]. DSS
architecture provides a plug-and-play system due to the physical independence between
the modules. Furthermore, it increases the value of the DSS. An example of this
architecture is shown in Figure 15, with PR: Processor, DL: Downlink, PL: Payloads are

fractionated, distributed and connected through ISL [28].

31



Figure 15: DSS architecture. Adapted from [28].
A DSS Hardware illustration is shown in Figure 16, which is a dove system consisting of a flock
of satellites used mainly for EO operations. Cloud-based mission control is used for mission

planning and scheduling in this system. Every payload plan and change in the task is updated

via the network of ground stations operated by planet labs [15, 16].
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Figure 16: DSS Hardware architecture (Dove System) [15].

2.4.2 Software Architecture

Traditionally, spacecraft is controlled from a main on-board computer (possibly with
redundant backups). Typically, modern spacecraft employs several dedicated on-board

computing capabilities in charge of particular tasks and/or subsystems. Depending on
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the features of the mission, suitable software architectures are designed. Software

architecture for DSS seeks to operate a system autonomously, where the components

interact to:

i. Distribute tasks between modules /components of satellites,

ii. Allocate infrastructure resources,

iii. Perform task scheduling in a distributed manner as per requirements.
A structural view of software architecture is shown in Figure 17. The representative
modules/components are not homogenous, indicating they have different payloads,
computational capabilities, subsystems, and availability times, i.e., system encapsulation. The
system is made up of autonomy management entities (i.e.,, task planners) that interact
autonomously to operate a spacecraft. A transparent communication channel between global

and local entities is provided by the Distributed System Layer (DSL) [40].

Master
( Global
Planner
Autonomy
System Distributed System Layer (DSL)
Local Task Local Task Local Task Local Task | Local Task
~ | Planner1 Planner 2 Planner 3 Planner 4 Planner N
Interface
Local Local Local Local Local Arbitrary
Software Software Software Software Software low level
Platform Platform Platform Platform | ---=----- Platform components
1 2 3 4 N
0S_1 0S_2 0S_3 0S_ 4 OS_N
Satellite Satellite Satellite Satellite Satellite
Module 1 Module 2 Module 3 Module 4 Module 4

Figure 17: Distributed software architecture. Adapted from [40].

The entire architecture is controlled using two control levels, the Global control level,
which is mainly relative to the software infrastructure domain, and the Local control
level, which is relative to each module domain. The software architecture incorporates a
master-slave hierarchical relation. In recent times, software architectures have been
designed to suit changing environments. In addition, the structural description of the

architecture also consists of dynamic management policies. The hierarchy and data
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encapsulation are detailed in the structure, while the policies define the system's
functional behaviour. The system's functional view locally manages activities hidden
from the autonomy system, which includes activities/tasks done by local software
platforms—for example, satellite formation, functionalities/tasks extrinsic to the
infrastructure, maintenance tasks, etc. The Global tasks are scheduled by the autonomy
system, i.e., the main activities/tasks that are executed, a priori, by any module in the
infrastructure. The “Policy” is the architecture’s functional behaviour/model, which
creates an interchange of information among the Global and Local control levels. It
provides a method to execute distributed assignments of global objectives for each
module and period consisting of a compendium of algorithms. Considering the
distributed autonomous software architecture within a dynamic context, dynamic

management policies are adopted, bringing about changes in the mission.

Sub-tasks are performed

Combinatorial
Optimization
Intial Task/
Activitie P Decomposition
Problems

Combination
achievement

N-task, M-Module N-task, M-Module

N-task, I-Module

Figure 18: Task execution in a distributed system. Adapted from [40].

The Local-Global approach of software architecture is a mixed management policy.
This is intended to provide an arbitrary number of heterogeneous modules to an adaptive
planning solution for an autonomous distributed spacecraft (i.e., payloads,
computational capabilities, different platforms, hardware, ISL bandwidth, etc.). It had
grown accustomed to the software infrastructure modules [40]. This balances the master

module processed information. By decomposition, the “multiple-tasks multiple-
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modules” task/problem is changed into “multiple-tasks single-module”, as depicted in

Figure 18.
2.5 Conclusion

Space systems mostly encounter a great deal of uncertainties in the space
environment. This makes their design specifications difficult and, in many instances,
intractable since a huge number of feasible design options must be evaluated against a
multitude of uncertain situations. Several sources of uncertainty occur for space systems
in both space environment and ground-based setup, including technological
developments, fluctuations in demand, failure to launch, availability of funding, and
changes in stakeholder requirements. This results in increased cost and complexity,
especially for conventional monolithic designs. Alternative designs for these systems
should be considered to reduce both space and ground-based uncertainty. This chapter
presents a unified classification of DSS and discusses the various categories that make up
this categorisation. The modularity spectrum mentioned earlier should be used to
evaluate these designs. It is apparent that distributed systems will play an essential role
in the modern space era. As a result, appropriate strategies and use cases for exploring

and exploiting DSS architectures should be outlined.
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Chapter 3

Al for Autonomous Operation in Space

In a system's context, autonomy can be defined as the ability to make informed,
reasonable, self-reliant, and self-determined decisions. A system should be able to sense,
think, and act inside its surrounding environment in order to be deemed autonomous. It
necessitates the capacity to detect its surroundings as well as some awareness of one's own
powers and how they affect one's environment and internal condition. An autonomous
system makes inferences and conclusions about its own goals and takes action to achieve
them [70]. Additionally, an autonomous system must react to non-nominal conditions by
adjusting its system of operations to fulfil its goal while being secure. The degree of
autonomy a system achieves is determined by the degree of off-nominality it can handle

and the level of abstraction of its objectives [71].

A closed-loop (“sense-think-act”) system, as shown in Figure 19, describes an

autonomous (machine) device or function for different layered architectures as follows.

e Sensors (“sense”) provide the computer with knowledge about its surroundings,
i.e., data.

e Control software is used to process the data ("think").

e Conduct an operation (“act”) without further human interference based on its
analysis.

As aresult, autonomy is described as a system's ability to function without direct human
interference, though it is a spectrum with several levels and grey areas. Some autonomous
systems in aerospace carry out predetermined acts that do not alter in response to the
environment (automatic). Other systems (automated) initiate or modify their behaviour or
output in response to environmental feedback, while more advanced systems (autonomous)
combine environmental feedback with the system's own interpretation of its current
situation. Increased autonomy is often viewed as increased “intelligence” or even “artificial
intelligence” for a specific mission, and it is usually equated with greater adaptation to the

environment. Over the years, it has been agreed that architectures for autonomy should be
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included in a planning layer, a task sequencing layer, and a reactive layer. Deliberative,
executive, and functional layers are all terms used to describe these layers. These layers are
defined by their separation from the equipment and the time it takes for them to respond.
Response-time constraints usually imply limitations on the capability to deliberate and the
time horizon that can be considered. The functional layer has fast turnaround requirements
since this must maintain pace with the hardware, and each component normally only
considers one task or series of tasks. The executive layer manages a collection of tasks at the
moment, and it only needs to reply fast enough to meet task action potentials and
terminations. Finally, the deliberative layer considers numerous tasks, multiple
possibilities, and future repercussions. It just needs to reply quickly enough to offer the
executive extra job sets or plans when necessary. On the other hand, the layers do not just
indicate a boost in capabilities; trade-offs do exist. The functional layer has access to detailed
data about the hardware and frequently performs complex numerical calculations to decide
responses or provide data to the layers above. The executive layer usually includes
contingency management and control skills that the deliberative layer lacks. Each layer
executes a variation of the sense-think-act cycle in an autonomous system. The overarching
system of autonomy has a sense-act-think cycle as well. Sensing entails gathering data from
lower levels or hardware and transferring it to a representation that the software can
understand. Thinking entails weighing sensory data, spacecraft information and desired
outcomes before deciding what should be done. Finally, acting entails putting the decisions
made throughout the cognitive cycle into action [72]. The European Cooperation for Space
Standardization (ECSS) has defined four degrees of autonomous capability, with level E4
being the most autonomous. Only level E4 compatible technologies can be deemed
genuinely autonomous, according to the criteria in Table 2, whereas levels E1 to E3 relate to
human-operated or automated systems. Unlike autonomous systems, automated systems
can only deal with their designers' predicted scenarios. It will react to these conditions using
so-called on-board control procedures, which are pre-programmed sequences of operations
(i.e., events). The different levels of autonomy in mission execution are shown in Table 2. In
order to operate the entire mission autonomously, there is a need for autonomy in mission
data management and mission fault management. ECSS defines these capability levels as in

Table 3 and Table 4 [73].
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Figure 19: The Sense-Think-Act cycle Autonomous systems layered architecture [72].

Table 2: Levels of autonomy for mission execution as stated by the ECSS [73].

Mission execution underground
El control with limited on-board
capability for safety issues

Execution of pre-planned, ground

E2 defined, mission operations on-
board
E3 Execution of adaptive mission
operations on-board
4 Execution of goal-oriented mission

operations on-board

Real-time control from the

ground for nominal operations

Execution of time-tagged
commands for safety issues

Capability to store time-based

commands in an on-board
scheduler
Event-based autonomous

operations Execution of on-board
operations control procedures

Goal-oriented mission re-
planning

Table 3: Levels of autonomy for Mission fault management as stated by the ECSS [73].

Identify anomalies and report to

Establish a safe space segment
F1 configuration following an on-
board failure

Re-establish nominal mission
F2 operations following an on-board
failure

38

ground segment Reconfigure on-

board systems to isolate failed

equipment or functions Place space

segment in a safe state
As F1, plus reconfigure to a
nominal operation configuration
Resume execution of nominal
operations Resume generation of
mission products



Table 4: Levels of autonomy for mission data management stated by the ECSS [73].

Level Description Functions

Storage on-board of essential
D1 mission data following a ground
outage or a failure situation

Storage and retrieval of event
reports Storage management

Storage on-board of all mission
data, i.e., the space segment, is As D1 plus storage and retrieval of
independent from the availability all mission data
of the ground segment

D2

Satellite operations can occur in Earth orbits or deep space missions, such as planetary
exploration. Both activities require the use of robotics and autonomy. Most spacecraft
operations' control functions and procedures are transmitted for immediate execution by
telecommand or, more commonly, in precisely organised sequences at specified times.
Almost all remote sensing satellites, for example, gather images and downlink to Earth at
predetermined geographic areas while retaining the correct attitude using on-board sensors
and reaction wheels. On the other hand, Astronauts operate robotic systems in space, such
as, the Canadian arm Remote Manipulator. Few autonomous aerospace systems make
decisions without human intervention in order to attain high-level objectives. Freed et al.
[74] offer a Verification and Validation (V&V) methodology for autonomous space systems
that aims to increase trust in the stability of complicated software. This combines runtime
analyses and model control using software design architectures to enable traceable modular
verification activities and automated code generation while delivering automatic formal
V&V verification tasks. Freed's intelligent automation system guarantees that software is
conceived, produced and verified by domain experts-engineers and scientists for space

activities, which is another crucial part of creating confidence in autonomous software [74].

As defined by Proud et al. [75] and Novaes [76], variable autonomy develops the concept
of selecting desirable levels of autonomy while constructing a space system. This allows the
autonomous system or the human user to alter the level of autonomy as needed by the
situation. Autonomous space systems provide excellent sensing and are therefore necessary
if human usage and exploration of space are to expand in terms of both reach and
complexity. Trusted autonomous spacecraft systems will allow such activity to continue
with confidence. For crucial space systems, several scenarios can be predicted. Some of these

are already in the development and demonstration stages. For example, autonomous on-
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board data processing, on-orbit satellite servicing/repairing, analysis and decision-making
for remote sensing for both defence and civil applications, as well as future human space
habitation, which could include both space tourism and deep space colonisation, are all
plausible scenarios [71, 77-79]. Figure 20 shows an evolutionary roadmap of space system
capabilities with a growing degree of autonomy over time. The four categories are defined
as follows, 1. Teleoperation (operated from Earth), 2. Automatic Operation (pre-
programmed self-control), 3. Semi-autonomous Operation (start with a predefined
command sequence, where the machine adapts to the external environment), and 4. Fully
Autonomous Operation (autonomous decision-making (goal-oriented)) [80]. Autonomy
can be incorporated into various segments of the satellite infrastructure. With recent trends,
TASO for space applications is becoming more popular. Al applications in the control and

space segments can potentially increase the value of both ground and space operations.

On-orbit servicing, Surfa
exploration, Human habi
in space.

Multiple nations
are involved in
extra-terrestrial
exploration.

Level of Autonomy onboard of the system

1960 1990 2020+

Figure 20: Evolution of Autonomy in space systems. Adapted from [80].

3.1 Human-Machine Autonomy

The autonomy of a machine is significant because it influences the number of tasks
it can complete because of the increasing demand and regularity of human-machine
interaction. There are several levels of autonomy, varying from teleoperation to
complete autonomy. Beer [81] proposes a structure for categorising levels of autonomy
and guidelines for choosing and maximising the appropriate level of human-machine
interaction centred on the machine’s intended purpose. Human interaction is required

at all levels except the final stage of autonomy. The categorisation is shown in Table 5.
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Table 5: Levels of Automation. Adapted from [81].

1 Manual Human performs all mission aspects

2 Tele-operation Machine assists in task execution

Machine assists in sensing and task execution and

Assi Tele- i .
3 ssisted Tele-operation intervenes when needed
. . Human formulates mission, and machine executes
4 Advisory execution
the task
. . hi o : lanni
5 Skilled Execution Machine assists in sensing and planning and
executes the task
6 Shared Control with Autonomous Machine operations with human
Human Initiative oversight
” Shared Control with Autonomous Machine operations with human
Machine Initiative assistance
. Autonomous Machine operations with a human
8 Supervisory Control .r
directive
9 Executive Control Autonomous Machine operatlons with human
override
10 Full Autonomy, i.e., Autonomous Machine operations without human
Trusted Autonomy intervention

3.2 Cognitive Human-Machine Systems

A human-machine system incorporates the functions of an individual human
operator (or group of operators) and a machine as an interface. This can also be
viewed as a system of a single entity interacting with the external environment. An
autonomous system or function is, by definition, out of human control to some extent.
Humans can, however, exert some control during the design and development stage
at the point of task initiation and during service, for example, by interrupting the
system's operation. The need for human supervision or the degree of autonomy that
can be tolerated is related to the complexity of the environment wherein the system
operates as well as the complexity of the role it executes. There is no widespread
model for ideal human-machine interaction with autonomous systems. In general, the
higher the complexity, the greater the need for direct human control and the lower
the tolerance for autonomy, particularly for safety-critical tasks and environments in
which a system failure may injure or kill people or cause property damage. When an
autonomous system is used in an unpredictable, uncontrolled environment, there is a

high risk of failure with unforeseen consequences. Nonetheless, recent technological



advancements in complex control software, such as Al techniques, aim to increase the
degree of autonomy, tolerating more complex tasks in complex environments.

Humans can control machine systems in a variety of ways:

1. Direct control: Requires continuous interaction by a human operator to control the

system's functions directly or indirectly, making it non-autonomous.

2. Shared control: The human operator controls specific tasks directly, while the
computer controls others under the operator's supervision. The aim of shared
control is to:

a. Combine human control's advantages (global situational awareness and
decision) and computer control (high-speed, high-accuracy actions).

b. Partially overcome human control limitations (attention period and field of
vision limitations, tension, and fatigue) and machine control limitations (limited
situational awareness and decision-making capacity, sensing uncertainties).

3. Supervisory control: A device executes tasks autonomously while a human
operator supervises and provides guidance, intervenes, and reclaims control as

required.

Supervisory control is often used in civilian applications because direct or shared
control of a machine system is not feasible due to communication delays between the
operator's commands and the system's corresponding operation, such as in systems

working in outer space or deep-sea areas.
3.2.1 Human-on-The-Loop

Predictive control is challenging in most real-world environments because the
operating environment is complex, unpredictable, and dynamic in nature. On the
other hand, human supervisory control allows operators to exert some control
through “human-on-the-loop” monitoring and intervention. There may be several
loops in which the operator may intervene, each with different outcomes, such as a
low-level control loop for particular roles (control level) and/or a high-level control
loop for broader objectives (planning level). In any case, successful human-on-the-

loop monitoring and intervention necessitate constant situational awareness as well
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as sufficient time to intervene (i.e., override, deactivate, or take other actions) and a
way to interfere, such as a permanent contact connection (for remotely operating
systems) and/or direct physical controls that allow the user to regain control or
deactivate the machine. Unfortunately, even though the human-on-the-loop model
meets all the above requirements, it is not a silver bullet for maintaining successful
control over autonomous systems due to well-known human-machine interaction

issues. These include:

1. Over-trust in the system, or automation bias, occurs when humans put too much
faith in the operation of an autonomous machine.

2. A lack of external environmental awareness on the part of the operator
(insufficient knowledge of the state of the system at the time of intervention, as
explained below)

3. The ethical buffer, in which the human operator delegates moral obligation and

accountability to the system, is viewed as a valid authority.

3.2.2 Cognitive Human-Machine Interfaces and Interactions

Cognitive Human-Machine Interfaces and Interactions (CHMI?) is a new method
to human factors engineering in aerospace that incorporates adaptive functionalities
into the design of the operator's command, control, and display capabilities [82, 83].
A CHMI? system evaluates human cognitive states built on critical psycho-
physiological observables being measured [83]. The cognitive states have been
utilized to estimate and improve the operator's performance in the accomplishment
of tasks to improve the efficiency and effectiveness of the overall human-machine
teaming. Moreover, the result in the literature [83] indicates that higher levels of

CHMI? supported automation are beneficial for space applications.
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Figure 21: CHMI2 Framework [13].

This shows that the presentation of CHMI? functionalities in potential space
applications can considerably decrease response time, improve the operational
effectiveness of spacecraft operation, and improve the overall protection and
effectiveness of operations [83-85]. CHMI® supports human-machine teaming,
whereby a system senses and adapts to the mission environment and the cognitive
state of the operator. The CHMI? concept enables TASO in mission-critical and safety-
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critical applications [13]. The definition of CHMI? builds on and capitalises on
significant developments in aerospace avionics human factors [86, 87], which are
detailed in Refs. [86, 87]. The CHMI? framework's primary feature is an expansion of
a device monitoring approach that assesses a Human-Machine System's (HMS) entire
integrity by including both cognitive (human) and automated (machine) components.
It is planned to characterise the operator's actions that resulted in a particular mission
outcome by detecting specific features that can deduce cognitive states (for better or
worse). This closed-loop input helps to improve HMS's trustworthiness in essential
areas like the initial design process. It supports cognitive system engineering
activities, such as the creation of system automation methodology based on operator
policies and online adaption of the HMS based on the cognitive state of the person
and the operating environment, during the early design process. The CHMI? system is
depicted in Figure 21, and the reader is referred to Ref. [85] for further details. Before
World War II (WWII), the human-machine connection was based on "humans
adapting to machines, "whereas after WWII, it was based on "machines adapting to
humans". It has progressed into CHMI?, which is the communication between humans
and non-Al computing systems since the dawn of the computer era. Computing
products (such as automated machines) are typically used as a tool to aid humans in
monitoring and executing tasks. The evolution of CHMI? over time is shown in Figure
22. Similar to what has happened in the computer era, Al technology has enabled a
new sort of CHMI? collaborative interaction that would eventually lead to a
paradigmatic shift in CHMI? application areas in the Al era, resulting in new design
thinking and approaches to Al system development. Figure 23 expands on the

approach, and the reader is referred to [88] for further details.
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3.3 Artificial Intelligence for Space Operations

The term "intelligent space system" refers to space systems that operate
independently using intelligent methods. To achieve autonomy, Al approaches are
used without the need of human interaction in this system. Al may examine previous
work to make sure everything is completed correctly. Furthermore, including
collaborative robots ("cobots") into the production process decreases the requirement
for human workers in clean rooms. It improves the consistency of production
processes that are prone to errors. Al, unlike humans, does not require rest or sleep
in order to digest large amounts of data quickly. The basic objective of the techniques
utilised can also be used to classify Al [70, 79, 89]. The following are the four layers of
autonomous systems,

1. A foundational layer that covers traditional methodologies like statistics and
econometrics, as well as complexity theory and game theory.

2. A behavioural layer that comprises operational procedures including
automated processes, machine translation, and collaborative and adaptive
systems, among others.

3. A sensory layer that provides language, audio, and visual information to the
model.

4. The "intelligence" is provided by a cognitive layer incorporating ML,
reasoning, and information representation.

These definitions are helpful in thinking about the purpose of the strategies being
used. A combination of these would be used for the most advanced Al systems. Al
would significantly affect human and robotic space exploration missions in several
different ways. As time progresses, Al will complement space exploration activities

in a variety of ways, as seen in Figure 24.
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Figure 24: Al-augmented space exploration.

Table 6: Summary of Al techniques in space.

On-board data processing

Hyperspectral image classification
Satellite communication
Inter satellite communication
Satellite attitude control

Al-based control systems
Automatic anomaly detection techniques
Intelligent health monitoring systems
Spacecraft structural health monitoring

Exoplanet detection
Interplanetary trajectory design
Deep space communication

Image processing for precision agriculture and agroindustry

Autonomous proximity operations and docking of spacecraft.

Autonomous planning and scheduling

Trajectory optimisation of the space launch vehicle

Spacecraft trajectory optimisation
Collision avoidance
Separation assurance
Space Based Space Surveillance
Space domain awareness

In space
Navigation and
Communication

Data Analysis

Autonomous °
Landing

Planetary
Navigation

[18, 90-105]
[106-111]

[112-120]

[121-127]

[106, 128-134]

[29, 120, 135-141]

[23, 142-149]



Table 6 gives the summary of Al approaches in spacecraft operation. Some of the
main applications of intelligent systems in the near-earth region and multi-planetary
exploration in outer space are,

e Al for remote sensing data analytics.

e Satellite Trajectory Planning and Collision Avoidance using Al

o GSatellite Health Monitoring using Al

e GSatellite Communication using Al

e Al for Deep Space and Multi-Planetary Exploration
3.3.1 Al for Remote Sensing Data Analytics

Every minute of the day, satellites produce thousands, if not millions, of imagery and
several gigabytes of data daily. Weather and ambient pictures and photographs down
to inches of the globe are all captured in these images. The autonomous capturing of
Earth's photos poses a number of issues and possibilities where Al can assist. Without
Al humans are primarily responsible for interpreting, comprehending, and analysing
imagery [89]. By the time a human arrives around to evaluate an image, the satellite may
have moved back to the same place, requiring more refinement of the image analysis.
Al-enabled recognition gives the researcher much power when it comes to image
analysis and reviewing the images produced by satellites. On the other extreme, Al can
analyse images as they can be captured and identify whether they have any
abnormalities [94-96]. The use of Al to collect Earth's images also eliminates the need for
a lot of communication to and from Earth to analyse images and decide whether or not
a new one should be acquired. Al saves computing power by minimising

communication, lowering battery use, and accelerating the image collection process [95].
3.3.2 Satellite Mission Planning and Collision Avoidance Using Al

Satellites are complex pieces of infrastructure that must be operated in order to
function. Many issues could develop, ranging from equipment malfunctions to crashes
with other satellites/debris. Al is used to maintain track of satellite health and ensure it
continues functioning properly. Al can keep track of sensors and equipment in real-time,

sending out alarms and, in some situations, taking corrective action. SpaceX, for



example, utilises Al inside its systems to keep its satellites avoid colliding with other
space objects [45, 150]. Al is also utilised to control satellite navigation and other
spacecraft. Al can analyse the patterns of many other spacecraft, planets, and space junk.
Once Al has discovered the patterns, the spacecraft's path can be changed to avoid

collisions [121, 123, 125, 126, 151, 152].

3.3.3 Satellite Health Monitoring Using Al

Satellites have intricate pieces of equipment in their subsystems that are required for
operation. Malfunctions in this equipment have the potential to lead to several on-orbit
failures, such as attitude control malfunctions, battery and solar-array failures [153].
These failures cost the satellite industry billions of dollars. To ensure reliable and safe
operations, Al can monitor the health of all satellite subsystems. Satellite operations
involve human fault identification during routine inspections using on-board logbooks
and minimal surveillance. This arrangement is insufficient for sophisticated missions
incorporating intelligent satellite systems like DSS. As a result, the satellite system's
reactivity and functionality, particularly in fault detection, are substantially improved.
Concerning the other essential subsystems, an autonomous Al-based satellite health
monitoring and management system might be entrusted with monitoring and
predicting their health. Automatic monitoring of all satellite subsystems eliminates the
need for human inspection, and any detected defect or imminent malfunction promptly
alerts the ground station, redistributing satellite system resources to mitigate its impact.
After the warnings, an operator can intervene and take control. Offline analytical
techniques could be used to obtain further information and resolve the detected issue.
So that only non-nominal situations necessitate operator intervention, the “human-on-
the-loop” concept is promoted. Increased on-board autonomy would allow for more
complicated satellite application missions and reduce human operator workload [154].
3.3.4 Satellite Communication Using Al

In addition to keeping spacecraft operational, it can be challenging to communicate
between Earth and space. Interference with other signals and the environment depends
on the state of the atmosphere. A satellite may have a lot of communication difficulties

to overcome as a result of uncertainties in the environment. Al is now being utilised to
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control satellite communication in order to circumvent any transmission issues. These
Al-enabled technologies can determine how much power and frequencies are needed to
send data back to Earth or other satellites. The satellite does this regularly with an on-
board Al to allow signals to pass through as it travels through space [155-159]. Beam-
hopping, anti-jamming, detecting ionospheric scintillation, network traffic forecasting,
channel modelling, telemetry mining, interference management, remote sensing,
behaviour modelling, space air-ground integrating, and energy management are just a
few of the applications where Al has shown promise. Al should be used to produce more
effective, reliable, consistent, and high-quality communication systems in the future

[109].
3.3.5 Al for Deep Space and Multi-Planetary Exploration

Even satellites on other planets or in interplanetary space, like the Curiosity rover
currently on the red planet, use Al to operate. The Mars rover is using Al to assist it in
navigating the planet. The computer may make several modifications to the rover's
trajectory every minute. The Mars rover's technology is quite similar to that used by self-
driving automobiles. The key difference is that the rover should cross more challenging
terrain without having to worry about other vehicles or pedestrians. The rover's
computer vision systems analyse the difficult terrain as it traverses. If an issue with the
terrain is detected, the autonomous system adjusts the rover's navigation or modifies its

trajectory to avoid it [77, 129-131, 160].

3.4 Al Techniques

In contrast to natural intelligence, Al is the study of intelligence as manifested in
computer systems and observed in people and other lifeforms [161]. To be considered
intelligent, a computer system must be capable of making reasonable judgments based
on experiences and observations of the world (or a simplified model of it) and a set of
objectives to be met. In space and satellite technology, Al holds a lot of promise.
Spacecraft systems are complex and costly pieces of technology to assemble. There are
repetitive and complex activities inside the manufacturing facilities of spacecraft that
must be carried out with extreme precision and typically in clean rooms with limited
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exposure to potential contamination. Robotics and Al-enabled technologies are utilised
to help with the production process and take over some of the activities humans now do
to lessen their workload. By applying suitable Al techniques, satellite systems can make
real-time decisions without explicit instructions. A plethora of research coupled with
many tests is underway to implement Al-based technology in space systems, with
various projects beings carried out [77, 79]. Some of the most commonly used Al

methods are shown in Figure 24.

3.4.1 Based on Task Achievement

Al can be classified into two distinct types, strong Al and weak Al, based on the
given task. Strong or general Al is concerned with the replication or outperformance of
human brains, including sensitivity, consciousness, mind, and feelings. On the other
hand, weak or applied Al focuses on completing a single task or resolving a specific
problem. Because most research in the space domain is limited to weak Al, this research

focuses only on applied Al

3.4.2 Metaheuristics

Most conventional optimisation methodologies use a deterministic rule to switch
from a single point in the decision hyperspace to another. The main disadvantage of this
method is the possibility of converging on a local optimum. Since stochastic algorithms
are designed to find the best global solution to problems with multiple local minima
(usually nonconvex problems), they typically overcome this issue. There are two kinds
of stochastic algorithms, namely heuristic and metaheuristic, though the distinction is
minor. Stochastic optimisation is sometimes the second-best way to get a solution.
Conventional techniques such as linear programming and specialised approaches that
take full advantage of problem understanding should be investigated first. On the other
hand, classical and specialised methods are often naive, whereas heuristic and
metaheuristic paradigms can be utilised for various conditions. In addition, the primary
value of heuristic and metaheuristic paradigms is their robustness. In this context,

robustness refers to an algorithm's ability to solve a wide range of problems, and even
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multiple sorts of problems, with only slight changes to account for each problem's
specific properties. A stochastic algorithm typically requires the length of the problem-
solution vectors, certain information about their encoding, and an evaluation function,
with the remaining programme unchanged. A heuristic algorithm is a strategy that uses
a rule (or a set of rules) to find (or try to find) appropriate solutions at a low cost of
computing. Theoretically, a heuristic provides (eventually) a decent answer with
relatively little effort, but this does not ensure optimality. Heuristics are a
straightforward way of showing which of many options appears to be the best [162, 163].
The so-called metaheuristic algorithms are an extension of heuristic algorithms. Meta
signifies "beyond" or "higher level," and metaheuristics outperform simple heuristics.
Heuristics use problem-specific information to identify a "good enough" solution to a
given problem, but metaheuristics, such as design patterns, are broad algorithmic
notions that may be applied to various problems. Importantly, all metaheuristic
algorithms use randomization and a trade-off between local and global search. Because
there are no widely accepted definitions of heuristics and metaheuristics in the research,
many people describe them interchangeably. On the other hand, recent trends have
labelled stochastic algorithms with randomization and local search metaheuristics as
stochastic algorithms with randomization and local search metaheuristics. Transitioning
from alocal to a global search using randomization is a good idea. As a result, practically
every metaheuristic algorithm strives to be appropriate for global optimisation [164].
The following features are shared by almost all metaheuristic algorithms [165]:

e They are nature-inspired, relying on physics, biology, or etiology principles,

e They use stochastic components (incorporating random variables),

e They do not use the objective function’s gradient or Hessian matrix. And

e They have multiple parameters that must be adapted to the nature of the problem.

Metaheuristic optimisation algorithms can solve complex problems over several
iterations. Because of their inherent versatility and simplicity, metaheuristic algorithms
have recently attracted a lot of attention. Metaheuristics can be broadly classified into
four different types; the first one is ancient-inspired, mainly based on the Giza pyramid

construction. Mutation Reproduction, Recombination, and selection are examples of
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evolutionary processes that have influenced evolutionary algorithms. These algorithms
are based on the survival fitness of candidates in a population (i.e., a set of solutions) for
a specific environment. Population-based metaheuristics aim to construct a solution that
combines components of good solutions. Trajectory-based metaheuristics are based on
the idea of developing a solution and iteratively refining it (moves). The reader is
referred to as Refs. [162-170] to get a complete understanding of these concepts. A
population-based metaheuristics approach, i.e., nature-inspired, as indicated in Ref.

[171] are distinguished by,

e Their search uses a population of points (potential solutions).
e Relying on direct fitness data rather than function derivatives or other similar
details
e Using probabilistic, rather than deterministic, transition rules.
Population-based algorithms adopt a similar approach, regardless of the applied

paradigm and follow from the algorithm below,

1. Initialise the population.
2. Fitness is calculated for each individual in the population.
3. Produce a new population based on rules that strictly depend on each
individual's fitness.
4. Repeat steps 2—4 until a condition is met.
Two of the most popular metaheuristic approaches are described in detail in the

following sections.

3.4.2.1 Ant-colony optimisation

Ant Colony Optimisation (ACO) is a well-known bio-inspired method for solving
combinatorial optimisation problems. [172]. For ACO algorithms, real ant colonies act
as a reference of inspiration. Ants foraging behaviour has an impact on ACO. At the
centre of this action is ant communication via chemical pheromone trails, which helps
them to locate quick paths among their nest and food sources. Real ant colonies have

this feature, which is employed in ACO algorithms to address discrete optimisation
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issues. In ant colony optimisation algorithms, for instance, an artificial ant is a relatively
simple agent that searches for good solutions to a stated optimisation issue. To employ
an ant colony approach, the optimisation issue must be transformed into the problem of
finding the shortest path on a weighted graph. The ant colony optimisation algorithm is
demonstrated using pseudocode. To identify the optimal option, an artificial ant was
developed. As the initial stage in solving a problem, each ant creates a solution. In the
second stage, the trails discovered by several ants are compared. The path value, or

pheromone, is updated in the third stage [173-175].

Initialise the system parameters
while termination condition not met, do
Construct Solutions
Apply Path Search
Update Pheromones
repeat

end procedure
When all of the ants have completed their solution, the trails are usually altered by
raising or lowering the level of trails correlating to moves that were part of "good" or

"poor" solutions, respectively. A global pheromone updating rule is as follows:

m
Ty &« (1= p)Tyy + Z Arl,gy 1)
k

where 7,, represents the amount of pheromone deposited for a state change xy, p
represents the pheromone coefficient, m represents the number of ants, and
At§, represents the amount of pheromone deposited by k" ant, which is usually given

for a Travelling Salesman Problem (TSP) problem (with moves corresponding to arcs of

the graph) by
Q : L
I if ant k uses curve xy in its tour
Atyy =Ly )
0, otherwise

where Q is a constant and L, represents the cost of k" ant’s tour.

55



Figure 25: Al techniques in aerospace applications.



3.4.2.2 Particle Swarm Optimisation

Particle Swarm Optimisation (PSO) is one of the most extensively utilised
metaheuristic algorithms, as evidenced by a series of research [176-183]. PSO is a swarm
intelligence method that is based on numerical forms and requires a straightforward
implementation. PSO's interaction with nature and societal issues is its most intriguing
feature. The algorithm was developed to imitate flocking birds or swimming fish. In
PSO, members of a population are candidate solutions to the problem, and the cost
function determines the solution's quality. As is the case with most optimisation

algorithms, limiting the search domain size improves calculation times.

1. The global version of the PSO converges quickly, but when the problem is extremely
challenging, i.e., the cost function being optimised is not convex, it may become stuck
in local minima (results can differ based on population initialization or exploration
ability).

2. The swarm's exploration capabilities will improve with the local version of the PSO,
but the computational convergence duration will be greater than with the global
approach.

3. The population-based optimiser is randomly initialised with a collection of potential
solutions (particles) and then iteratively searches for an optimal solution by moving
the particles inside the problem space. The swarm is made up of p particles that
represent different problem solutions in the search space. Each particle's position

proceeds as follows:

xlic+1 = xlic + Vlic+1 3)
where x is the location of the it" particle at time k increments, and v is the

velocity represented by
Vier = Vi + 011 (Pl = x0) + ez oo (B — xk) (4)

where r; and r, are uniformly distributed random numbers in the range [0, 1],
and c; and c, are parameters equal to 2 [182] and represent the cognitive and social

scaling parameters.v, does not refer to a velocity in the conventional sense, i.e., v, #



dxy
dt

, but rather to the rate at which the location per generation shifts. fi,s and £, . as

best fitness estimate for the i" particle and global solution correspondingly. The

pseudocode for PSO is given below.

1. Initialization

(a) Set constant k4, , ¢ and c,
(b) Initialization of particle positions in the problem space x§ for p particles

(c) Initialization of particle velocities in the problem space v{ for p particles

(d) Setk=1

2. Optimisation

(a) Evaluate the function value f;

(b) If i < fyese then fiese = fi, Dic = xi

() If fi < fyl then fil o, = fi, bl = xi

(d) If the stopping criterion is satisfied, go to step (c)
(e) Particle velocities are updated.

(f) Particle positions are updated.

(g) Timeisupdated k =k +1

(h) Go to step 2(a)

3. Termination

Explicit integration of the Ordinary Differential Equations (ODEs) for attitude and
vehicle dynamics using the Dormand-Prince Runge-Kutta technique is possible thanks
to the PSO algorithm's excellent computational parallelisation dependability and
resilience [184] can be used, while implicit integration methods [185] may be more

effective.

3.4.3 Based on Learning

ML approaches is a subset of Al techniques that are based on learning which is a type
of data analysis that allows for the creation of analytical models to be automated. It is a

branch of Al based on the idea that computers can learn through data, identify patterns,
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and make judgments with small or no human intervention. An ML process is shown in
Figure 26. A model that an application can query is trained based on a data or knowledge
base. Regardless of suitable conditioning, data selection, or overfitting, the model
improves with a larger database and longer durations of training. If the model can learn

in the field, the application can add data to the knowledge base during runtime and train

the model with it.
L
Prediction
A
A 4
Training - . o .
Data Dataset > Algorithm Evaluation

A

data

Production

Figure 26: Generalized machine learning process.
A brief review of ML methods and an exposure to commonly used domain terms are
provided in the preceding s sections. Different techniques for classifying ML methods
have been taken in the literature —the most prevalent taxonomy in which techniques are

classified according to the type of learning system used.
3.4.3.1 Supervised Learning

The algorithm is supplied with labelled training data in the form of labels that are
included in the desired result in supervised learning. During the training phase, a model
is constructed that specifies the link between the training data points' features or
characteristics and the labels that belong to them. The model would then be put to the
test to see if it would generalise to new information points or 'incidents'. Before being
deployed to service, trained models were fine-tuned based on the assessment findings
to create a model that extrapolates well with the new data. In most supervised
approaches, the learning method keeps track of the difference between the model

prediction and the label and uses it as an error term to drive model updating [21, 84].
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3.4.3.2 Unsupervised Learning

The training data provided to the algorithm is unlabelled in unsupervised training,
and the relationship model is created solely on the data attributes. Unsupervised
learning methods include clustering, dimensionality reduction approaches, and

association rule-learning methods [21, 84].

3.4.3.3 Semi-supervised Learning

Semi-supervised learning is an ML technique that involves training using a small
amount of labelled data and a large amount of unlabelled data. Semi-supervised
learning is a sort of learning that falls somewhere between unsupervised (in which there

is no labelled training data) and supervised learning (with labelled training data) [84].

3.4.3.4 Reinforcement learning

In reinforcement learning, a model has been trained to learn a behavioural policy
through many simulations iteratively, called the training set. Through trial and error, the
agent learns how to attain a goal in an uncertain and potentially complex environment.
In reinforcement learning, Al is presented with a game-like scenario. The machine uses
the method of trial and error to find a solution to the problem at hand. Al gains either
rewards or penalties for the acts it takes to persuade the system to perform the actions
the programmer desires. Its aim is to increase the overall award. Reinforcement learning
is a type of supervised learning in which an agent learns to do the best set of actions or
rules to achieve a user-defined reward function, and the architecture is shown in Figure
27. To find the optimal system settings autonomously, sophisticated learning and
decision-making must be used by this intelligent space system, and the encouraging

solution is to use ML [186].
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<+——Reward/Penalty

—CQObservations
Figure 27: Reinforcement Learning Architecture [84].

3.4.3.5 Deep Learning

Deep learning is a subfield of ML that focuses on algorithms called Artificial Neural
Networks (ANN). These networks are modelled after the structure and function of the
human brain. The processing units are ANNSs that are composed of inputs and outputs.
ANN is a kind of ML technology that is inspired by biology and works in the same way
as the brain (loosely). A brief overview of ANN is provided to highlight the distinctions
between networks as well as the scenarios for which they can be used. The perceptron's
architecture is depicted in Figure 28 (a). The input signals to the perceptron are scaled
and added using a sequence of weights (typically randomly initialised prior to the
learning process). The weighted total is passed via an activation function (typically non-
linear) to generate output. A number of structures can benefit from the learning process,
also known as iterative weight updates. Backpropagation is one of the most extensively
used methodologies in supervised learning systems, as seen in Figure 28 (b). The
difference between the output and the desired output is used as an error term to

repeatedly change the weights. Although a single perceptron has limited applications,
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cascaded perceptron combinations could be used to learn complex connections between

system/sub-inputs and outputs. The input-output model is really a weight matrix that is

iteratively trained and initialised. Figure 28 depicts a layered feed-forward perceptron

network. When comparing two neural networks, there are often many points of

difference [21, 84]. These are based on the following,

Network Topology: This comprises the number of nodes in a network and their

structure. The topology and the constituent nodes also influence the procedures of

learning and recall. In addition to the simple perceptron mentioned earlier, other

node forms in Figure 27 include [84]:

o

Recurrent cells: Take input and feedback from previous node outputs as well as
from neighbouring nodes. The memory capacity allows for the estimation of the
temporal state and time-series forecasts.

Memory Cells: Memory cells in Long Short-Term Memory (LSTM) networks are
similar to recurring cells in LSTM networks, but they have three gates: input,
output, and forget gates that interrupt, permit, or discard data propagation in the
network to solve the explosive gradient problem that plagues traditional
recurring neural networks.

Update/Reset gate: These cells are identical to memory cells but with update and
reset gates, as opposed to memory cells' input, output, and forget gates.
Convolution kernels and pooling: These cells are the most essential components
of co-evolutionary neural networks, and they are primarily employed in image
processing and computer vision applications. They work by parsing; rather than
using all pixels simultaneously, they employ discrete parts of the input image at

each epoch.

Learning algorithm: This algorithm is used to update the network's weights. The

most extensively used learning algorithms are:

o Hebbian learning: This rule of weight update is based on the rule of Hebb, which

is usually applicable to most unsupervised learning algorithms. When both

neurons have strongly correlated outputs, the synapse (weighted connection)
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between the two neurons is enhanced. For a synapse linking neurons i and j, the
weight update rule is mathematically modelled as:

wij(n + 1) = wy;(n) + nx;(W)x;(n) ©®)
Where 7 is the coefficient of the learning rate, we can see that an increase in

synapse weight is proportional to the product of each neuron's output.

Competitive learning: This is another concept of unsupervised weight updating
with the principle of 'winner takes all":

Wi = {n(xj — ij), if neuron k wins ©)
k] 0, otherwise

Error correction learning: This is a supervised method of learning where the
output goal value is known, and the network iteratively changes weights to

converge to the desired output. The rule for updating the weight is as follows:

Aij = nekxj (7)

Where e, = dy — yxthe error term or discrepancy between the dj mark and yj

network output. This method is the origin of the famous algorithm for gradient descent,

widely used in supervised algorithms for learning. In fact, most backpropagation

learning optimisers available today are based on this principle. Notable examples

include AdaDelta, Adaptive Moment Estimation (Adam), RMSProp, Adagrad,

Momentum, Gradient Descent (GD) and its variants Batch GD, and Stochastic Gradient

Descent (SGD), Mini-Batch Gradient Descent. Among those, Adam is the optimiser to

use to train a neural network in less time and with more efficiency.

Aij = Gf(T' - 9])6” (8)

Recall: This refers to retrieving the data stored in the network after being qualified.
Feedforward linear combiners (of n neurons) followed by a non-linear thresholding

function are the most common recall technique:

yj =) xiwy) ©)

Whereas the recall equation is of the type, for a network with feedback loops:
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5(t+1) = (1—a)x(t) + ﬁz £ (®)wi; + ag

(10)

Table 7 describes typical ANN architectures that are classified based on mechanisms of

learning and recall.

Table 7: ANN types are differentiated by learning and recall processes [84].

] Walght updation. 14

Learning/Recall Feedback Feedforward
e Adaptive Resonance e Fuzzy Min-Max Classifier
Theory ¢ Kohonen's Self-Organizing
e Bi-directional Associative Feature Map
Unsupervised Memory ¢ Linear Associative memory
P ¢ Boltzmann Machines
o Hopfield Networks
Principle Component
Networks
o Adaline
e Convolutional Neural
e Gated Recurrent Unit Network
¢ Long Short-Term Memor *  Multi-layer perceptron
Supervised & y e Neocognitron
Network e Perceptron
e Recurrent Neural Network e Radial Basis Function
Network
e Reinforcement learning
W 2] L] L)
e | o
S % : | S

& = (dy —m)

Awy =1 ek

QY

(a)

Figure 28: (a)The Biological Neuron Perceptron Model. In an iterative feedback loop, weight adaptation is

incorporated; (b) The perceptron multilayer network and the weight matrix map the outputs to the inputs

[84].
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Figure 29: Neural Network Category [84].
Convolution Neural Networks

Convolutional Neural Networks (CNN) are regularised versions of multilayer
perceptrons. Such perceptrons are typically fully connected networks in which each
neuron in one layer is connected to all neurons in the next layer [99]. CNN is generally
used for segmentation, classification, image processing, and other auto-correlated data
processing. They are also utilised for speech recognition. Convolution is the process of
applying a filter to an input signal as it is being played back. When looking for specific
elements in a picture, it may be more productive to look at little sections of the image
rather than the entire image at once. Among the most common applications of CNNss is
image classification, such as discriminating between satellite images that feature

roadways and those that do not. The use of CNNss for other standard functions, such as



image segmentation and signal processing, is also a good fit for them. Each layer of a
CNN model learns a collection of convolutional kernels throughout the training
operation, which is essentially what happens during the training phase. During the
deployment of the model, the trained kernels extract spatial information from the image
and use these features to make inferences. Each convolutional layer is made up of a
collection of filters known as convolutional kernels, which work together to create the
final result. Filtering is accomplished by applying a subset of the input pixel values to a
matrix of integers that has the same dimensions as the kernel [94, 97, 187, 188]. The

operation of the convolutional kernel is depicted in Figure 30.

Figure 30: Operation of the convolutional kernel.

Recurrent Neural Networks

Recurrent neural networks (RNNs) keep track of previous outputs at each epoch by
integrating feedback loops. RNNss are better at learning temporal relationships in data
sequences than CNNs, which are meant to learn spatial patterns [84]. Thus far, the
CNNis are classic feed-forward networks in which activations travel from the input to
output layers at a predetermined rate. The network output is distinct from the outputs
of previous timesteps at any given timestep. The detailed classification is illustrated in
Figure 29. There is no sharp divide between these subtypes, even though the concepts
seem to vary. The field of data-driven Al has a wealth of valuable and adaptable tools
that can be used in various applications with minimal enhancements. Table 8 presents a
range of representative instruments and their respective high-level conceptual

diagrams.
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Technique

Association
Rule Learning
Algorithms

Bayesian
Algorithms

Classical
Artificial
Neural
Networks

Clustering
Algorithms

Decision-trees

Deep Neural
Networks

Dimensionality
reduction

Table 8: A brief overview of the most widely used Al techniques [21].

Conceptual Illustration

]

[/ﬁ@—'[uu

Description
Association rule learning algorithms derive the rules that
most accurately describe the observed relationships
between variables in the dataset. Valuable and essential
associations in large multi-dimensional datasets can be
discovered through the formation of these rules. The
methods in this class of algorithms include: (1) Fuzzy
inference; (2) Adaptive Neuro-Fuzzy Inference System
(ANFIS)
Bayesian methods tackle regression and classification
problems by explicitly applying Bayes Theorem. The
methods in this class of algorithms
include: (1) Multinomial Naive Bayes; (2) Averaged One-
Dependence Estimators (AODE); (3) Bayesian Network
(BN); (4) Naive Bayes; (5)Gaussian Naive Bayes;
(6) Bayesian Belief Network (BBN)
Bio-inspiration from the structure and functioning of
naturally occurring neural networks has been a significant
factor in the development of Artificial Neural Network
models. Essentially, they can be described as a type of
pattern matching algorithm widely used for classification
and regression problems. The methods in this class of
algorithms include: (1) Multi-Layer Perceptron (MLP);
(2) Radial Basis Function Network (RBFN); (3) Back-
Propagation/Feedforward (BPNN/FFNN).
Clustering is the process of grouping a collection of objects
such that objects in the same category (called a cluster) are
more related (on the basis of a single or multiple metrics) to
each other than to those in other groups. The methods in
this class of algorithms include: (1) k-Medians; (2) k-means;
(3) Hierarchical Clustering; (4) Expectation Maximisation
(EM)
Trained decision-tree models use multiple input variables
to predict target variable values. The source dataset, which
constitutes the root node of the tree, is divided into subsets
containing the successor children. A set of splitting rules
are built based on classification features. The methods in
this class of algorithms include (1) Conditional Decision
Trees; (2) Iterative Dichotomiser 3 (ID3); (3) Chi-squared
Automatic Interaction Detection (CHAID); (4)MS5;
(5) Classification and Regression Tree (CART); (6) C4.5 and
C5.0 (different versions of a powerful approach);
(7) Decision Stump
Deep Neural Networks are an extension of Artificial Neural
Networks that exploit the availability of abundant
computational resources. They are characterized by a large
number of hidden layers in order to deal with highly non-
linear problems. The methods in this class of algorithms
include: (1) Stacked Auto-Encoders; (2) Deep Boltzmann
Machine (DBM); (3) Deep Belief Networks (DBN).
Dimensionality reduction methods essentially exploit the
inherent structure in input datasets to extract the most
influential variables. This proves helpful when visualizing
high-dimensional data or simplifying data that can
subsequently be used in a supervised learning method. The
methods in this class of algorithms include: (1) Principal
Component Analysis (PCA); (2) Partial Least Squares
Regression (PLSR); (3) Principal Component Regression
(PCR); (4) Multidimensional Scaling (MDS); (5) Flexible



Discriminant Analysis (FDA); (6) Linear Discriminant
Analysis (LDA); (7) Quadratic Discriminant ~ Analysis
(QDA); (8) Mixture Discriminant Analysis (MDiA)

Ensemble methods are models built using several weaker
models that are separately trained and whose predictions
are merged to boost the accuracy of the overall prediction.

Ensemble . The methods in this class of  algorithms
methods include: (1) AdaBoost; (2) Gradient Boosting Machines
(GBM); (3) Boosting; (4) Gradient Boosted Regression Trees

':T:j (GBRT); (5) Stacked Generalization (blending); (6) Random

Forest; (7) Bootstrapped Aggregation (Bagging)
Related to Clustering Algorithms. Each instance of input
data is compared against a database using a similarity
measure to find an optimal match and classify it into
- " groups. The methods in this class of algorithms
include: (1) k-Nearest Neighbour (kNN); (2)Learning
Vector Quantization (LVQ); (3) Locally Weighted Learning
- (LWL)
The relationship between variables is modelled through a

Instance-based
algorithms

curve-fit which is refined iteratively using error
Regression *
.. this class of algorithms include: (1) Ordinary Least Squares

measurements in the model predictions. The methods in

Regression; (2) Linear and Nonlinear regression

An extension to all ML methods wherein models are

penalized on their complexity to support generalization.

Regularization y o The methods in this class of algorithms include: (1) Ridge
M w Regression; (2) Least-Angle Regression (LARS); (3) Elastic

Net; (4) Least Absolute Shrinkage and Selection Operator

(LASSO)

While AI has been used successfully in space, it is still constrained to offline data

processing but has not yet been utilised fully “on edge” within spacecraft.

Table 9 shows some algorithms and applications that could be developed and

evaluated for future "AI on-board" missions. For more information, the reader

should consult Ref [189-191].

Table 9: A brief overview of Al on-board missions. Adapted from [189, 191].

Missions Applications

Debris removal, i. Feature extraction.
Docking, and In- ii. Identification against 3D mesh model.
orbit servicing: iii. Obstacle avoidance.

i. Band co-registration for push-broom multispectral and

hyperspectral images.

ii. Change detection in time series of Earth Observation images,
various resolutions.

iii. Cloud detection algorithms (F-mask or Sen2Cor, however, the
whole Sen2Cor is quite big, maybe some essential parts of it).

iv. Fire/flares detection.

v. Image compression (jpeg/CCSDS), (preferably Earth Observation-
like picture).

EO missions (to be
scaled to mission
size, criticality, and
duration)
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Generic Imaging
Instrument
calibration

On-board platform
imagers processing

Planetary
Exploration
(Autonomous
Landing, Robotic)
Reconfigurable
platforms/on-board
telemetry analysis,
FDIR

Satellite guidance
applications

New missions that
are possible credits
to Al

3.5 Conclusion

Vi.
Vii.
7iii.

iX.

xi.

Xii.

dii.

iv.

ii.
1ii.
iv.

V1.

ii.
iii.

ii.

ii.
1ii.
iv.

ii.
1ii.
iv.

vi.
Vii.

ii.
ii.
iv.

Increase resolution of all Sentinel-2 bands to 10m/pixel.
Monitoring of forest distribution.

Monitoring of ice at poles.

Open sea objects detection and monitoring.

Reconstruction involving multiple Images alignment using SURF
equivalent, like BRISK or ORB (SUREF is patented) and RANSAC.
Super-resolution (increase resolution using series of images)
through compressive sensing methods, like over-determined
equations.

Supervised NN Image Classification of Multi-Spectral Images
Based on Statistical Machine Learning (TBD if learning speed
should be measured as the benchmark as well).

Template matching (scale and rotation invariant) in Earth
Observation-type image (e.g., from Sentinel-2).

Vessel detection/identification, integration, and data fusion with
AIS receivers - identification of piracy.

Active / adaptive optics: wave front analysis + actuation.
Auto-exposure.

Flat field dynamic correction.

Focal plane adjustment and calibration.

Geometric calibration.

Top of Atmosphere calibration.

Identification of fast-moving meteoroids/disturbance/radiation.
Star tracing and multiple sensor data fusion.

Orbital propagation.

Camera/LIDAR fusion processing.
Identification of craters, boulders, obstacle avoidance, automatic
path discovery.

Adapt platforms to change in requirements or new standards.
Autonomous failure prognostic and detection.

Autonomous Safe mode management.

Al-based FDIR.

Autonomous AOCS management for constellations.
Autonomous collision avoidance.

Autonomous navigation.

Autonomous pointing and/or acquisition (AOCS-in-the-loop).
Payload-in-the-loop visual-based navigation.

SDR / Beamforming / Adaptive Coding and Modulation.
Smart FDIR / failure prediction / smart HKTM.
Reconfigurable science (several missions with the same
Hardware/ Instrument).

Servicing / Non-cooperative approach and rendezvous.
Debris detection and removal.

On-board feature extraction/mapping. Raw data downlink only
On-Demand basis or Added-Value basis.

Rapid alert: fire, flood, earthquake detection.

Recent developments in the research of human-machine interaction were

discussed in this chapter. Subsequently, by using the human-machine cooperative

relationship, it may be possible to optimise the benefits while limiting the potential

safety risks of utilising Al technology. For decades, the CHMI? community has

used a human-centred approach. The current generation is transitioning from
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human-centred design to human-centred Al, which is not a novel idea. While a
technology-centric approach has dominated the development of Al technology,
academics have studied a range of human-centred ways to address the particular
difficulties highlighted by Al technology. A solid and comprehensive iDSS
solution for space operation is only anticipated through the tailored integration of
Al-based approaches. Depending on variables like available sensor data, failure
modes/mechanisms, and overall system behaviour, the various methodologies for
evaluating the performance of each mission element will change. Nonetheless, it
is evident that these methodologies will increasingly rely on AI/ML techniques to

facilitate TASO in an environment that is continually changing.
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Chapter 4

Disaster Management

This chapter discusses the applicability of iDSS for disaster management, with a
particular focus on the management of wildfires. As a case study Australian bushfire
that occurred in 2019 is considered as a case study. In addition to that, the development
of an Al-based trusted autonomous system for on-board data processing to endow

TASOQ is presented in this chapter.

4.1 Wildfire

Climate change and other environmental issues associated with human activities
have recently received much attention in the scientific literature [240]. Such issues
include extreme weather events [241], droughts [242], sandstorms [243], rising sea levels
[244], tornados [245], volcanic eruptions [246] and wildfires [247]. Wildfires decimate
global and regional ecosystems and cause a lot of damage to structures, injuries, and
deaths [248, 249]. Due to this, it is becoming increasingly important to find fires and keep
track of their type, size, and effects over large areas [250]. To avoid or lessen these effects,
early fire detection and fire risk mapping are used [251]. In the past, wildfires were
mostly found by people monitoring wide areas from fire observation towers and using
simple devices like the Osborne fire finder [252]. Nevertheless, such methods were not
very accurate, and their effectiveness could be affected by human fatigue accumulated
during long observation periods. On the other hand, alternative sensors designed to
detect gasses, flame, smoke and heat emissions usually need extended measurement
times for molecules to approach the sensors. Also, since the range of these sensors is
small, wide areas can only be covered using a large number of sensors [253]. Rapid
advancements in object recognition, DL, and remote sensing have given us new ways to
find and track wildfires. New materials and microelectronics have also made it easier
for sensors to find active wildfire [254, 255]. There are three primary classifications of
extensively used technologies that can identify or observe active fire or smoke conditions

in real or near-real time, namely terrestrial, aerial, and satellite systems. These
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technologies are typically incorporated with visible, infrared, multispectral, or
hyperspectral sensors; once the data have been collected, they can be processed by
applicable Al algorithms, usually a ML methodology. These techniques rely on either
extracting hand-crafted features or on robust Al methods in order to detect wildfires in
their earliest stages and to simulate how smoke and fires behave [254, 256, 257]. The

different types of fire detection methods are shown in Figure 31.

Fire detection
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Figure 31: Fire detection methods.
This research focuses on satellite-based fire detection by including appropriate Al
approaches for on-board wildfire computation and analysis based on section 4.3.2
suitable Al-algorithm and EO data are employed. Before proceeding, a detailed
discussion of the satellite-based wildfire detection approach is provided. There have
been numerous research efforts to identify wildfires from satellite imagery in recent
years, mostly as a result of the vast number of satellites that have been launched and the
drop in associated costs. Specifically, a constellation of satellites (E.g., Planet Lab) was
developed for EO [258]. Satellites can be generally grouped into different categories
based on their orbit, each with its own advantages and disadvantages. Table 10 shows

the most significant categories of the orbits.
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Currently, remote sensing satellites take photos of the earth, and the images are
downlinked to the ground as soon as the satellite contacts the ground station network.
From here, images can be loaded into machines that extract various forms of actionable
knowledge, such as wildfire. Downloading imagery is an O(n?) problem usually
provides significant latency when considering critical operations for extreme events
management. If time is of the essence for detecting ignitions and thus speeding
suppression response, it would be much quicker to have the fire mapping analytics right
on board the satellite and only download vector data (either point or polygon) of the fire
with the data already flagged to be forwarded to the appropriate wildland fire
dispatchers (based on location). Having the coordinates of the event would allow
satellite managers or even the satellite itself to prioritize the transmission of the imagery
associated with the Al-generated wildland fire event. The mission architecture would be
even more effective when considering a constellation of satellites adequately designed
to manage extreme events. Having Al on-board of the satellite, data processing can be
performed in real-time, and when a wildfire is spotted from one satellite, it will
communicate this information to the other satellites in the constellation, thereby
enabling TASO. The most important part of this is to show that the data can be processed
and shared with the help of the Al that is on-board, and that only the information that
can be used is downlinked rather than all the data. Preliminary analyses and results of a

mission concept based on DSS for wildfire management is reported in [259].

Table 10: Satellite categories.

Orbit Altitude Advantages

e The satellite does not move at all relative to the

Circular orbit with an altitude
ground,

Geostationary Earth Orbit (GEO)

of 35,786 kilometres and zero
inclination

Providing a constant view of the same surface area
High temporal resolution

Low Earth Orbit (LEO)

Altitude of 2000 km or less

Requires the lowest amount of energy for satellite
placement.

Provides high bandwidth and

Low communication latency

Sun-Synchronous Orbit (SSO)

Nearly polar orbit that passes
the equator at the same local
time on every pass. Typical
Sun-synchronous Earth orbits
are 600-800 km.

Satellite will always observe the same scene with
the same angle of illumination coming from the
sun.

Have high spatial resolution
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The majority of low Earth polar SSO orbits of EO satellites, with precise altitude and
inclination estimations to guarantee that the spacecraft every time observes the very
same scenario with the same angle of light from the Sun and that on each pass, the
shadows appear the same [260]. The spatial resolution of sun-synchronous satellite data
is high, but the temporal resolution is low (LandSat-7/8 [261] has an eight-day repeat
cycle, whereas Sentinel 2A/2B [262] has a two-to-three-day repeat cycle at mid-latitudes).
In contrast, GEO satellites have lower spatial resolution contrasts with their high
temporal resolution. As a result, they are ineffective for detecting active wildfires in real
time; instead, they are better suited for much less time-sensitive tasks such as estimating
burnt areas [254]. EO satellite systems have been able to find wildfires because they can
see a large area. Most satellites that take pictures of Earth use multispectral imaging

sensors and are either in a GEO or Sun-Synchronous Orbit (SSO) region.

Table 11: EO satellites and their characteristics. Adapted from [254].

(Satellite)-Sensor

Spectral Bands

Access to the
Data

Spatial
Scale

Spatial Resolution

Specs/Advantages/Limitations

Accuracy
Range

Terra/Aqua- 36 (0.4-14.4 Reglst'r.atlon 0.25 km (bands 1-2) Easily accessible, limited spatial 92.75%—
MODIS um) Required Global 05 km (bands 3-7) resolution, revisit time: 1-2 days Barth 98.32%
(NASA) 1 km (bands 8-36) ’ ’ ’
. . 0.5kmor 1 km for | Imaging sensors with high
Registration .. . . .
Himawari-8/9— 16 (04-13.4 Required/ visible and near- radiometric, spectral, and East Asia
’ ’ ,q . Regional | infrared bandsand | temporal resolution. 10 min (Full and Western 75%-99.5%
AHI-8 um) (Himawari . . g . P
2 km for infrared disk), revisit time: 5 min for areas Pacific
Cloud) . .
bands in Japan/Australia)
| s B e Low noise in th.e long-wave IR
k . channels, tracking of dust storms X
Registration resolution visible in near-real-time, susceptibility of Atlantic
MsG-sEviri 204134 Required  Regional MMMV 3KMIOT 1o cer field of view to Ocean, 71.1%-98%
pm) the infrared and the . Europe and
(EUMETSAT) .. contamination by cloud and lack .
3 other visible . e .. Africa
of dual-view capability, revisit
channels . .
time: 5-15 min
0.5 km for the 0.64 Infrar?d resolutions allow the
m visible channel detection of much smaller Western
16 (04-13.4 Registration H 1 ‘lirf\ p er tli . € wildland fires with high temporal | Hemisphere
GOES-16 and 18 ) ' Required Regional | omor othe resolution but relatively low (North and 94%-98%
pm) visible/near-IR 2 . . .
(NOAA) spatial resolution, and delays in South
km for bands > 2 . e .
data delivery, revisit time: 5-15 America)
Hm min
HuanJing (HJ)-
e e s Lk et S | s
Camera)/IRMSS 0.9 ptm) IRMSS: Reglst’rhatlon Regional WVC: 30 m IRMSS: orbit behaviour throughout the Pacific 94.45%
4(0.75-12.5 Required 150-300 m . .. D .
(Infrared life of the mission, revisit time: 4 Region
. Hm)
Multispectral days
Scanner)
Registration . . ..
POiS\//l\I/I-IeI:gp— 6 (0.51511—)12.5 Required Global 1.1 kmnl;i;ii km at E;a;sg }slpat'lal resolution, revisit Earth 99.6%
a (NOAA) ‘
S-NPP/ NOAA- 16 M-bands Registration 0.75 km (M-bands) = Increased spatial resolution,
20/NOAA— (0.4-12.5 ym) 5 Required Global 0.375 km (I-bands) | improved mapping of large fire Earth 89%-98.8%
VIIRS-375 m I-bands (0.6 (NASA) 0.75 km (DNB) perimeters, revisit time: 12 h
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CubeSats (data Small physical size, reduced cost,
refer to a specific
design from

[263])

12.4 um) 1 DNB
(0.5-0.9 pm)

2: MWIR (3-5 Commercial
um) and LWIR access Global 0.2 km
(8-12 um) planned

Wide
coverage in
orbit

improved temporal
resolution/response time, Revisit
time: less than 1 h.

Improvements in nanomaterials and microelectronics have made it possible to use
CubeSats, which are small spacecraft that orbit close to the Earth. PhiSat-1 (®-Sat-1),
launched on September 3rd, 2020 [18, 264, 265], is a six-units (6U) European satellite and
is the first to show how transmitting down EO data can be made more efficient using
on-board intelligence using Al. It is part of the FSS, which is made up of two CubeSats
[564-57] carrying Al technologies. The two CubeSats collect data using hyperspectral
optical equipment and state-of-the-art dual microwaves. They also test inter-satellite
communications. One of the CubeSats' hyperspectral cameras takes many pictures of
Earth, some of which are cloudy. The ®-Sat Al chip filters out erroneous cloudy photos
before transmitting them to Earth, sending only usable data. CubeSats are more cost-
effective, are smaller than regular satellites and require less time to launch than
traditional satellites. The detailed classification and their parameters are listed in Table
11. Currently, most of the data processing are performed on the ground, but there is a
lot of interest in bringing at least some of the computing efforts on-board of the satellite.
The employment of Al algorithms on board satellites for analysis and segmentation,
classification, cloud masking, and potential risk detection will be the final frontier of
satellite remote sensing. The European Space Agency (ESA) has been a leader in taking
the first steps in this direction with the PhiSat-1 satellite. CNN for detecting volcanic
eruptions using satellite optical/multispectral imaging has been proposed in [18], with
the main goal of presenting a feasible CNN architecture for on-board computing. The
authors of P. Xu et al. [266], presented an on-board real-time ship detection based on
Deep Learning and utilising Synthetic Aperture Radar (SAR) data. Predicting, detecting,
and monitoring the occurrence of wildfires obviously benefits officials, civilians, and the
ecosystem, with advantages in preparedness, reaction times, and damage control.
OroraTech [263], created in 2018, already has a range of international customers for its
own wildfire service, notably SOPFEU Quebec, Forestry Corporation NSW in Australia,

and Arauco in Chile. The system uses sensor data from a range of existing satellites to
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offer intelligence for contributing to environmental protection and other properties.
OroraTech has launched a Thermal Infrared (TIR) imager on a Spire 6U CubeSat
featuring TIR and optical imaging equipment and on-board Al processing in a first step
towards vertical integration.

This chapter aims to look into whether Al approaches and on-board computing
resources can be used to monitor dangerous events, such as wildfire detections, utilising
hyperspectral satellite imagery. The results of this kind of analysis could be useful for
future satellite missions, like the ESA Phisat 2 program. In this section, hyperspectral
images taken from the PRISMA (PRecursore IperSpettrale della Missione Applicativa)

satellite were considered, and the following main contributions were made:

1. A One-Dimensional (1D) CNN for detecting wildfires using PRISMA hyperspectral
imagery is considered, and promising results are shown for the edge
implementation on three different hardware accelerators (i.e.,, computer hardware
designed to perform specific functions more efficiently when compared to software
running on a general-purpose central processing unit).

2. It was demonstrated that Al-on-the-edge and iDSS reconfiguration paradigms are
feasible for future mission concepts using appropriate architectures and mature

astrionics technologies to perform time critical applications.

The proposed CNN is described in terms of the constraints imposed by the on-board
implementation, meaning that the initial network has been streamlined and adjusted to
comply with the intended hardware designs. It is worth noting that the detection of
wildfires should be considered as an example test case, and the proposed methodology
(or similar ones) can successfully be applied to other scenarios or tasks, as already

discussed and demonstrated in other works [18].

4.2 Current Wildfire Detection Methods

A wildfire is a dynamic phenomenon that changes its behaviour over time. The
presence of forest fuel aids the spread of fire. It is carried out by a series of intricate heat
transmission and thermochemical processes that control fire behaviour [267]. Several

mathematical models were created to characterise wildfire behaviour; each model was
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built based on diverse wildfire experiences in various nations. According to the input
and environmental parameters, each model differs from the others (fuel indexing [268],
[269]). Some countries' researchers have been able to incorporate some of these models
into simulation programs or even develop their own ways of mapping the terrain and
tire behaviour on monitoring screens to study and predict fire behaviour [270]. The form
of a wildfire burning in a steady environment is an ellipse [271]. The environment can
change over time, and different portions of a fire may be burning in different
environments, such as humidity levels, wind speed, wind direction, slope, etc. The
heterogeneity of the environment could result in a very complicated fire form [268, 272].
F. Tedim et al. [271] made an initial attempt to develop a gravity scale for wildfires that
was comparable to the scales used for hurricanes (Saffir-Simpson scale) and tornadoes
(Fujita scale). The first four categories are labelled as "normal fires," or incidents that can
generally be put out within the bounds of technology and physical limits. Based on
assessments of recent extreme wildfire incidents and a consolidation of literature, the
three remaining categories are grouped as Extreme Wildfire Events (EWE; see Table 12).
Table 13 shows a list of the most recent and significant wildfire incidents in Australia
from 2007 until today. Natural disasters may have caused some of the fires or may have
been caused directly or indirectly by human recklessness and environmental misuse
(particularly the rise in temperature linked with global warming). One of the worst
bushfires in Australian history ravaged Victoria. Many people were killed or injured in
the Bushfire, which ravaged many towns and cities, destroying homes, businesses,
schools, and kindergartens [273, 274]. From Table 13, it is evident that wildfire events
are happening regularly. Since wildfires occur on a regular basis, there is a clear need
for wildfire detection. To address this, the recent Australian bushfire is investigated, and
an analysis is carried out. The designated AOI is located around 250 kilometres north of
Sydney in Ben Halls Gap National Park (BHGNP), comprises 2500 hectares and is 60
kilometres south of Tamworth and 10 kilometres from Nundle. Because the park is
located at a high elevation, it receives a lot of rain and has cool temperatures. However,
in late 2019, a combination of high temperatures and wind speeds, as well as low relative

humidity, created the conditions for high-intensity wildfire behaviour to develop. As
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can be observed in the PRISMA image acquired on December 27, 2019, active wildfires

can be spotted across this AOL

4.3 PRISMA Mission

A scientific and demonstration mission called PRISMA was launched aboard the
VEGA rocket on March 22, 2019. The satellite mission was based on the HyperSpectral
Earth Observer (HypSEQO) project [275], which was a product of a partnership between
the Italian Space Agency (ASI) and the Canadian Space Agency, served as the
foundation for the early conceptual studies. Due to its ability to capture data globally
with a very high spectral resolution and in a wide variety of spectral wavelengths,
PRISMA is playing an essential role in the current and future international setting of
Earth Observation for both the scientific community and end users. PRISMA offers the
ability to collect, downlink, and preserve imagery of all
Panchromatic/Hyperspectral channels totalling 200,000 km? daily practically on the
entire global region, obtaining 30 km by 30 km square Earth tiles. There are two
operational modes for the PRISMA mission: a primary mode as well as a secondary
mode. The main method of operation is gathering panchromatic and hyperspectral data
from specified individual targets as demanded by end users. The mission will have set
up continual "background" work in the auxiliary mode of operation that will collect
imagery to utilise the system's resources fully.

One modest class spacecraft makes up the PRISMA space segment. The PRISMA
payload includes a hyperspectral/panchromatic camera featuring Visible to Near
Infrared (VNIR) and Short-Wave Infrared (SWIR) detectors. It consists of a medium-
resolution panchromatic camera (PAN, from 400 nm to 700 nm) with a 5 m resolution
and an imaging spectrometer with a 30 m spatial resolution that can acquire in a
continuum of spectral bands from 400 nm to 2505 nm, i.e., from 400 nm to 700 nm in
VNIR and from 920 nm to 2505 nm in SWIR. The PRISMA Hyperspectral Sensor uses
the prism to measure the incoming radiation's dispersion on Two-Dimensional (2D)
matrix detectors to collect many spectral bands from the same ground strip. The 2D

detectors immediately provide the "instantaneous" spectral and spatial dimensions

78



(across-track) of the spectral cube, while the satellite motion (pushbroom scanning

concept) provides the "temporal” dimension (along-track).

Basic preprocessing: from raw data to
georeferenced (‘computing ready”):

Data for scientific or military users only

Advanced preprocessing:
Geocorrected
Vertically oriented product (‘user-

CORRECTIONS ready”):

VAS
VAS
ANALYTICS

Figure 32: Levels of processing from data to services [276].

Data and derived products:
commercial usages

Change detection, classification,
image-derived product, intelligence
report:

Product without any imagery, etc.

Figure 33: RGB composite of the selected region in New South Wales, Australia, as seen from the
PRISMA acquisition.
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Table 12: Classification of wildfires based on fire behaviour and capacity of control.1 Adapted from [271].

Real Time Measurable
Behaviour Parameters

Real Time Observable
Manifestations of Extreme Fire Behaviour ((EFB)

Fire . .
Category Fireline Rate Of Flame Type of Fire and Capacity of Control *
Intensities Spread Leneth Pyrocumulonimbus Downdrafts Spotting Spotting
(FLD* ®OS) | o fm) (PyroCb) Activity Distance (m)
(KWm-) (m/min)
<500 N <15 Absent Absent Absent 0 Su.rface fire
<15b Fairly easy
§ g <15 Surface fire
E 2 500-2000 30b <25 Absent Absent Low <100 Moty G
o]
= <20 ¢ . Surface fire, torching possible
_ >
£ 20004000 <50d 2.5-3.5 Absent Absent High >100 Very difficult
4000~ <50 ¢ . In some o Surface fire, crowning likely depending on vegetation type and stand structure
10,000 <100 d 3.5-10 Unlikely localised cases Prolific >00-1000 Extremely difficult
Crown fire, either wind- or plume-driven
10.000— <150 ¢ Spotting plays a relevant role in fire growth
¢ 10-50 Possible Present Prolific >1000 Possible fire breaching across an extended obstacle to local spread
30,000 <250 d . . .
@ Chaotic and unpredictable fire spread
§ Virtually impossible
@
g Plume-driven, highly turbulent fire
! 30.000— Massive Chaotic and unpredictable fire spread
§ 1 O’O 000 <300 50-100 Probable Present S ott‘ir: >2000 Spotting, including long distance, plays a relevant role in fire growth
g g P & Possible fire breaching across an extended obstacle to local spread
@ Impossible
I
= Plume-driven, highly turbulent fire
>100,000 >300 >100 Present Present Massive 5000 Area-wide ignition and firestorm development non-organised flame fronts because
(possible) | (possible) | (possible) Spotting of extreme turbulence/vorticity and massive spotting

Impossible

! Note: 2Forest and shrubland; ® grassland; ¢ forest; ¢ shrubland and grassland.




Table 13: Mostly relevant wildfires happened in Australia from 2007 to 2021 [277-280].

Year Event name Affected area Burned area (acres)
1 June 20201 June 2021 2020-2021 Australian wildfire Nationwide 617,763
seasons
2019-20 A li hfi
5 September 2019 — 2 March 2020 019-20 Australian bushfire Nationwide 46,030,000
season (Black Summer)
February 2019 Tingha bushfire New South Wales 57,870
11 — 14 February 2017 2017 New South Wales bushfires New South Wales 130,000
2016 M R hfi
January 2016 016 Murray Road bushfire Western Australia 170,910
(Waroona and Harvey)
25 November — 2 December 2015 2015 Pinery bushfire South Australia 210,000
15 — 24 November 2015 Perth Hills bushfire complex —Solus Western Australia 24,750
Group
October — November 2015 2015 Esperance bushfires Western Australia 490,000
2015 O'Sullivan bushfire .
29 January — 20 February 2015 (Northcliffe - Windy Harbour) Western Australia 244,440
2 — 9 January 2015 2015 Sampson Flat bushfires South Australia 49,000
January 2015 2015 Lower H9tham bushfire Western Australia 129,420
(Boddington)
1 August — 9 August 2015 2015 Wentworth Falls Winter Fire New South Wales 2,000
17 — 28 October 2013 2013 New South Wales bushfires New South Wales 250,000
18 January 2013 Warrumbungle bushfire New South Wales 130,000
4 January 2013 Tasmanian bushfires Tasmania 49,000
27 December 2011 - 3 February 2012 Carnarvon bushfire complex Western Australia 2,000,000
7 February - 14 March 2009 Black Saturday bushfires Victoria 1,100,000
30 December 2007 Boorabbin National Park Western Australia 99,000
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Figure 34: PRISMA level 2D VNIR band at 411 nm.
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Figure 35: PRISMA level 2D SWIR band at 2490 nm. The three active wildfires are identified.
PRISMA data is made freely accessible for research purposes by ASI [281]. Different
levels of data are available, and the differences are reported in Figure 32. In Hierarchical Data
Format version 5 (HDF5) format, 30 m and 5 m resolution hyperspectral and panchromatic

data are given with four choices:

e Level 1, radiometrically corrected and calibrated Top of Atmosphere (TOA) data.
o Level 2B, Geolocated at-ground spectral radiance product.
o Level 2C, Geolocated at-surface reflectance product.

e Level 2D, Geocoded version of the Level 2C Product.

The analysis in this paper was done with Level 2D data. The RGB composite of the
research area is shown in Figure 33. However, direct information can be retrieved by looking
at single bands. For instance, by looking at the VNIR bands of the L2D data, smoke can be
clearly recognised, as shown in the 411 nm band presented in Figure 34, where smoke pixels
can be easily separated from their neighbours. On the other hand, from the far SWIR
channels, one can very easily retrieve information on active wildfires, as appreciated in

Figure 35. Indeed, when looking at the reflectance product, the signal easily saturates when
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looking at active wildfires, as the signal captured from Earth is greater than the signal coming

from the Sun (since the wildfires behave as an active power emitter).

4.3.1 Dataset Definition

The AI approach is used to implement automatic segmentation from the obtained
image. From Figure 35, three active wildfires can be observed. The southern and the north-
east wildfires are the bigger ones, whereas the north-west wildfire is quite small. For the
training and validation, reference pixels must first be labelled. The reference pixels used in
this investigation were manually labelled, and they are shown in Figure 36. The number of
labelled pixels selected from the PRISMA image (after investigation of the spectra and
looking at the false colour composites) is reported in Table 14. The north-east wildfire has
been used as training and validation dataset, while the south and north-west datasets have
been used as test datasets. The training set accounts for 70% of the labelled data of the north-

east wildfire, while the remaining 30% was chosen for validation.

Table 14: Number of labelled reference pixels in Australia used for training and testing the CNN [218].

Pixels per classes

I‘j\’ ildf-ire Usage 0 ! 2 Ve e:ation Bar;1 soil

ocation Fire  Smoke  Burned areas 8!

North-East Train & Val 58 10 30 50 40
South Test 11 11 9 10 10

North-West Test 5 0 5 5 5

4.3.2 Automatic Classification with a 1D CNN Approach

The categorisation model utilised in this study was inspired by the Hu et al. [97]
model, which is depicted in Figure 36. The PRISMA data's input pixel spectrum includes the
SWIR and VNIR channels. Thus, it is an array with C = 234 element (after removal of some
useless original data in the input hyper-cube). A 1D convolutional layer with a kernel of 3,
n,; = 112 filter, same padding, ReLU activation function, and [2 kernel regulariser is the first
hidden layer. After the convolutional layer there is a max pooling layer with a pool size of 2
and a stride of 2 (notice that n, = n, in Figure 37). The result of this max pooling is then sent

through a flattening layer before being connected to a 128-unit fully connected layer with
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ReLU activation. A last layer is a dense unit with the SoftMax activation function for
multiclass classification. It's worth noting that the values of C; and C, in the diagram are
easily evaluable and rely on the network's architecture. The Adam optimiser and the
categorical cross-entropy loss function are used to train the model. Python and Keras were

used to build the entire network [282, 283].

Fire

Burned areas
Vegetation
Smoke

Bare soil

Figure 36: Labelled points defined in the PRISMA image for the five classes.
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Figure 37: Multi-class classification CNN model [282].
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4.4 Astrionics Implementation

The ultimate aim is to build a model that can be uploaded to an on-board astrionics
system, so the network complexity, parameter count, and inference execution time must all
be optimised. Due to the chip's restricted elaboration power, the utilisation of a small chip
limited the ability to execute the specific classification model, necessitating the development
of an accurate model. A prototype for executing the analysis has been created in order to
evaluate the proposed methodology. The model has been modified to work with the chosen
hardware and detect wildfire on-board.

A significant component of the architecture of many current Al solutions is cloud
computing or storage. Several sectors find it challenging to apply the technology for real-
world use cases due to concerns about confidentiality, latency, dependability, and
bandwidth. Despite its resource restrictions, edge computing can somewhat help to ease
these difficulties. The claim that edge and cloud computing are incompatible is untrue; edge
computing actually enhances cloud computing. Inflated expectations for edge Al and edge
analytics have peaked, according to the Gartner hype cycles for 2019 and 2018 [284].
Although the sector is still in its infancy, software frameworks and hardware platforms will
advance with time to deliver value at a reasonable price. Three important Al industry
leaders —Intel, Google, and Nvidia—are supporting edge Al by offering hardware platforms
and accelerators with compact form dimensions. Although each of the three has benefits and
drawbacks, it all depends on the application, budget, and amount of experience available;

Table 15 compares the hardware accelerators [284].

Table 15: Edge Al device comparison [284].

Parameters Nvidia Jetson Nano Google Coral USB Intel Moyidius NCS
Inference time ~38 ms ~70-9232 ms ~225-227 ms,
fps ~25 ~9-7 ~4.43-439
CPU usage 47-50 % 135 % 87 90 %
Memory usage 32 % 8.7 % ~7 %

Raspbian GNU/License | Raspbian GNU/License

(0]] Ubuntu 18.04 aarche4 10 (Buster) 9 (Stretch)

The Intel Movidius Neural Compute Stick (NCS) is a high-performance, affordable
Universal Serial Bus (USB) stick that may be used to implement DL inference applications,

according to the comparison above. Great Al solutions are provided by the Google Edge
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Tensor Processing Unit (TPU). The NVIDIA Jetson Nano, in conclusion, crams a lot o