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Abstract 

For decades, satellites in outerspace have been designed as monolithic 

systems, which are extremely integrated systems that are aimed to 

accomplish a set of objectives that match specific user needs. These systems 

are made up of specific space, control, and ground elements that may go 

unused or be deactivated once the mission is over. Since space missions have 

typically been seen as highly customized endeavours, engineers have always 

worked on developing systems that do not share data and information with 

other satellites. The space industry is increasingly considering technologies 

such as Distributed Satellite Systems (DSS), particularly when combined 

with monolithic satellite systems, where studies indicate that performance is 

considerably improved while costs are reduced. Recent advancements in 

Artificial Intelligence (AI) technologies reveal that autonomy is vital in this 

modern era of space applications. Autonomy is required for enhanced 

implementation and operation, which can be accomplished by integrating 

AI techniques to satisfy space mission objectives. These tactics have proved 

their ability to perform, adapt, and respond to external environment changes 

without human intervention. Autonomy is provided because it is a critical 

attribute for steering the new distributed activities that require collaboration 

and coordinated approaches, allowing new structural functions such as 

opportunistic coalitions, resource sharing, and in-orbit data services. 

Trusted Autonomous Satellite Operations (TASO) is required within the DSS 

infrastructure to accomplish this. This research focuses on developing and 

using AI technologies for the TASO in DSS, which endows intelligent DSS 

(iDSS). Specifically focused on the evolution of space and control (on-board) 

segments required to maximize the performance of iDSS operations through 

advancements in Cyber-Physical Systems (CPS) and autonomous system 

designs. The Earth Observation (EO) missions based on iDSS have been 

investigated and analysed. A generic iDSS design optimisation methodology 

for EO that provides persistent coverage of the Australian territory is 

developed from the investigation. 
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Chapter 1 

Introduction 

This chapter provides the context for the doctoral thesis work, including the 

research background, potential research gaps, research questions, and objectives. A 

methodology for carrying out the research is presented. The limitations of the thesis 

work, as well as the structure of the article, are also discussed. 

1.1 Background 

The previous two decades have been an exciting time for space missions, with 

major participants in the space domain making a concerted effort to create and build 

autonomous mission ideas and concepts that are more difficult than ever. Owing to the 

continual success of interplanetary and Earth-orbiting missions, space engineering has 

pushed the boundaries for constant development, conceptualizing increasingly 

ambitious missions on a daily basis. Conventional, monolithic, high-performance 

spacecraft are not the only category of satellite systems impacted by this drive for 

innovation and ambition; smaller satellites are gaining traction due to newly developed 

technologies and a synthesis of the current state of the art. Small satellites, nanosatellites, 

and CubeSats are seeing renewed and never-before-seen interest and utilisation due to 

the game-changing properties possessed by this class of space systems. The major 

agencies and enterprises share the effort to use smaller satellites in the global landscape. 

Significant reductions in space and launch segment costs of entry-level spacecraft are 

possible thanks to efforts in technology miniaturisation, the appearance of radiation-

hardened Commercial-Off-The-Shelf (COTS), and tighter system integration. Small 

satellites frequently employ high computational capabilities within low power 

consumption and small form factors due to faster development cycles of COTS 

components. Compared to larger missions, this allows advanced and computationally-

intensive autonomy methodologies to be run on-board [1]. 
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Future space mission concepts are filled with low-cost Distributed Satellite Systems 

(DSS) working together to achieve complex mission objectives. Real-time multi-

spacecraft coordination, data processing, and prioritization will not only optimise 

mission science return by establishing observational parameters of interest or success, but 

it will also facilitate outer solar system missions and missions in extreme environments 

(e.g., Io, Venus, subsurface Europa) where communication with ground operations and 

ground-based analysis times are limited. Through unparalleled levels of autonomy, this 

capacity will enable hitherto inconceivable classes of missions [2-4]. Implementing these 

envisaged space missions will necessitate considerable advancements in the capabilities 

of the architectures that implement them. DSS comprises numerous spacecraft that work 

together to fulfil a common mission goal [5]. In some circumstances, the DSS combine to 

generate a sensory system that would be impossible to create on a monolithic platform 

[6, 7]. In other configurations, they use distributed measurements to extract data on the 

spatial and temporal consequences of phenomena far larger than a single spacecraft can 

observe [8, 9]. Significant interest has been shown in addressing the technology required 

to support developing applications as missions requiring DSS become more and more 

important. On-board data processing, inter-satellite networks (often referred to as Inter 

Satellite Links (ISL)), and autonomous orbit control are the main topics of this thesis. 

These three technologies depend on one another. For instance, the processors on-board 

must have sufficient processing capability to process the data required to make 

conclusions as well as any calculations that may be involved in time-sensitive or 

computationally intensive decision-making. Moreover, the DSS spacecraft can 

communicate and coordinate among themselves without immediate ground control due 

to the inter-satellite networks. This functionality is essential because the ground link has 

limited bandwidth and latency, especially for far-space applications [10]. Additionally, it 

provides the option to gradually build the system in orbit, allowing for the construction 

of various modules at various stages. The modular architecture theory serves as the 

foundation for DSS architecture. The study by the Research and Development (RAND) 

shows that [11]: 

a) Distributed constellations may weigh less and cost less to launch. 
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b) Distributed satellites may perform better during deployment. 

c) Distributed satellite constellations may be able to fail more gracefully. 

d) Distributed satellite constellations may be more survivable in an attack. 

DSS's primary goal is to deliver a more responsive and resilient solution to meet the 

expanding demands of the scientific community and also the defence sector by aiding in 

the measurement and prediction of Earth Observation (EO) missions [12],  Space-Based 

Space Surveillance (SBSS) missions [13-16] and Astronomy and Astrophysics missions [9, 

17]. DSS has several advantages (i) Simultaneous multipoint data collection, (ii) Increased 

availability, (iii) DSS can look at different things at once, (iv) Reduced downtime and 

graceful degradation. A DSS that includes these enabling technologies can provide four 

major benefits [4]: 

a) Distributed Coordination: can share data and change what they prioritize.  

b) Autonomous Re-tasking: can respond to environmental stimuli autonomously 

without requiring intervention from a ground operator.  

c) Increased Availability: when only a single spacecraft can be reached, it can relay 

commands to the others.  

d) Workload Balancing: can re-task satellites based on available computation, power, 

and communications resources. 

This research aims to demonstrate the DSS Trusted Autonomous Satellite Operations 

(TASO) for Mission Management (MM), such as wildfire detections. The findings of such 

analyses could be helpful for future time-critical missions, i.e., disasters and rare events, 

and the following novel contributions have been made from an intelligent DSS (iDSS) 

perspective: 

a) Mission Astrionics: Reactive elements, such as Artificial Intelligence (AI), is 

integrated with the DSS to achieve TASO for on-board data processing to provide 

real-time/near real-time alerts. To accomplish the same, a Deep Learning (DL) 

model is developed and demonstrated for detecting wildfires on-board the 

satellite using optical payload, i.e., hyperspectral imagery. 

b) Service Astrionics: For the TASO, the intelligent DSS (iDSS) will reconfigure 

either based on the (i) detection of disaster event (wildfire), (ii) based on the 

requirements of the owner/operator for the requested duration, (iii) to evade from 
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the Resident Space Objects (RSO), (iv) to avoid the collision between the 

satellites/modules. 

It is essential to mention that the detection of wildfires and Maritime Domain 

Awareness (MDA) should be treated as an example test case and that the suggested 

methodology (or ones similar to it) can be successfully applied to other scenarios or 

activities, as has already been explored and shown in other publications [18]. 

 

Figure 1: DSS operations (a) without ISL (b) with ISL. 

Sharing information about the acquired data is made possible by iDSS, allowing 

maximum scientific output to be achieved through opportunistic research. The 

operational requirements can be lowered with iDSS autonomy, allowing for human-in-

the-loop operations to be converted into human-on-the-loop activities. Humans will be 

responsible for overseeing the operations in some capacity. Despite the loss of one 

spacecraft, iDSS is able to continue working at normal levels, and its trusted autonomous 

reconfiguration capabilities allow it to redistribute workload without interference from 

the ground. Figure 1 illustrates the differences between the current DSS and iDSS 

operations. Figure 1 (a) illustrates how the data is transmitted to the human operators on 
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the ground before being relayed to the remaining satellites, which is not ideal for time-

sensitive applications like rare events and disasters. In Figure 1 (b), where the ISL allows 

for data sharing, and reactive elements allow on-board processing, allowing the system 

to respond quickly.  

1.2 Motivation 

Satellite systems provide a wide variety of services, which can be easily accessed from 

almost any global location. These systems have rapidly evolved over the last few decades 

and have become essential in various application domains, such as communications, 

navigation, EO and astronomy [19]. However, certain aspects of satellite technology, such 

as trusted autonomous operations, remain to be explored due to the increasing 

complexity of hardware/software components and associated safety, integrity and cyber-

physical security concerns [20].  

Present-day autonomous systems can execute intelligent functions (e.g., decisions 

and/or actions traditionally performed by humans) using various computer-based 

algorithms, such as AI. This requires the ability to gather real-time data from the external 

operational environment (i.e., sensing), to perform inference and/or decision-making 

functions, and to execute proper actions if and when required. Despite the significant 

progress made in hardware and software technologies, TASO is still largely a research 

topic and significant investments are needed to fully exploit the anticipated safety and 

efficiency and sustainability benefits that such operations would bring, possibly leading 

to the progressive removal of present-day socio-political barriers such as AI ethics, 

liability and public trust [21]. In many applications, fully autonomous satellite operations 

are either impractical or undesirable, mainly because a minor error can result in the loss 

of millions of dollars and, in some cases, lead to human casualties (point-to-point 

suborbital space transport, Earth-orbiting inhabited space stations, etc). Therefore, an 

acceptable level of trust is required for near-Earth operations, especially considering the 

steady increase of RSO in Low-Earth Orbits (LEO) and Geostationary Orbits (GEO) [4, 

22]. Furthermore, to facilitate further progress in TASO research, it is essential to address 

the implications of trusted autonomy and AI in the evolution of Cyber-Physical Systems 
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(CPS) for space applications, including the co-evolution of system-level requirements 

(i.e., communication, control and computing) and human-autonomy interactions. 

Current research trends in this area show that Cyber-Physical-Human (CPH) 

architectures are evolving with the widespread adoption of Machine Learning (ML) and 

hybrid AI techniques (e.g., neuro-fuzzy inference engines) and becoming progressively 

more capable of modulating both the levels of autonomation and the human 

command/control functions towards achieving specific goals. In this context, the current 

generation's participation is in an evolutionary process, where humans are progressively 

transitioning to a high-level supervisory role [23]. 

Clearly, AI will play a significant role in easing the transition to TASO. A radical 

departure from conventional system design and development is required to meet the 

intelligence requirements of future trusted autonomous space system vehicles and 

intelligent operation in highly integrated and information-rich environments. Going 

forward, certification and explainability of these AI systems will be critical, particularly 

in outer space operations where liability is required for the damages these systems cause. 

As a result, there is a need to understand the associated technical and legal challenges 

with this system. 

1.3 Research Gaps and Questions 

There is currently no comprehensive classification of satellite systems in the body of 

published work, which is one of the most serious shortcomings in the existing DSS. 

Second, when looking at Australia, wildfires have become a significant problem over the 

course of the last few years. In addition, indigenous capabilities are lacking to provide 

disaster event management in real-time/ near real-time. There is the potential to develop 

iDSS solutions that can change their structure and function and reconfigure mission 

profiles in response to operational and environmental indicators. 

The design of a state-of-the-art satellite system has not yet accounted for the 

contingency planning aspect of iDSS, which is an essential component of the system. This 

refers to the capability of the satellite to perform data processing on-board and detect a 

disaster event or monitor a particular Area of Interest (AOI), and then downlink only the 
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actionable information to the receiver with enough time to dynamically determine which 

appropriate restorative or reconfiguration actions to take in order to ensure that the 

system can continue to perform its mission objective. 

In addition, the optimal combination of physics-based methodologies and data-

driven/AI inference techniques for different engineering application domains to deliver 

TASO has not been determined. This is a problem because physics is the foundation of 

engineering. This thesis focuses on the following research questions in order to address 

these gaps in the literature: 

RQ1: How can Artificial Intelligence (AI) techniques be employed in DSS architectures 

for Earth Observation (EO) operations to enhance the performance of both service 

and mission astrionics systems? 

RQ2: How can intelligent DSS (iDSS) be designed for Disaster Management and Maritime 

Domain Awareness (MDA)? 

RQ3: How can we develop a generic iDSS design optimisation methodology for EO that 

provides persistent coverage of the Australian territory?  

1.4 Research Aim and Objectives 

This research aims to enhance the development of DSS systems intended to function 

in information-rich and networked environments. The following set of clear objectives 

has been established in order to accommodate the intelligence requirements for future 

autonomous aerospace vehicles.  

• Conduct a thorough and in-depth review of the DSS current state-of-the-art to 

find new requirements for TASO. 

• Identify AI inference techniques for wildfire detection and develop an iDSS for 

real-time/near real-time disaster management. Finally, identify and implement 

mission management and reconfiguration options to ensure an acceptable level 

of operational capability for wildfire management. 

• Develop an iDSS mission for monitoring Australia’s Maritime with 

autonomous orbit control.  
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• Develop a Multidisciplinary Design Optimisation (MDO) methodology for 

iDSS to ensure persistent coverage over Australia. 

Exploring the role and capabilities of AI-based algorithms to increase the mission and 

system autonomy of iDSS missions significantly. To this end, AI-based methods and 

algorithms can be integrated into space missions with the intention of boosting the self-

sufficient decision-making functionalities of the space segment. This can be accomplished 

by improving the space segment's capabilities in the following areas: 

• Execution of tasks that were not defined during the development of the 

spacecraft, 

• Optimisation of on-board resources and execution of specific tasks, such as on-

board data processing, 

• Emulation of the expert knowledge that is necessary for mission operations. 

Therefore, it ultimately reduces operations costs for future iDSS operations through 

relatively small operations teams and far less frequent usage of massive deep space 

ground station network antennas.  

1.4.1 Limitations 

The research presented in this thesis centred on identifying and implementing 

algorithms for EO intelligent DSS operations. However, it is important to remember that 

the thesis was developed as part of the doctoral thesis and that the research was not 

conducted to determine which of the available algorithms is the best for performing 

TASO on a specific type of task; rather, the research aimed to demonstrate the 

practicability of TASO in iDSS. 

This research project also used commercial hardware components, free EO data 

for academic research, and open data sets. This investigation aims to identify the 

emerging design features that characterize iDSS, develop iDSS for EO missions over the 

Australian territory and extract lessons of general applicability for establishing an MDO 

methodology. More investigation and comparisons will be necessary to ascertain 
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whether the suggested iDSS architecture and algorithms are the best solutions for 

resolving the issue addressed in the case studies. 

1.5 Research Methodology and Thesis Outline 

Following the completion of a comprehensive review of the relevant prior 

research, an in-depth investigation into the DSS was carried out to determine its 

applicability in space operations. The research questions and objectives are framed to 

support the research work after identifying the key areas where DSS may be beneficial. 

The current space research priorities of SmartSat CRC and the Australian Space Agency 

and future advances in related areas (particularly emerging intelligent space system 

opportunities and EO Road map) are taken into consideration when framing the research 

questions and objectives. Initially, a DSS was developed to provide continuous coverage 

over Australia for wildfire management. The subsequent step was to enable real-time or 

near real-time management of wildfires using the AI techniques that were used to deliver 

data processing on-board the satellite, from which only actionable information that can 

be acted upon is downlinked. After it has been proven that on-board capability is feasible, 

iDSS operation can be accomplished by integrating these astrionics, i.e., hardware 

accelerators in the iDSS architecture. It has been proposed to endow TASO with an iDSS 

so that real-time Intelligence, Surveillance, and Reconnaissance (ISR) operations can be 

carried out to support maritime monitoring. The results have been presented at 

conferences and published in peer-reviewed scientific journals to accomplish the 

objectives and answer the questions being investigated. The detailed research 

methodology of the thesis work is shown in Figure 2.   This project's research work is 

divided into phases that accomplish the objectives outlined in Section 1.4. An extensive 

literature review is conducted, and the second chapter of the thesis contains a review of 

the current state-of-the-art in DSS, as well as key advancements and contributions to 

knowledge in the field of iDSS for the aerospace industry. 
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Figure 2: Research methodology. 

Figure 3 depicts the thesis structure.  In Chapter 3, the review's focus is broadened to 

include a thorough analysis of autonomous space operations.  Chapter 4 discuss the real-

time/ near real-time disaster management using iDSS, for the same Australian Bushfire 

has taken as case study. Chapter 5 is devoted to maritime management using iDSS. In 

Chapter 6, multidisciplinary iDSS design and optimisation is carried out to provide 

persistent coverage over Australia. Chapter 7 summarises the key findings and provides 

recommendations for future research. 
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Figure 3: Thesis structure. 
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Chapter 2  

Review of Satellite Systems  

This chapter provides a review of spaceflight systems, with a particular emphasis on 

Earth orbit systems, where the DSS is expanded and reviewed further. A detailed 

discussion of DSS unified classification is presented. The DSS hardware and software 

architecture is also presented. 

Thousands of active satellites are currently orbiting Earth [24]. The satellite's size, 

orbital parameters, and design depend on its intended purpose. The classification of 

spaceflight systems adopted in this article is presented in Figure 4. Broadly, spaceflight 

systems can be grouped into three categories: (1) Space exploration systems [4]; (2) Earth 

orbital/sub-orbital transport system [25]; (3) Earth orbit satellite systems. Earth satellite 

systems can be further divided into the following categories: (i) Monolithic satellite 

systems, and (ii) Distributed satellite systems which are discussed broadly in the 

following sections.  

 

Figure 4: Classification of spaceflight systems. 
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2.1 Monolithic Satellite Systems 

If a satellite system has modules or subsystems and is physically independent of other 

space assets, it is classified as a monolithic system. Adding redundant components 

increases their reliability while also increasing the system's overall weight, making it 

more expensive. Monolithic systems are still a large fraction of spacecraft being deployed 

in missions such as deep space exploration, technology demonstration, universities and 

research centres [11, 26]. A typical monolithic satellite system has the following modules 

PR: Processor, PL: Payload, DL: Downlink, CM: Communications Module, BUS, which 

carries all the modules as depicted in Figure 5. Monolithic satellite systems are 

comprehensively detailed in the works [27, 28]. 

 

Figure 5: Monolithic satellite system. Adapted from [28]. 

2.2 Distributed Satellite Systems 

A DSS consists of multiple spacecraft working together to achieve one or more 

common objectives. A DSS is a type of satellite architecture in which the functional 

capabilities are shared among many space assets that communicate via wireless networks 

[29]. The DSS concept is gradually changing the physical connectivity of various 

components in a satellite system into wireless connections, typically using optical 

communication methods, i.e., Inter Satellite Links (ISL). DSS is a mission architecture that 

shifts away from monolithic systems and more towards multiple spacecraft/modules of 

elements that communicate, interact, and cooperate with one another. They communicate 

via ISL, resulting in new systemic properties and/or emerging functions. Dividing a 

spacecraft over many launches reduces risk, ensuring that the whole system is not lost 

when a launch fails. It also offers the flexibility to gradually construct the system in orbit, 
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which allows the development of different modules/satellites at distinct stages. DSS are 

mission designs comprised of several spacecraft modules that cooperate, communicate, 

and interact with one another, resulting in the emergence of novel system attributes 

and/or functions [30]. The following concepts of modularity are required in order to have 

a better understanding of the DSS concept. 

2.2.1 Modular Architecture 

Modularity is a feature of systems that quantifies the degree to which a system's 

functionalities can be subdivided into distinct modules or clusters which interact more 

with each other [31, 32]. Damage to one module can cascade to subsequent modules in a 

highly interconnected system with minimal modularity, enhancing the risk of a system-

wide failure [33]. On the other hand, a disturbance to one component may be best 

controlled in a system along with a high level of modularity. Modularity is often explored 

as a spectrum of several levels and forms of a system that exist as a continuum within the 

system and not a binary property [34, 35]. Further, continuous modularity can be 

intuitively and methodically represented and quantified for some satellite systems that 

are now being introduced for a subset of elements in a network system [32, 36]. However, 

it can be challenging for other engineered systems to deal with the continuous spectrum 

in system architecture decisions for several reasons.  One reason for this is that it would 

transform the decision problem into an optimisation problem. This uses a general 

continuous spectrum that becomes computationally intractable and may not reconcile 

with the engineering design required for such decisions. Furthermore, interpreting 

modularity as a continuum does not fit hierarchical and layered structures, which results 

in a discontinuity in the level of modularity when a new layer is added. A hybrid method 

is mostly utilised to handle this issue since it preserves the spectral aspect of modularity 

while discretising it into many stages, each reflecting a distinct class of modularity. 

Modularity can be conceived as continuous inside each level (or, if necessary, further 

discretised), whereas changes in the stage of modularity are viewed as discontinuous 

shifts [37]. 
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2.2.2 Modularity Spectrum and Decision Operators 

In accordance with the broad concept of modularity [31], the framework consists of 

five modularity stages identified from 𝑀0 to 𝑀4, as shown in Figure 6. The spectrum is 

discretised into five key modularity stages, which allows for computational feasibility of 

the framework. This category comprises fully integral architectures (𝑀0), integral yet 

decomposable architectures (𝑀1), modular yet monolithic architectures (𝑀2), static 

distributed architectures (𝑀3), and dynamic distributed architectures (𝑀4 ). A set of value 

operators to quantify the net operator (𝑀+ Operator), which modifies the modularity 

levels between two neighbouring stages on the spectrum. When used in conjunction with 

𝑀+ Operators, the spectrum can help designers choose appropriate parameters and put 

together a system-specific computational tool using a number of pre-existing tools and 

approaches [28, 31, 35-37]. To comprehend how distributed satellites are distinct from 

monolithic satellites, one must understand the concept of Modularity. The transition from 

𝑀0 to 𝑀1 is referred to as Decomposition, from 𝑀1 to 𝑀2 as Splitting, from 𝑀2 to 𝑀3 as 

Fractionation and from 𝑀3 to 𝑀4 as Resource Sharing. In satellite architecture, 𝑀0, 𝑀1, and 

𝑀2 are considered monolithic systems, whereas 𝑀3 and 𝑀4 represent distributed 

architecture systems. 

 

Figure 6: A five-stage modularity with distributed architecture spectrum and 𝑀+ operations. Adapted from [37]. 



 

 
 

While 𝑀0, 𝑀1, and 𝑀2 cover all instances of modularisation for monolithic systems 

(systems with only one physical unit), 𝑀3 and 𝑀4 cover systems with multiple units 

(distributed systems) and the possibility of communication between them [38]. 𝑀+ 

decision operators express the modularity of any architecture by adding a decision layer 

to a model; as a result, the conceptual framework has been transformed into a 

computational tool. This determines the best level of modularity for a certain system's 

functionality in a given environment profile. The decision entails both the modularity 

phase and the design implementation inside that phase. By including a set of operators 

(𝑀+ operators) for calculating the transition value from one stage of modularity (𝑀𝑥) to 

its next immediate phase (𝑀𝑥+1 ). By computing the probability distribution of the 

difference in value between two consecutive phases, the suggested decision-making 

operators evaluate the performance of the system before and after operation [38]. This 

will allow conclusions to be drawn based on an average value difference as well as the 

level of risk tolerance. For most engineering systems, 𝑀1 is the lowest modularity, so the 

splitting operation, the first decision operation, suggests the changeover from 𝑀1 to 𝑀2 

through the development and use of proper standard interfaces. Fractionation operation 

by shifting one or more of its subsystems to other fractions takes a system from 𝑀2 to 

𝑀3. Although 𝑀+ evaluation specifics a procedural algorithm which is dependent on 

particular systems and its parameters, which acts as a decision-making evaluation 

engine [37].  
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Figure 7: Quantifying the value of the 𝑀+ operation. Adapted from [37]. 
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Figure 8: Calculating the value of the decentralisation operation (M3 to M4). Adapted from [37]. 

The 𝑀+ value is measured by comparing the system’s value prior and post its operations. 

Such assessment involves knowledge of the system and its settings [28, 31, 32, 35, 37, 38]. 
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Figure 7 shows the input and output characteristics for evaluating 𝑀+ Operators. At each 

level of modularity, the system's value is determined using one of the common system 

assessment methods (e.g., discounted cash flow analysis, scenario analysis) while taking 

the subsequent criteria into account [37, 38]: 

a) Technical Parameters: For instance, the probability density of a failure, the time 

required for an upgrade to become available, the highest number of modules 

allowable, and the maximum transmission bandwidth permitted.  

b) Economical Parameters: For instance, the number of modules in need at a given 

time, the cost of launching and operating a module, and the rate at which distinct 

module types generate value. 

c) Life Cycle Parameters: Total time required for operation, budget, as well as 

maximum time required for initial deployment. 

A high-level sketch for calculating the decentralisation values from 𝑀3 to 𝑀4  is depicted 

in Figure 8. Because of the underlying network structure, designers must use multi-agent 

techniques that blend system dynamics and evolution with autonomous behaviour [39].  

2.3 DSS Classification 

DSS are categorised based on the type of mission and function they perform. Activities 

required to meet local objectives (i.e., those specific to each module) or small bits of a 

global objective's functioning (i.e., particular to the infrastructure) may be included in 

modules performing activities in a distributed infrastructure, whether in monolithic 

systems or distributed spacecraft. As a result, the function type is measured in terms of 

how dispersed the mission's goals are, ranging from no collaboration between modules 

(i.e., local functionality) to a fully functional symbiosis (i.e., distributed functionality).  
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Figure 9: Distributed Satellite system classification. Adapted from [40].

As a result, different distributed missions are characterised according to their degree 

of distribution in terms of the system's capabilities or goals and resource interdependence 

between modules. A bi-dimensional space can be formed using the analysis of these two 

domains, as shown in Figure 9, with values in the range [0,1]. The 𝑥-axis shows the degree 

of mission goal distribution, which ranges from missions in which satellite modules work 

together to advance a single global function to goals in which each satellite module 

develops its own local activity. The 𝑦-axis shows the degree of fractionation among 

scenarios where modules are totally reliant on one another and cases where nodes are 

completely resource self-sufficient [40, 41]; both axes are independent. The following are 

the classification of DSS. 

• Constellation 

• Fractionated 
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• Federated 

• Modular 

• Swarms 

• Formation 

• Constellation of formations 

• Hybrid Missions 

2.3.1 Constellation 

A satellite constellation is a collection of human-made spacecraft that operate as a 

unified system. A satellite constellation, as opposed to a single satellite, can provide 

continuous global or near-global coverage, as shown in Figure 10 (a). This means that at 

any given time, at least one of the satellites in the constellation will be visible somewhere 

on Earth. Satellites are often positioned inside sets of orbital planes that are 

complementary to one another and connected to ground stations spread across the world. 

It's also possible that they communicate with one another via satellites. A satellite 

constellation is a system of artificial units that are identical to one another or of a similar 

sort, all of which share the same purpose and control. These groups communicate with 

ground stations placed all over the world and, at times, even communicate with one 

another. They are designed to function together as a system and complement one another 

in some way. The works of literature provide descriptions of some of the satellite 

constellations [42-46].  

2.3.2 Fractioned 

Fractionated satellite is a system in which a spacecraft is divided into smaller units or 

fractions collaborated to achieve a common mission objective. The satellite consists of co-

dependent modules that require system resources to be exchanged to function, as shown 

in Figure 10 (b) [47]. Two extremes can be thought of for this category based on task 

achievement. In the first instance, the satellite's functionalities are implemented by the 

satellite fractions, which need services such as data processing, power, communication 

link, etc., to complete the functions calling for dedicated fractions to provide these 

services.  Fractionated systems have mission objectives that are specific to each of their 
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fractions/modules. Though there is minimal cooperation between them, each fraction is 

still highly dependent on the infrastructure of the system. Secondly, fully fractionated 

satellite systems have modules that collaborate on accomplishing the mission's global 

objective. There is considerable resource dependency in this scenario and functionalities 

of the modules [40, 48-53]. 

 

Figure 10: DSS types (a) constellation (b) fractionated (c) formation (d) modular (e) swarms (f) 

constellation of formations. 

2.3.3 Federated 

In a federated system, a group of satellites work together to provide a specific service, 

but each satellite operates independently, with its own mission and communication 

capabilities. A Federated Satellite System (FSS) is a network of satellites that coordinate 

by exploiting the potential of their resources, with each satellite having all the 

infrastructure needed (i.e., not a fraction) to operate, and so being completely self-

contained. Independent satellites are built and placed in orbit for specific objectives, 

allowing them to employ their resources and capabilities for an opportunistic distributed 

mission [54]. Federated and Fractionated satellites share some features, combining some 

of their capabilities and resources for a global mission [54-57]. Because the transferred 

resources are always underutilised in a module's primary mission, the nodes are 
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complete and form heterogeneous systems, allowing for a new category of distributed 

mission to be categorized, as shown in Figure 11 [40]. 

 

Figure 11: Federated satellite system. 

2.3.4 Modular 

Modular concepts are relatively new DSS classifications in which the 

satellites/modules are disintegrated, as shown in Figure 10 (d). Based on the CubeSat, 

Jiping et al. presented a new type of DSS with a reconfigurable construction and 

customizable function, dubbed Space Modular Self-Reconfigurable Satellite (SMSRS) 

design concept as shown in Figure 12, which shows the SMSRS configuration and the 

deployment from the folded state to work state. The following are some of the features 

of SMSRS: (1) Modularity, (2) Scalability, (3) Structural Reconfigurability, (4) Risk 

Resistance, and (5) Functional Adjustability are all critical characteristics [58].  



 

 
 

 

Figure 12: i) Model of SMSR, ii) Configurations of SMSRS (a) Folded state, (b) Unfolding, (c) Unfold state, (d) 

Work state. Adapted from [58].

Optical cameras, SAR, communication payloads, and other payloads are among the 

payloads carried by SMSRS. SMSRS, while carrying several payloads, arranges and 

reorganises these payloads in a variety of space orientations through structural 

reconfiguration, allowing it to carry out a variety of space missions. SMSRS is commonly 

used in the following scenarios [58]: 

a) When SMSRS transports numerous optical cameras, joint motions may cause these 

cameras' spatial orientations to alter. By stitching together their field of view, these 

cameras might accomplish a larger imaging area, as shown in Figure 13 (a), or 

reconnaissance of numerous targets, as shown in Figure 13 (b). 

b) As illustrated in Figure 13 (c), SMSRS can achieve multi-area communications to the 

ground by carrying several communication payloads and adjusting them to different 

orientations. 

SMSRS application scenarios are not restricted to these, and there are broader 

expansions available. Simultaneously, a considerable amount of space debris is produced, 

endangering the survival of satellites in orbit. SMSRS's multi-functional feature, which 

allows individual satellites to execute many functions adaptively, can cut down on satellite 
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launches. It eases the strain on space traffic management and minimises the amount of 

space debris produced [58]. 

 

Figure 13: Application scenarios for SMSRS (a) SMSRS carries numerous optical cameras and stitches 

together fields of view. Multi-camera SMSRS surveillance of multiple targets (c) SMSRS provides multi-area 

communication to the earth [58]. 

2.3.5 Swarms 

Swarm intelligence studies how natural (and artificial) multi-agent systems 

cooperate via decentralised control and self-organization, as shown in Figure 10 (e). Bloom 

[59] coined the term while researching complex adaptive systems, and it is made up of 

several principles (distributed parallel processing, superorganism, group 

selection, apoptosis). A typical swarm system has specific characteristics, such as a large 

number of homogenous agents (either identical or belonging to several typologies) that 

interact with one another via fundamental rules that exploit only local information. 

Information is exchanged either directly with another agent or indirectly through the 
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environment. Stigmergy is the name given to this indirect coordinating mechanism [60]. 

The system's overall behaviour finally organises the group. This type of individual 

behaviour is commonly stated in probabilistic terms based on local neighbourhood 

perception. This ensures that the system can be scalable, parallelised, and fault resistant. It 

also includes consideration for any Swarm Intelligence system. It is distributed (executed 

by each agent in the system) and integrates randomization through each node's decision 

process. This is the reason, why the system is not stuck in "local compressed states" [61]. 

This allows a swarm divided into multiple isolated subgroups to have a single module 

eager to leave the group and keep the interaction process alive. In reality, swarms are very 

adaptable while also being extremely resilient (the system continues to work even if certain 

components fail) and completely decentralised and unsupervised. It works whether they 

are being used to describe natural or man-made agents. Satellite swarms are distributed 

missions in which the infrastructure modules are autonomous satellites conducting their 

own functions without the interchange or collaboration of resources (such as data). A 

distributed satellite of this kind comprises homogenous modules with the same or similar 

capabilities [62]. By increasing the number of modules dedicated to a certain task (i.e., 

adding redundancy), the set of constellation-conforming modules increases the system's 

usability, benefiting the system's robustness. For example, a deteriorating sensor in one of 

the modules of an EO mission does not prevent the operators from obtaining images. 

However, the amount of resources transferred (i.e. power, computational resources) is 

almost minimal in this situation. This type of distributed spacecraft can still communicate 

with one another to preserve flight formation or to relay critical trajectory information (e.g. 

to avoid collisions) [41, 62-64]. Nonetheless, their functions are limited to local, and their 

activities are done autonomously, as shown in Figure 9, without transferring any resources 

altogether [40, 41]. 

2.3.6 Formation  

The coordination of multiple satellites to achieve the objective/goal is known as a 

formation. The flight of multiple objects in formation is known as formation flying, as 

shown in Figure 10 (c). In an effort to match the user's requirements, different 

configurations of formation flying missions are available. Small differences in the orbital 
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parameters of the deputy satellite in relation to the nominal parameters of the chief satellite 

produce each configuration. Satellite formation flying has many architectures based on 

configuration, operation mode, and other parameters. References for more information can 

be found in the literature [65, 66]. In any case, the following sections cover the most critical 

aspects of the classification. 

Cluster formation: A cluster configuration occurs when a set of satellites are organised in 

a close formation and positioned in orbits that keep them near together. Satellites in a 

cluster normally travel close together; however, this is not always the case in a trailing 

formation [52, 65]. 

Trailing formation: The satellites share the same orbit and follow one another with 

constant mean anomaly differences, keeping a predetermined relative angular separation 

from the Earth's centre. Notice that in terms of the mean anomaly the relative phase 

between satellites on a trailing formation is always constant, regardless of the eccentricity. 

The relative angular spacing in elliptic orbits, on the other hand, changes depending on the 

satellite's location. As a result, while the primary satellite is at perigee, these angles must 

be determined [65]. 

Leader-Follower formation: When describing two spacecraft, the term ‘Leader-Follower' 

has the clearest meaning when one (the follower) is forced to fly in formation with the 

leader. In some works of literature, the term ‘Leader-Follower' can also refer to a group of 

spacecrafts led by a single hierarchical leader. The following is the list of alternative terms 

for describing a leader-follower formation hierarchy. (i) Chief-Deputy, (ii) Master-Slave, 

(iii) Mother-Daughter, (iv) Primary-Secondary, (v) Hub/Combiner-Telescopes/Mirrors [65-

68]. 

2.3.7 Constellation of Formations 

A constellation of formations is a set of formations, where each formation has flight 

coordination between neighbouring satellites.  In the constellation view, each formation 

can be described by the centre of mass of each formation, flying far away from each other 

but with a common mission goal, as shown in Figure 10 (f).  Within the formation, there is 
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typically relative navigation, guidance and control to acquire and reconfigure the relative 

orbits. On the other hand, the constellation objective is stated in terms of the desired orbit 

of certain selected satellites (sometimes called chief) or some weighted position average as 

the centre of mass of each formation in the constellation.  Notice that each satellite must 

obey two objectives: to keep the formation relative geometry and to belong to the 

constellation [69]. 

2.3.8 Hybrid Missions 

Hybrid Mission architecture categories are theoretical extremes, i.e., a mix of 

distributed systems generates this type, which is more complicated in most real 

circumstances and tends to be located in the centre of Figure 9. A fractionated satellite is a 

spacecraft unit capable of building a constellation with the other satellites (fractionated 

satellite swarm) or cooperating with other units in more heterogeneous and complex 

situations (federation of fractionated satellites). It is worth mentioning that mission designs 

can change quadrants in some situations, depending on the mission goals enforced by the 

ground segment [40, 41]. Hybrid mission objectives may alter because of a technical issue 

(unit maintenance, repair, replacement, research potential) or for commercial reasons 

(exploitation of modules, sporadic provision of services). Federated satellite systems with 

modules that can function individually or in formation in flight are excellent examples of 

this dynamism [40]. Table 1 provides a detailed description of different types of DSS 

architecture. The level of the operational independence of a satellite or a fraction of 

distributed spacecraft is characterised as Operational/Functional Independence. Individual 

spacecraft or fractions of a distributed spacecraft's Homogeneity is defined as the degree of 

similarity between them. [10, 11, 30, 41]. 

 Jacqueline et al. [2] studied a variety of DSS attributes and classified them 

according to the taxonomy shown in Figure 14, and defined all of the concepts used 

in this taxonomy. 

 

 



 

 
 

Table 1: Types of distributed mission architectures. Adapted from [30].   

DSS architecture type Mission goals Cooperation Homogeneity 

Operational/ 

Functional 

Independence 

Constellation 

Mission goal 

shared 

(Iridium, GPS) 

Cooperation is required 

to support the mission 

goals 

In general, 

homogeneous 

components, some 

differences possible 

(GPS generations) 

Autonomous 

Formation 

Trains 

Mostly 

Independent, 

but could be 

shared 

Cooperation from 

optional to required 

Heterogeneous 

components 
Autonomous 

Clusters 
Mission goal 

shared 

Cooperation is required 

to support mission goals 

Homogeneous 

components 

From autonomous to 

completely co-

dependent 

Leader-

Follower 

Mission goal 

shared 

Cooperation from 

optional to required 

Heterogeneous 

components 

From autonomous to 

completely co-

dependent 

Swarms 
Mission goals 

shared 

Cooperation required to 

support mission goals 

From homogeneous to 

heterogeneous 

components 

From autonomous to 

completely co-

dependent 

Fractionated 
Shared mission 

goals 

From optional (service 

areas) to required 

(distributed critical 

spacecraft functions) 

Heterogeneous 

components 

From autonomous to 

completely co-

dependent 

Federated 
Independent 

mission goals 
Ad-hoc, Optional 

Heterogeneous 

components 
Autonomous 

Modular 
Mission goal 

shared 

Cooperation is required 

to support mission goals 

From homogeneous to 

heterogeneous 

components 

From autonomous to 

completely co-

dependent 

Hybrid 

Mostly 

Independent, 

but could be 

shared 

Ad-hoc, Optional 
Heterogeneous 

components 

From autonomous to 

completely co-

dependent 

Constellation of 

formations 

Mostly shared 

but could be 

independent 

Cooperation is required 

to support mission goals 

From homogeneous to 

heterogeneous 

components 

From autonomous to 

completely co-

dependent 

2.4 DSS System Architecture 

A methodology for the bottom-up design of a distributed architecture is widely used, 

where elements of each layer are built up to reach the desired distributed architecture. 

The basic units arise from the bottom layer's objects and elements. At the top, there is a 

launch plan that shows which vehicle will launch each module [53]. DSS hardware and 

software architecture is discussed in the following sections. 
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Figure 14: DSM Terminology Adapted from [2].

2.4.1 Hardware Architecture 

Modules can be defined as constituents of a distributed system, such as payload 

modules, which include mission-specific instruments,  functionalities, and infrastructure 

(or resource) modules that support the mission-specific payload modules [11, 26, 41]. DSS 

architecture provides a plug-and-play system due to the physical independence between 

the modules. Furthermore, it increases the value of the DSS. An example of this 

architecture is shown in Figure 15, with PR: Processor, DL: Downlink, PL: Payloads are 

fractionated, distributed and connected through ISL [28]. 
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Figure 15: DSS architecture. Adapted from [28]. 

A DSS Hardware illustration is shown in Figure 16, which is a dove system consisting of a flock 

of satellites used mainly for EO operations. Cloud-based mission control is used for mission 

planning and scheduling in this system. Every payload plan and change in the task is updated 

via the network of ground stations operated by planet labs [15, 16].    

 

 

Figure 16: DSS Hardware architecture (Dove System) [15]. 

2.4.2 Software Architecture 

Traditionally, spacecraft is controlled from a main on-board computer (possibly with 

redundant backups). Typically, modern spacecraft employs several dedicated on-board 

computing capabilities in charge of particular tasks and/or subsystems. Depending on 
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the features of the mission, suitable software architectures are designed. Software 

architecture for DSS seeks to operate a system autonomously, where the components 

interact to: 

i. Distribute tasks between modules /components of satellites,  

ii. Allocate infrastructure resources,  

iii. Perform task scheduling in a distributed manner as per requirements. 

A structural view of software architecture is shown in Figure 17. The representative 

modules/components are not homogenous, indicating they have different payloads, 

computational capabilities, subsystems, and availability times, i.e., system encapsulation.  The 

system is made up of autonomy management entities (i.e., task planners) that interact 

autonomously to operate a spacecraft. A transparent communication channel between global 

and local entities is provided by the Distributed System Layer (DSL) [40]. 

Distributed System Layer (DSL)

Master

Local Task 
Planner 2

Local Task 
Planner 3

Local Task 
Planner 4

Local Task 
Planner N

Local Task 
Planner 1

Local 
Software 
Platform 

1

OS_1

Local 
Software 
Platform 

2

OS_2

Local 
Software 
Platform 

3

OS_3

Local 
Software 
Platform 

4

OS_4

Local 
Software 
Platform 

N

OS_N

Satellite 
Module 1

Satellite 
Module 2

Satellite 
Module 3

Satellite 
Module 4

Satellite 
Module 4

Global 
Planner

Autonomy 
System

Interface

Arbitrary 
low level 

components

 

Figure 17: Distributed software architecture. Adapted from [40]. 

The entire architecture is controlled using two control levels, the Global control level, 

which is mainly relative to the software infrastructure domain, and the Local control 

level, which is relative to each module domain. The software architecture incorporates a 

master-slave hierarchical relation. In recent times, software architectures have been 

designed to suit changing environments. In addition, the structural description of the 

architecture also consists of dynamic management policies. The hierarchy and data 
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encapsulation are detailed in the structure, while the policies define the system's 

functional behaviour. The system's functional view locally manages activities hidden 

from the autonomy system, which includes activities/tasks done by local software 

platforms—for example, satellite formation, functionalities/tasks extrinsic to the 

infrastructure, maintenance tasks, etc. The Global tasks are scheduled by the autonomy 

system, i.e., the main activities/tasks that are executed, a priori, by any module in the 

infrastructure. The “Policy” is the architecture’s functional behaviour/model, which 

creates an interchange of information among the Global and Local control levels. It 

provides a method to execute distributed assignments of global objectives for each 

module and period consisting of a compendium of algorithms. Considering the 

distributed autonomous software architecture within a dynamic context, dynamic 

management policies are adopted, bringing about changes in the mission.  

Sub-tasks 3

 Sub-tasks 2

Sub-tasks N

Sub-tasks 4

Sub-tasks 1

CombinationDecomposition

Intial Task/
Activities/
Problems

Sub-tasks are performed

N-task, I-Module
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Solution/Task 
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N-task, M-Module

Combinatorial 
Optimization

  
 

 

Figure 18: Task execution in a distributed system. Adapted from [40]. 

The Local-Global approach of software architecture is a mixed management policy. 

This is intended to provide an arbitrary number of heterogeneous modules to an adaptive 

planning solution for an autonomous distributed spacecraft (i.e., payloads, 

computational capabilities, different platforms, hardware, ISL bandwidth, etc.). It had 

grown accustomed to the software infrastructure modules [40]. This balances the master 

module processed information. By decomposition, the “multiple-tasks multiple-
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modules” task/problem is changed into “multiple-tasks single-module”, as depicted in 

Figure 18. 

2.5 Conclusion 

Space systems mostly encounter a great deal of uncertainties in the space 

environment. This makes their design specifications difficult and, in many instances, 

intractable since a huge number of feasible design options must be evaluated against a 

multitude of uncertain situations. Several sources of uncertainty occur for space systems 

in both space environment and ground-based setup, including technological 

developments, fluctuations in demand, failure to launch, availability of funding, and 

changes in stakeholder requirements. This results in increased cost and complexity, 

especially for conventional monolithic designs. Alternative designs for these systems 

should be considered to reduce both space and ground-based uncertainty. This chapter 

presents a unified classification of DSS and discusses the various categories that make up 

this categorisation. The modularity spectrum mentioned earlier should be used to 

evaluate these designs. It is apparent that distributed systems will play an essential role 

in the modern space era. As a result, appropriate strategies and use cases for exploring 

and exploiting DSS architectures should be outlined. 
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Chapter 3 

AI for Autonomous Operation in Space 

In a system's context, autonomy can be defined as the ability to make informed, 

reasonable, self-reliant, and self-determined decisions. A system should be able to sense, 

think, and act inside its surrounding environment in order to be deemed autonomous. It 

necessitates the capacity to detect its surroundings as well as some awareness of one's own 

powers and how they affect one's environment and internal condition. An autonomous 

system makes inferences and conclusions about its own goals and takes action to achieve 

them [70]. Additionally, an autonomous system must react to non-nominal conditions by 

adjusting its system of operations to fulfil its goal while being secure. The degree of 

autonomy a system achieves is determined by the degree of off-nominality it can handle 

and the level of abstraction of its objectives [71]. 

A closed-loop (“sense-think-act”) system, as shown in Figure 19, describes an 

autonomous (machine) device or function for different layered architectures as follows. 

• Sensors (“sense”) provide the computer with knowledge about its surroundings, 

i.e., data. 

• Control software is used to process the data ("think"). 

• Conduct an operation (“act”) without further human interference based on its 

analysis. 

As a result, autonomy is described as a system's ability to function without direct human 

interference, though it is a spectrum with several levels and grey areas. Some autonomous 

systems in aerospace carry out predetermined acts that do not alter in response to the 

environment (automatic). Other systems (automated) initiate or modify their behaviour or 

output in response to environmental feedback, while more advanced systems (autonomous) 

combine environmental feedback with the system's own interpretation of its current 

situation. Increased autonomy is often viewed as increased “intelligence” or even “artificial 

intelligence” for a specific mission, and it is usually equated with greater adaptation to the 

environment. Over the years, it has been agreed that architectures for autonomy should be 
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included in a planning layer, a task sequencing layer, and a reactive layer. Deliberative, 

executive, and functional layers are all terms used to describe these layers. These layers are 

defined by their separation from the equipment and the time it takes for them to respond. 

Response-time constraints usually imply limitations on the capability to deliberate and the 

time horizon that can be considered. The functional layer has fast turnaround requirements 

since this must maintain pace with the hardware, and each component normally only 

considers one task or series of tasks. The executive layer manages a collection of tasks at the 

moment, and it only needs to reply fast enough to meet task action potentials and 

terminations. Finally, the deliberative layer considers numerous tasks, multiple 

possibilities, and future repercussions. It just needs to reply quickly enough to offer the 

executive extra job sets or plans when necessary. On the other hand, the layers do not just 

indicate a boost in capabilities; trade-offs do exist. The functional layer has access to detailed 

data about the hardware and frequently performs complex numerical calculations to decide 

responses or provide data to the layers above. The executive layer usually includes 

contingency management and control skills that the deliberative layer lacks. Each layer 

executes a variation of the sense-think-act cycle in an autonomous system. The overarching 

system of autonomy has a sense-act-think cycle as well. Sensing entails gathering data from 

lower levels or hardware and transferring it to a representation that the software can 

understand. Thinking entails weighing sensory data, spacecraft information and desired 

outcomes before deciding what should be done. Finally, acting entails putting the decisions 

made throughout the cognitive cycle into action [72]. The European Cooperation for Space 

Standardization (ECSS) has defined four degrees of autonomous capability, with level E4 

being the most autonomous. Only level E4 compatible technologies can be deemed 

genuinely autonomous, according to the criteria in Table 2, whereas levels E1 to E3 relate to 

human-operated or automated systems. Unlike autonomous systems, automated systems 

can only deal with their designers' predicted scenarios. It will react to these conditions using 

so-called on-board control procedures, which are pre-programmed sequences of operations 

(i.e., events). The different levels of autonomy in mission execution are shown in Table 2. In 

order to operate the entire mission autonomously, there is a need for autonomy in mission 

data management and mission fault management. ECSS defines these capability levels as in 

Table 3 and Table 4 [73]. 
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Figure 19: The Sense-Think-Act cycle Autonomous systems layered architecture [72]. 

Table 2: Levels of autonomy for mission execution as stated by the ECSS [73]. 

Level Description Functions 

E1 
Mission execution underground 

control with limited on-board 
capability for safety issues 

Real-time control from the 
ground for nominal operations 

Execution of time-tagged 
commands for safety issues 

E2 
Execution of pre-planned, ground 

defined, mission operations on-
board 

Capability to store time-based 
commands in an on-board 

scheduler 

E3 
Execution of adaptive mission 

operations on-board 

Event-based autonomous 
operations Execution of on-board 

operations control procedures 

E4 
Execution of goal-oriented mission 

operations on-board 
Goal-oriented mission re-

planning 

Table 3: Levels of autonomy for Mission fault management as stated by the ECSS [73]. 

Level Description Functions 

F1 
Establish a safe space segment 
configuration following an on-

board failure 

Identify anomalies and report to 
ground segment Reconfigure on-

board systems to isolate failed 
equipment or functions Place space 

segment in a safe state 

F2 
Re-establish nominal mission 

operations following an on-board 
failure 

As F1, plus reconfigure to a 
nominal operation configuration 

Resume execution of nominal 
operations Resume generation of 

mission products 
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Table 4: Levels of autonomy for mission data management stated by the ECSS [73]. 

Level Description Functions 

D1 
Storage on-board of essential 

mission data following a ground 
outage or a failure situation 

Storage and retrieval of event 
reports Storage management 

D2 

Storage on-board of all mission 
data, i.e., the space segment, is 

independent from the availability 
of the ground segment 

As D1 plus storage and retrieval of 
all mission data 

Satellite operations can occur in Earth orbits or deep space missions, such as planetary 

exploration. Both activities require the use of robotics and autonomy. Most spacecraft 

operations' control functions and procedures are transmitted for immediate execution by 

telecommand or, more commonly, in precisely organised sequences at specified times. 

Almost all remote sensing satellites, for example, gather images and downlink to Earth at 

predetermined geographic areas while retaining the correct attitude using on-board sensors 

and reaction wheels. On the other hand, Astronauts operate robotic systems in space, such 

as, the Canadian arm Remote Manipulator. Few autonomous aerospace systems make 

decisions without human intervention in order to attain high-level objectives. Freed et al. 

[74] offer a Verification and Validation (V&V) methodology for autonomous space systems 

that aims to increase trust in the stability of complicated software. This combines runtime 

analyses and model control using software design architectures to enable traceable modular 

verification activities and automated code generation while delivering automatic formal 

V&V verification tasks. Freed's intelligent automation system guarantees that software is 

conceived, produced and verified by domain experts-engineers and scientists for space 

activities, which is another crucial part of creating confidence in autonomous software [74]. 

As defined by Proud et al. [75] and Novaes [76], variable autonomy develops the concept 

of selecting desirable levels of autonomy while constructing a space system. This allows the 

autonomous system or the human user to alter the level of autonomy as needed by the 

situation. Autonomous space systems provide excellent sensing and are therefore necessary 

if human usage and exploration of space are to expand in terms of both reach and 

complexity. Trusted autonomous spacecraft systems will allow such activity to continue 

with confidence. For crucial space systems, several scenarios can be predicted. Some of these 

are already in the development and demonstration stages. For example, autonomous on-
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board data processing, on-orbit satellite servicing/repairing, analysis and decision-making 

for remote sensing for both defence and civil applications, as well as future human space 

habitation, which could include both space tourism and deep space colonisation, are all 

plausible scenarios [71, 77-79]. Figure 20 shows an evolutionary roadmap of space system 

capabilities with a growing degree of autonomy over time. The four categories are defined 

as follows, 1. Teleoperation (operated from Earth), 2. Automatic Operation (pre-

programmed self-control), 3. Semi-autonomous Operation (start with a predefined 

command sequence, where the machine adapts to the external environment), and 4. Fully 

Autonomous Operation (autonomous decision-making (goal-oriented)) [80].  Autonomy 

can be incorporated into various segments of the satellite infrastructure. With recent trends, 

TASO for space applications is becoming more popular. AI applications in the control and 

space segments can potentially increase the value of both ground and space operations.   

Figure 20: Evolution of Autonomy in space systems. Adapted from [80].

3.1 Human-Machine Autonomy 

The autonomy of a machine is significant because it influences the number of tasks 

it can complete because of the increasing demand and regularity of human-machine 

interaction. There are several levels of autonomy, varying from teleoperation to 

complete autonomy. Beer [81] proposes a structure for categorising levels of autonomy 

and guidelines for choosing and maximising the appropriate level of human-machine 

interaction centred on the machine’s intended purpose. Human interaction is required 

at all levels except the final stage of autonomy. The categorisation is shown in Table 5. 



 

 
 

Table 5: Levels of Automation. Adapted from [81]. 

Automation 
Level 

Level Name Description 

1 Manual Human performs all mission aspects 

2 Tele-operation Machine assists in task execution 

3 Assisted Tele-operation 
Machine assists in sensing and task execution and 

intervenes when needed 

4 Advisory execution 
Human formulates mission, and machine executes 

the task 

5 Skilled Execution 
Machine assists in sensing and planning and 

executes the task 

6 
Shared Control with 

Human Initiative 
Autonomous Machine operations with human 

oversight 

7 
Shared Control with 
Machine Initiative 

Autonomous Machine operations with human 
assistance 

8 Supervisory Control 
Autonomous Machine operations with a human 

directive 

9 Executive Control 
Autonomous Machine operations with human 

override 

10 
Full Autonomy, i.e., 
Trusted Autonomy 

Autonomous Machine operations without human 
intervention 

3.2 Cognitive Human-Machine Systems 

A human-machine system incorporates the functions of an individual human 

operator (or group of operators) and a machine as an interface. This can also be 

viewed as a system of a single entity interacting with the external environment. An 

autonomous system or function is, by definition, out of human control to some extent. 

Humans can, however, exert some control during the design and development stage 

at the point of task initiation and during service, for example, by interrupting the 

system's operation. The need for human supervision or the degree of autonomy that 

can be tolerated is related to the complexity of the environment wherein the system 

operates as well as the complexity of the role it executes. There is no widespread 

model for ideal human-machine interaction with autonomous systems. In general, the 

higher the complexity, the greater the need for direct human control and the lower 

the tolerance for autonomy, particularly for safety-critical tasks and environments in 

which a system failure may injure or kill people or cause property damage. When an 

autonomous system is used in an unpredictable, uncontrolled environment, there is a 

high risk of failure with unforeseen consequences. Nonetheless, recent technological 
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advancements in complex control software, such as AI techniques, aim to increase the 

degree of autonomy, tolerating more complex tasks in complex environments. 

Humans can control machine systems in a variety of ways: 

1. Direct control: Requires continuous interaction by a human operator to control the 

system's functions directly or indirectly, making it non-autonomous. 

2. Shared control: The human operator controls specific tasks directly, while the 

computer controls others under the operator's supervision. The aim of shared 

control is to: 

a. Combine human control's advantages (global situational awareness and 

decision) and computer control (high-speed, high-accuracy actions). 

b. Partially overcome human control limitations (attention period and field of 

vision limitations, tension, and fatigue) and machine control limitations (limited 

situational awareness and decision-making capacity, sensing uncertainties). 

3. Supervisory control: A device executes tasks autonomously while a human 

operator supervises and provides guidance, intervenes, and reclaims control as 

required. 

Supervisory control is often used in civilian applications because direct or shared 

control of a machine system is not feasible due to communication delays between the 

operator's commands and the system's corresponding operation, such as in systems 

working in outer space or deep-sea areas. 

3.2.1 Human-on-The-Loop 

 Predictive control is challenging in most real-world environments because the 

operating environment is complex, unpredictable, and dynamic in nature. On the 

other hand, human supervisory control allows operators to exert some control 

through “human-on-the-loop” monitoring and intervention. There may be several 

loops in which the operator may intervene, each with different outcomes, such as a 

low-level control loop for particular roles (control level) and/or a high-level control 

loop for broader objectives (planning level). In any case, successful human-on-the-

loop monitoring and intervention necessitate constant situational awareness as well 
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as sufficient time to intervene (i.e., override, deactivate, or take other actions) and a 

way to interfere, such as a permanent contact connection (for remotely operating 

systems) and/or direct physical controls that allow the user to regain control or 

deactivate the machine. Unfortunately, even though the human-on-the-loop model 

meets all the above requirements, it is not a silver bullet for maintaining successful 

control over autonomous systems due to well-known human-machine interaction 

issues. These include: 

1. Over-trust in the system, or automation bias, occurs when humans put too much 

faith in the operation of an autonomous machine. 

2. A lack of external environmental awareness on the part of the operator 

(insufficient knowledge of the state of the system at the time of intervention, as 

explained below) 

3. The ethical buffer, in which the human operator delegates moral obligation and 

accountability to the system, is viewed as a valid authority. 

3.2.2 Cognitive Human-Machine Interfaces and Interactions 

Cognitive Human-Machine Interfaces and Interactions (CHMI²) is a new method 

to human factors engineering in aerospace that incorporates adaptive functionalities 

into the design of the operator's command, control, and display capabilities [82, 83]. 

A CHMI² system evaluates human cognitive states built on critical psycho-

physiological observables being measured [83]. The cognitive states have been 

utilized to estimate and improve the operator's performance in the accomplishment 

of tasks to improve the efficiency and effectiveness of the overall human-machine 

teaming. Moreover, the result in the literature [83] indicates that higher levels of 

CHMI² supported automation are beneficial for space applications.  
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Figure 21: CHMI² Framework [13]. 

This shows that the presentation of CHMI² functionalities in potential space 

applications can considerably decrease response time, improve the operational 

effectiveness of spacecraft operation, and improve the overall protection and 

effectiveness of operations [83-85]. CHMI² supports human-machine teaming, 

whereby a system senses and adapts to the mission environment and the cognitive 

state of the operator. The CHMI² concept enables TASO in mission-critical and safety-
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critical applications [13]. The definition of CHMI² builds on and capitalises on 

significant developments in aerospace avionics human factors [86, 87], which are 

detailed in Refs. [86, 87]. The CHMI² framework's primary feature is an expansion of 

a device monitoring approach that assesses a Human-Machine System's (HMS) entire 

integrity by including both cognitive (human) and automated (machine) components. 

It is planned to characterise the operator's actions that resulted in a particular mission 

outcome by detecting specific features that can deduce cognitive states (for better or 

worse). This closed-loop input helps to improve HMS's trustworthiness in essential 

areas like the initial design process. It supports cognitive system engineering 

activities, such as the creation of system automation methodology based on operator 

policies and online adaption of the HMS based on the cognitive state of the person 

and the operating environment, during the early design process. The CHMI² system is 

depicted in Figure 21, and the reader is referred to Ref. [85] for further details. Before 

World War II (WWII), the human-machine connection was based on "humans 

adapting to machines, "whereas after WWII, it was based on "machines adapting to 

humans". It has progressed into CHMI², which is the communication between humans 

and non-AI computing systems since the dawn of the computer era. Computing 

products (such as automated machines) are typically used as a tool to aid humans in 

monitoring and executing tasks. The evolution of CHMI² over time is shown in Figure 

22. Similar to what has happened in the computer era, AI technology has enabled a 

new sort of CHMI² collaborative interaction that would eventually lead to a 

paradigmatic shift in CHMI² application areas in the AI era, resulting in new design 

thinking and approaches to AI system development. Figure 23 expands on the 

approach, and the reader is referred to  [88] for further details. 
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Figure 22: The development of the human-machine relationship across time. Adapted from [88]. 

 

Figure 23: Framework for Human-Centered AI [88]. 
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3.3 Artificial Intelligence for Space Operations 

The term "intelligent space system" refers to space systems that operate 

independently using intelligent methods. To achieve autonomy, AI approaches are 

used without the need of human interaction in this system. AI may examine previous 

work to make sure everything is completed correctly. Furthermore, including 

collaborative robots ("cobots") into the production process decreases the requirement 

for human workers in clean rooms. It improves the consistency of production 

processes that are prone to errors. AI, unlike humans, does not require rest or sleep 

in order to digest large amounts of data quickly.  The basic objective of the techniques 

utilised can also be used to classify AI [70, 79, 89]. The following are the four layers of 

autonomous systems, 

1. A foundational layer that covers traditional methodologies like statistics and 

econometrics, as well as complexity theory and game theory. 

2. A behavioural layer that comprises operational procedures including 

automated processes, machine translation, and collaborative and adaptive 

systems, among others. 

3. A sensory layer that provides language, audio, and visual information to the 

model. 

4. The "intelligence" is provided by a cognitive layer incorporating ML, 

reasoning, and information representation. 

These definitions are helpful in thinking about the purpose of the strategies being 

used. A combination of these would be used for the most advanced AI systems. AI 

would significantly affect human and robotic space exploration missions in several 

different ways. As time progresses, AI will complement space exploration activities 

in a variety of ways, as seen in Figure 24. 



 

 
 

 

Figure 24: AI-augmented space exploration. 

Table 6: Summary of AI techniques in space.

Spacecraft 
Operation 

Techniques References 

Remote sensing 
On-board data processing 

Image processing for precision agriculture and agroindustry 
Hyperspectral image classification 

[18, 90-105] 

Communication 
Satellite communication 

Inter satellite communication 
[106-111] 

Automated control 
and navigation 

Satellite attitude control 
Autonomous proximity operations and docking of spacecraft. 

AI-based control systems 
[112-120] 

Satellite Health 
Monitoring 

Automatic anomaly detection techniques 
Intelligent health monitoring systems 

Spacecraft structural health monitoring 
[121-127] 

Deep space and 
Multi-Planetary 

Exploration 
 

Exoplanet detection 
Interplanetary trajectory design 

Deep space communication 
[106, 128-134] 

Satellite Mission 
Planning 

Autonomous planning and scheduling 
Trajectory optimisation of the space launch vehicle 

Spacecraft trajectory optimisation 
[29, 120, 135-141] 

Space Traffic 
Management 

Collision avoidance 
Separation assurance 

Space Based Space Surveillance 
Space domain awareness 

[23, 142-149] 

       
        

       
         

    
        

                 
         

        
              
             

               
           

          
       

          
            
             

         
          

         
         

        
         

         
      
          

             



 

 
 

Table 6 gives the summary of AI approaches in spacecraft operation. Some of the 

main applications of intelligent systems in the near-earth region and multi-planetary 

exploration in outer space are,  

• AI for remote sensing data analytics. 

• Satellite Trajectory Planning and Collision Avoidance using AI. 

• Satellite Health Monitoring using AI. 

• Satellite Communication using AI. 

• AI for Deep Space and Multi-Planetary Exploration 

3.3.1 AI for Remote Sensing Data Analytics 

Every minute of the day, satellites produce thousands, if not millions, of imagery and 

several gigabytes of data daily. Weather and ambient pictures and photographs down 

to inches of the globe are all captured in these images. The autonomous capturing of 

Earth's photos poses a number of issues and possibilities where AI can assist. Without 

AI, humans are primarily responsible for interpreting, comprehending, and analysing 

imagery [89]. By the time a human arrives around to evaluate an image, the satellite may 

have moved back to the same place, requiring more refinement of the image analysis. 

AI-enabled recognition gives the researcher much power when it comes to image 

analysis and reviewing the images produced by satellites. On the other extreme, AI can 

analyse images as they can be captured and identify whether they have any 

abnormalities [94-96]. The use of AI to collect Earth's images also eliminates the need for 

a lot of communication to and from Earth to analyse images and decide whether or not 

a new one should be acquired. AI saves computing power by minimising 

communication, lowering battery use, and accelerating the image collection process [95]. 

3.3.2 Satellite Mission Planning and Collision Avoidance Using AI 

Satellites are complex pieces of infrastructure that must be operated in order to 

function. Many issues could develop, ranging from equipment malfunctions to crashes 

with other satellites/debris. AI is used to maintain track of satellite health and ensure it 

continues functioning properly. AI can keep track of sensors and equipment in real-time, 

sending out alarms and, in some situations, taking corrective action. SpaceX, for 
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example, utilises AI inside its systems to keep its satellites avoid colliding with other 

space objects [45, 150]. AI is also utilised to control satellite navigation and other 

spacecraft. AI can analyse the patterns of many other spacecraft, planets, and space junk. 

Once AI has discovered the patterns, the spacecraft's path can be changed to avoid 

collisions [121, 123, 125, 126, 151, 152]. 

3.3.3 Satellite Health Monitoring Using AI 

Satellites have intricate pieces of equipment in their subsystems that are required for 

operation. Malfunctions in this equipment have the potential to lead to several on-orbit 

failures, such as attitude control malfunctions, battery and solar-array failures [153]. 

These failures cost the satellite industry billions of dollars. To ensure reliable and safe 

operations, AI can monitor the health of all satellite subsystems. Satellite operations 

involve human fault identification during routine inspections using on-board logbooks 

and minimal surveillance. This arrangement is insufficient for sophisticated missions 

incorporating intelligent satellite systems like DSS. As a result, the satellite system's 

reactivity and functionality, particularly in fault detection, are substantially improved. 

Concerning the other essential subsystems, an autonomous AI-based satellite health 

monitoring and management system might be entrusted with monitoring and 

predicting their health. Automatic monitoring of all satellite subsystems eliminates the 

need for human inspection, and any detected defect or imminent malfunction promptly 

alerts the ground station, redistributing satellite system resources to mitigate its impact. 

After the warnings, an operator can intervene and take control. Offline analytical 

techniques could be used to obtain further information and resolve the detected issue. 

So that only non-nominal situations necessitate operator intervention, the “human-on-

the-loop” concept is promoted. Increased on-board autonomy would allow for more 

complicated satellite application missions and reduce human operator workload [154]. 

3.3.4 Satellite Communication Using AI 

In addition to keeping spacecraft operational, it can be challenging to communicate 

between Earth and space. Interference with other signals and the environment depends 

on the state of the atmosphere. A satellite may have a lot of communication difficulties 

to overcome as a result of uncertainties in the environment. AI is now being utilised to 
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control satellite communication in order to circumvent any transmission issues. These 

AI-enabled technologies can determine how much power and frequencies are needed to 

send data back to Earth or other satellites. The satellite does this regularly with an on-

board AI to allow signals to pass through as it travels through space [155-159]. Beam-

hopping, anti-jamming, detecting ionospheric scintillation, network traffic forecasting, 

channel modelling, telemetry mining, interference management, remote sensing, 

behaviour modelling, space air-ground integrating, and energy management are just a 

few of the applications where AI has shown promise. AI should be used to produce more 

effective, reliable, consistent, and high-quality communication systems in the future 

[109]. 

3.3.5 AI for Deep Space and Multi-Planetary Exploration 

Even satellites on other planets or in interplanetary space, like the Curiosity rover 

currently on the red planet, use AI to operate. The Mars rover is using AI to assist it in 

navigating the planet. The computer may make several modifications to the rover's 

trajectory every minute. The Mars rover's technology is quite similar to that used by self-

driving automobiles. The key difference is that the rover should cross more challenging 

terrain without having to worry about other vehicles or pedestrians. The rover's 

computer vision systems analyse the difficult terrain as it traverses. If an issue with the 

terrain is detected, the autonomous system adjusts the rover's navigation or modifies its 

trajectory to avoid it [77, 129-131, 160].  

3.4 AI Techniques 

In contrast to natural intelligence, AI is the study of intelligence as manifested in 

computer systems and observed in people and other lifeforms [161]. To be considered 

intelligent, a computer system must be capable of making reasonable judgments based 

on experiences and observations of the world (or a simplified model of it) and a set of 

objectives to be met. In space and satellite technology, AI holds a lot of promise. 

Spacecraft systems are complex and costly pieces of technology to assemble. There are 

repetitive and complex activities inside the manufacturing facilities of spacecraft that 

must be carried out with extreme precision and typically in clean rooms with limited 
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exposure to potential contamination. Robotics and AI-enabled technologies are utilised 

to help with the production process and take over some of the activities humans now do 

to lessen their workload. By applying suitable AI techniques, satellite systems can make 

real-time decisions without explicit instructions. A plethora of research coupled with 

many tests is underway to implement AI-based technology in space systems, with 

various projects beings carried out [77, 79]. Some of the most commonly used AI 

methods are shown in Figure 24. 

3.4.1 Based on Task Achievement 

AI can be classified into two distinct types, strong AI and weak AI, based on the 

given task. Strong or general AI is concerned with the replication or outperformance of 

human brains, including sensitivity, consciousness, mind, and feelings. On the other 

hand, weak or applied AI focuses on completing a single task or resolving a specific 

problem. Because most research in the space domain is limited to weak AI, this research 

focuses only on applied AI.  

3.4.2 Metaheuristics  

Most conventional optimisation methodologies use a deterministic rule to switch 

from a single point in the decision hyperspace to another. The main disadvantage of this 

method is the possibility of converging on a local optimum. Since stochastic algorithms 

are designed to find the best global solution to problems with multiple local minima 

(usually nonconvex problems), they typically overcome this issue. There are two kinds 

of stochastic algorithms, namely heuristic and metaheuristic, though the distinction is 

minor. Stochastic optimisation is sometimes the second-best way to get a solution. 

Conventional techniques such as linear programming and specialised approaches that 

take full advantage of problem understanding should be investigated first. On the other 

hand, classical and specialised methods are often naive, whereas heuristic and 

metaheuristic paradigms can be utilised for various conditions. In addition, the primary 

value of heuristic and metaheuristic paradigms is their robustness. In this context, 

robustness refers to an algorithm's ability to solve a wide range of problems, and even 
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multiple sorts of problems, with only slight changes to account for each problem's 

specific properties. A stochastic algorithm typically requires the length of the problem-

solution vectors, certain information about their encoding, and an evaluation function, 

with the remaining programme unchanged. A heuristic algorithm is a strategy that uses 

a rule (or a set of rules) to find (or try to find) appropriate solutions at a low cost of 

computing. Theoretically, a heuristic provides (eventually) a decent answer with 

relatively little effort, but this does not ensure optimality. Heuristics are a 

straightforward way of showing which of many options appears to be the best [162, 163]. 

The so-called metaheuristic algorithms are an extension of heuristic algorithms. Meta 

signifies "beyond" or "higher level," and metaheuristics outperform simple heuristics. 

Heuristics use problem-specific information to identify a "good enough" solution to a 

given problem, but metaheuristics, such as design patterns, are broad algorithmic 

notions that may be applied to various problems. Importantly, all metaheuristic 

algorithms use randomization and a trade-off between local and global search. Because 

there are no widely accepted definitions of heuristics and metaheuristics in the research, 

many people describe them interchangeably. On the other hand, recent trends have 

labelled stochastic algorithms with randomization and local search metaheuristics as 

stochastic algorithms with randomization and local search metaheuristics. Transitioning 

from a local to a global search using randomization is a good idea. As a result, practically 

every metaheuristic algorithm strives to be appropriate for global optimisation [164]. 

The following features are shared by almost all metaheuristic algorithms [165]:  

• They are nature-inspired, relying on physics, biology, or etiology principles, 

• They use stochastic components (incorporating random variables), 

• They do not use the objective function’s gradient or Hessian matrix. And  

• They have multiple parameters that must be adapted to the nature of the problem. 

Metaheuristic optimisation algorithms can solve complex problems over several 

iterations. Because of their inherent versatility and simplicity, metaheuristic algorithms 

have recently attracted a lot of attention. Metaheuristics can be broadly classified into 

four different types; the first one is ancient-inspired, mainly based on the Giza pyramid 

construction. Mutation Reproduction, Recombination, and selection are examples of 
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evolutionary processes that have influenced evolutionary algorithms. These algorithms 

are based on the survival fitness of candidates in a population (i.e., a set of solutions) for 

a specific environment. Population-based metaheuristics aim to construct a solution that 

combines components of good solutions. Trajectory-based metaheuristics are based on 

the idea of developing a solution and iteratively refining it (moves). The reader is 

referred to as Refs.  [162-170] to get a complete understanding of these concepts. A 

population-based metaheuristics approach, i.e., nature-inspired, as indicated  in Ref. 

[171] are distinguished by,   

• Their search uses a population of points (potential solutions). 

• Relying on direct fitness data rather than function derivatives or other similar 

details 

• Using probabilistic, rather than deterministic, transition rules. 

Population-based algorithms adopt a similar approach, regardless of the applied 

paradigm and follow from the algorithm below, 

1. Initialise the population. 

2. Fitness is calculated for each individual in the population. 

3. Produce a new population based on rules that strictly depend on each 

individual's fitness. 

4. Repeat steps 2–4 until a condition is met. 

Two of the most popular metaheuristic approaches are described in detail in the 

following sections. 

3.4.2.1 Ant-colony optimisation  

Ant Colony Optimisation (ACO) is a well-known bio-inspired method for solving 

combinatorial optimisation problems. [172]. For ACO algorithms, real ant colonies act 

as a reference of inspiration. Ants foraging behaviour has an impact on ACO. At the 

centre of this action is ant communication via chemical pheromone trails, which helps 

them to locate quick paths among their nest and food sources. Real ant colonies have 

this feature, which is employed in ACO algorithms to address discrete optimisation 
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issues. In ant colony optimisation algorithms, for instance, an artificial ant is a relatively 

simple agent that searches for good solutions to a stated optimisation issue. To employ 

an ant colony approach, the optimisation issue must be transformed into the problem of 

finding the shortest path on a weighted graph. The ant colony optimisation algorithm is 

demonstrated using pseudocode. To identify the optimal option, an artificial ant was 

developed. As the initial stage in solving a problem, each ant creates a solution. In the 

second stage, the trails discovered by several ants are compared. The path value, or 

pheromone, is updated in the third stage [173-175]. 

Initialise the system parameters 

    while termination condition not met, do 

        Construct Solutions 

        Apply Path Search 

        Update Pheromones 

    repeat 

end procedure 

When all of the ants have completed their solution, the trails are usually altered by 

raising or lowering the level of trails correlating to moves that were part of "good" or 

"poor" solutions, respectively. A global pheromone updating rule is as follows: 

 
𝜏𝑥𝑦 ← (1 − 𝜌)𝜏𝑥𝑦 + ∑∆𝜏𝑥𝑦

𝑘

𝑚

𝑘

 (1) 

 where 𝜏𝑥𝑦 represents the amount of pheromone deposited for a state change 𝑥𝑦, 𝜌 

represents the pheromone coefficient, 𝑚 represents the number of ants, and 

∆𝜏𝑥𝑦
𝑘  represents the amount of pheromone deposited by 𝑘𝑡ℎ ant, which is usually given 

for a Travelling Salesman Problem (TSP) problem (with moves corresponding to arcs of 

the graph) by 

 
∆𝜏𝑥𝑦

𝑘 = {

𝑄

𝐿𝑘
, 𝑖𝑓 𝑎𝑛𝑡 𝑘 𝑢𝑠𝑒𝑠 𝑐𝑢𝑟𝑣𝑒 𝑥𝑦 𝑖𝑛 𝑖𝑡𝑠 𝑡𝑜𝑢𝑟

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(2) 

 where 𝑄 is a constant and 𝐿𝑘 represents the cost of 𝑘𝑡ℎ ant’s tour. 



 

 
 

 

Figure 25: AI techniques in aerospace applications. 



 

 
 

3.4.2.2 Particle Swarm Optimisation 

Particle Swarm Optimisation (PSO) is one of the most extensively utilised 

metaheuristic algorithms, as evidenced by a series of research [176-183]. PSO is a swarm 

intelligence method that is based on numerical forms and requires a straightforward 

implementation. PSO's interaction with nature and societal issues is its most intriguing 

feature. The algorithm was developed to imitate flocking birds or swimming fish. In 

PSO, members of a population are candidate solutions to the problem, and the cost 

function determines the solution's quality. As is the case with most optimisation 

algorithms, limiting the search domain size improves calculation times.  

1. The global version of the PSO converges quickly, but when the problem is extremely 

challenging, i.e., the cost function being optimised is not convex, it may become stuck 

in local minima (results can differ based on population initialization or exploration 

ability). 

2. The swarm's exploration capabilities will improve with the local version of the PSO, 

but the computational convergence duration will be greater than with the global 

approach. 

3. The population-based optimiser is randomly initialised with a collection of potential 

solutions (particles) and then iteratively searches for an optimal solution by moving 

the particles inside the problem space. The swarm is made up of 𝑝 particles that 

represent different problem solutions in the search space. Each particle's position 

proceeds as follows: 

 𝑥𝑘+1
𝑖 = 𝑥𝑘

𝑖 + 𝑣𝑘+1
𝑖  (3) 

 where 𝑥 is the location of the 𝑖𝑡ℎ particle at time 𝑘 increments, and 𝑣 is the 

velocity represented by 

𝑣𝑘+1
𝑖 = 𝑣𝑘

𝑖 + 𝑐1 ⋅ 𝑟1 ⋅ (𝑝𝑘
𝑖 − 𝑥𝑘

𝑖 ) + 𝑐2 ⋅ 𝑟2 ⋅ (𝑝𝑘
𝑔

− 𝑥𝑘
𝑖 ) (4) 

where 𝑟1 and 𝑟2 are uniformly distributed random numbers in the range [0, 1], 

and 𝑐1 and 𝑐2 are parameters equal to 2 [182] and represent the cognitive and social 

scaling parameters.𝑣𝑘 does not refer to a velocity in the conventional sense, i.e., 𝑣𝑘 ≠
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𝑑𝑥𝑘

𝑑𝑡
, but rather to the rate at which the location per generation shifts. 𝑓𝑏𝑒𝑠𝑡

𝑖  and 𝑓𝑏𝑒𝑠𝑡
𝑔

 as 

best fitness estimate for the 𝑖th particle and global solution correspondingly. The 

pseudocode for PSO is given below. 

1. Initialization  

(a) Set constant 𝑘𝑚𝑎𝑥  , 𝑐1 and 𝑐2 

(b)  Initialization of particle positions in the problem space 𝑥0
𝑖  for 𝑝 particles 

(c)  Initialization of particle velocities in the problem space 𝑣0
𝑖  for 𝑝 particles 

(d)  Set 𝑘 = 1 

2. Optimisation 

(a)  Evaluate the function value 𝑓𝑘
𝑖 

(b)  If 𝑓𝑘
𝑖 ≤ 𝑓𝑏𝑒𝑠𝑡

𝑖  then 𝑓𝑏𝑒𝑠𝑡
𝑖 = 𝑓𝑘

𝑖, 𝑝𝑘
𝑖 = 𝑥𝑘

𝑖  

(c)  If 𝑓𝑘
𝑖 ≤ 𝑓𝑏𝑒𝑠𝑡

𝑔
 then 𝑓𝑏𝑒𝑠𝑡

𝑔
= 𝑓𝑘

𝑖, 𝑝𝑘
𝑔

= 𝑥𝑘
𝑖  

(d)  If the stopping criterion is satisfied, go to step (c) 

(e)  Particle velocities are updated. 

(f)  Particle positions are updated. 

(g)  Time is updated 𝑘 = 𝑘 + 1 

(h)  Go to step 2(a) 

3. Termination 

Explicit integration of the Ordinary Differential Equations (ODEs) for attitude and 

vehicle dynamics using the Dormand-Prince Runge-Kutta technique is possible thanks 

to the PSO algorithm's excellent computational parallelisation dependability and 

resilience [184] can be used, while implicit integration methods [185] may be more 

effective. 

3.4.3 Based on Learning 

ML approaches is a subset of AI techniques that are based on learning which is a type 

of data analysis that allows for the creation of analytical models to be automated. It is a 

branch of AI based on the idea that computers can learn through data, identify patterns, 
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and make judgments with small or no human intervention. An ML process is shown in 

Figure 26. A model that an application can query is trained based on a data or knowledge 

base. Regardless of suitable conditioning, data selection, or overfitting, the model 

improves with a larger database and longer durations of training. If the model can learn 

in the field, the application can add data to the knowledge base during runtime and train 

the model with it.  

 

Figure 26: Generalized machine learning process. 

A brief review of ML methods and an exposure to commonly used domain terms are 

provided in the preceding s sections. Different techniques for classifying ML methods 

have been taken in the literature—the most prevalent taxonomy in which techniques are 

classified according to the type of learning system used. 

3.4.3.1 Supervised Learning 

The algorithm is supplied with labelled training data in the form of labels that are 

included in the desired result in supervised learning. During the training phase, a model 

is constructed that specifies the link between the training data points' features or 

characteristics and the labels that belong to them. The model would then be put to the 

test to see if it would generalise to new information points or 'incidents'. Before being 

deployed to service, trained models were fine-tuned based on the assessment findings 

to create a model that extrapolates well with the new data. In most supervised 

approaches, the learning method keeps track of the difference between the model 

prediction and the label and uses it as an error term to drive model updating [21, 84]. 
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3.4.3.2 Unsupervised Learning  

The training data provided to the algorithm is unlabelled in unsupervised training, 

and the relationship model is created solely on the data attributes. Unsupervised 

learning methods include clustering, dimensionality reduction approaches, and 

association rule-learning methods [21, 84]. 

3.4.3.3 Semi-supervised Learning  

Semi-supervised learning is an ML technique that involves training using a small 

amount of labelled data and a large amount of unlabelled data. Semi-supervised 

learning is a sort of learning that falls somewhere between unsupervised (in which there 

is no labelled training data) and supervised learning (with labelled training data) [84]. 

3.4.3.4 Reinforcement learning  

In reinforcement learning, a model has been trained to learn a behavioural policy 

through many simulations iteratively, called the training set. Through trial and error, the 

agent learns how to attain a goal in an uncertain and potentially complex environment. 

In reinforcement learning, AI is presented with a game-like scenario. The machine uses 

the method of trial and error to find a solution to the problem at hand. AI gains either 

rewards or penalties for the acts it takes to persuade the system to perform the actions 

the programmer desires. Its aim is to increase the overall award. Reinforcement learning 

is a type of supervised learning in which an agent learns to do the best set of actions or 

rules to achieve a user-defined reward function, and the architecture is shown in Figure 

27. To find the optimal system settings autonomously, sophisticated learning and 

decision-making must be used by this intelligent space system, and the encouraging 

solution is to use ML [186]. 
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Figure 27: Reinforcement Learning Architecture [84].  

3.4.3.5 Deep Learning 

Deep learning is a subfield of ML that focuses on algorithms called Artificial Neural 

Networks (ANN). These networks are modelled after the structure and function of the 

human brain. The processing units are ANNs that are composed of inputs and outputs. 

ANN is a kind of ML technology that is inspired by biology and works in the same way 

as the brain (loosely). A brief overview of ANN is provided to highlight the distinctions 

between networks as well as the scenarios for which they can be used. The perceptron's 

architecture is depicted in Figure 28 (a). The input signals to the perceptron are scaled 

and added using a sequence of weights (typically randomly initialised prior to the 

learning process). The weighted total is passed via an activation function (typically non-

linear) to generate output. A number of structures can benefit from the learning process, 

also known as iterative weight updates. Backpropagation is one of the most extensively 

used methodologies in supervised learning systems, as seen in Figure 28 (b). The 

difference between the output and the desired output is used as an error term to 

repeatedly change the weights. Although a single perceptron has limited applications, 
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cascaded perceptron combinations could be used to learn complex connections between 

system/sub-inputs and outputs. The input-output model is really a weight matrix that is 

iteratively trained and initialised. Figure 28 depicts a layered feed-forward perceptron 

network. When comparing two neural networks, there are often many points of 

difference [21, 84]. These are based on the following, 

• Network Topology: This comprises the number of nodes in a network and their 

structure. The topology and the constituent nodes also influence the procedures of 

learning and recall. In addition to the simple perceptron mentioned earlier, other 

node forms in Figure 27 include [84]: 

o Recurrent cells: Take input and feedback from previous node outputs as well as 

from neighbouring nodes. The memory capacity allows for the estimation of the 

temporal state and time-series forecasts. 

o Memory Cells: Memory cells in Long Short-Term Memory (LSTM) networks are 

similar to recurring cells in LSTM networks, but they have three gates: input, 

output, and forget gates that interrupt, permit, or discard data propagation in the 

network to solve the explosive gradient problem that plagues traditional 

recurring neural networks. 

o Update/Reset gate: These cells are identical to memory cells but with update and 

reset gates, as opposed to memory cells' input, output, and forget gates. 

o Convolution kernels and pooling: These cells are the most essential components 

of co-evolutionary neural networks, and they are primarily employed in image 

processing and computer vision applications. They work by parsing; rather than 

using all pixels simultaneously, they employ discrete parts of the input image at 

each epoch. 

• Learning algorithm: This algorithm is used to update the network's weights. The 

most extensively used learning algorithms are: 

o Hebbian learning: This rule of weight update is based on the rule of Hebb, which 

is usually applicable to most unsupervised learning algorithms. When both 

neurons have strongly correlated outputs, the synapse (weighted connection) 
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between the two neurons is enhanced. For a synapse linking neurons i and j, the 

weight update rule is mathematically modelled as: 

𝑤𝑖𝑗(𝑛 + 1) = 𝑤𝑖𝑗(𝑛) + 𝜂𝑥𝑖(𝑛)𝑥𝑗(𝑛) (5) 

Where 𝜂 is the coefficient of the learning rate, we can see that an increase in 

synapse weight is proportional to the product of each neuron's output.  

o Competitive learning: This is another concept of unsupervised weight updating 

with the principle of 'winner takes all': 

𝑤𝑘𝑗 = {
𝜂(𝑥𝑗 − 𝑤𝑘𝑗), 𝑖𝑓 𝑛𝑒𝑢𝑟𝑜𝑛 𝑘 𝑤𝑖𝑛𝑠

0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (6) 

o Error correction learning: This is a supervised method of learning where the 

output goal value is known, and the network iteratively changes weights to 

converge to the desired output. The rule for updating the weight is as follows: 

Δ𝑤𝑘𝑗 = 𝜂𝑒𝑘𝑥𝑗  (7) 

Where 𝑒𝑘 = 𝑑𝑘 − 𝑦𝑘the error term or discrepancy between the 𝑑𝑘 mark and 𝑦𝑘 

network output. This method is the origin of the famous algorithm for gradient descent, 

widely used in supervised algorithms for learning. In fact, most backpropagation 

learning optimisers available today are based on this principle. Notable examples 

include AdaDelta, Adaptive Moment Estimation (Adam), RMSProp, Adagrad, 

Momentum, Gradient Descent (GD) and its variants Batch GD, and Stochastic Gradient 

Descent (SGD), Mini-Batch Gradient Descent. Among those, Adam is the optimiser to 

use to train a neural network in less time and with more efficiency. 

 𝛥𝑤𝑘𝑗 = 𝛼(𝑟 − 𝜃𝑗)𝑒𝑖𝑗 (8) 

• Recall: This refers to retrieving the data stored in the network after being qualified. 

Feedforward linear combiners (of n neurons) followed by a non-linear thresholding 

function are the most common recall technique: 

 
𝑦𝑗 = 𝑓(∑𝑥𝑖

𝑛

𝑖=1

𝑤𝑖𝑗) (9) 

Whereas the recall equation is of the type, for a network with feedback loops: 
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𝑥𝑗(𝑡 + 1) = (1 − 𝛼)𝑥𝑗(𝑡) + 𝛽 ∑𝑓(𝑥𝑖(𝑡))𝑤𝑖𝑗 + 𝑎𝑘𝑖

𝑛

𝑖=1

 (10) 

Table 7 describes typical ANN architectures that are classified based on mechanisms of 

learning and recall. 

Table 7: ANN types are differentiated by learning and recall processes [84]. 

Learning/Recall Feedback Feedforward 

Unsupervised 

• Adaptive Resonance 
Theory 

• Bi-directional Associative 
Memory 

• Boltzmann Machines 
• Hopfield Networks 
• Principle Component 

Networks 

• Fuzzy Min-Max Classifier 
• Kohonen's Self-Organizing 

Feature Map 
• Linear Associative memory 

Supervised 

• Gated Recurrent Unit 
• Long Short-Term Memory 

Network 
• Recurrent Neural Network 

• Adaline 
• Convolutional Neural 

Network 
• Multi-layer perceptron 
• Neocognitron 
• Perceptron 
• Radial Basis Function 

Network 
• Reinforcement learning 

 

Figure 28: (a)The Biological Neuron Perceptron Model. In an iterative feedback loop, weight adaptation is 

incorporated; (b) The perceptron multilayer network and the weight matrix map the outputs to the inputs 

[84]. 



 

 
 

 

Figure 29: Neural Network Category [84]. 

Convolution Neural Networks 

Convolutional Neural Networks (CNN) are regularised versions of multilayer 

perceptrons. Such perceptrons are typically fully connected networks in which each 

neuron in one layer is connected to all neurons in the next layer [99]. CNN is generally 

used for segmentation, classification, image processing, and other auto-correlated data 

processing. They are also utilised for speech recognition. Convolution is the process of 

applying a filter to an input signal as it is being played back. When looking for specific 

elements in a picture, it may be more productive to look at little sections of the image 

rather than the entire image at once. Among the most common applications of CNNs is 

image classification, such as discriminating between satellite images that feature 

roadways and those that do not. The use of CNNs for other standard functions, such as 

1. Perceptron (P)
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image segmentation and signal processing, is also a good fit for them. Each layer of a 

CNN model learns a collection of convolutional kernels throughout the training 

operation, which is essentially what happens during the training phase. During the 

deployment of the model, the trained kernels extract spatial information from the image 

and use these features to make inferences. Each convolutional layer is made up of a 

collection of filters known as convolutional kernels, which work together to create the 

final result. Filtering is accomplished by applying a subset of the input pixel values to a 

matrix of integers that has the same dimensions as the kernel [94, 97, 187, 188]. The 

operation of the convolutional kernel is depicted in Figure 30. 

 

Figure 30: Operation of the convolutional kernel. 

 

Recurrent Neural Networks 

Recurrent neural networks (RNNs) keep track of previous outputs at each epoch by 

integrating feedback loops. RNNs are better at learning temporal relationships in data 

sequences than CNNs, which are meant to learn spatial patterns [84]. Thus far, the 

CNNs are classic feed-forward networks in which activations travel from the input to 

output layers at a predetermined rate. The network output is distinct from the outputs 

of previous timesteps at any given timestep. The detailed classification is illustrated in 

Figure 29. There is no sharp divide between these subtypes, even though the concepts 

seem to vary. The field of data-driven AI has a wealth of valuable and adaptable tools 

that can be used in various applications with minimal enhancements. Table 8 presents a 

range of representative instruments and their respective high-level conceptual 

diagrams. 

Inputs

Kernels

Outputs



 

 
 

Table 8: A brief overview of the most widely used AI techniques [21]. 

Technique Conceptual Illustration Description 

Association 

Rule Learning 

Algorithms 

 

Association rule learning algorithms derive the rules that 

most accurately describe the observed relationships 

between variables in the dataset. Valuable and essential 

associations in large multi-dimensional datasets can be 

discovered through the formation of these rules. The 

methods in this class of algorithms include: (1) Fuzzy 

inference; (2) Adaptive Neuro-Fuzzy Inference System 

(ANFIS) 

Bayesian 

Algorithms 

 

Bayesian methods tackle regression and classification 

problems by explicitly applying Bayes Theorem. The 

methods in this class of algorithms 

include: (1) Multinomial Naive Bayes; (2) Averaged One-

Dependence Estimators (AODE); (3) Bayesian Network 

(BN); (4) Naive Bayes; (5) Gaussian Naive Bayes; 

(6) Bayesian Belief Network (BBN) 

Classical 

Artificial 

Neural 

Networks 

 

Bio-inspiration from the structure and functioning of 

naturally occurring neural networks has been a significant 

factor in the development of Artificial Neural Network 

models. Essentially, they can be described as a type of 

pattern matching algorithm widely used for classification 

and regression problems. The methods in this class of 

algorithms include: (1) Multi-Layer Perceptron (MLP); 

(2) Radial Basis Function Network (RBFN); (3) Back-

Propagation/Feedforward (BPNN/FFNN). 

Clustering 

Algorithms 

 

Clustering is the process of grouping a collection of objects 

such that objects in the same category (called a cluster) are 

more related (on the basis of a single or multiple metrics) to 

each other than to those in other groups. The methods in 

this class of algorithms include: (1) k-Medians; (2) k-means; 

(3) Hierarchical Clustering; (4) Expectation Maximisation 

(EM) 

Decision-trees 

 

Trained decision-tree models use multiple input variables 

to predict target variable values. The source dataset, which 

constitutes the root node of the tree, is divided into subsets 

containing the successor children. A set of splitting rules 

are built based on classification features. The methods in 

this class of algorithms include (1) Conditional Decision 

Trees; (2) Iterative Dichotomiser 3 (ID3); (3) Chi-squared 

Automatic Interaction Detection (CHAID); (4) M5; 

(5) Classification and Regression Tree (CART); (6) C4.5 and 

C5.0 (different versions of a powerful approach); 

(7) Decision Stump 

Deep Neural 

Networks 

 

Deep Neural Networks are an extension of Artificial Neural 

Networks that exploit the availability of abundant 

computational resources. They are characterized by a large 

number of hidden layers in order to deal with highly non-

linear problems. The methods in this class of algorithms 

include: (1) Stacked Auto-Encoders; (2) Deep Boltzmann 

Machine (DBM); (3) Deep Belief Networks (DBN). 

Dimensionality 

reduction 

 

 

Dimensionality reduction methods essentially exploit the 

inherent structure in input datasets to extract the most 

influential variables. This proves helpful when visualizing 

high-dimensional data or simplifying data that can 

subsequently be used in a supervised learning method. The 

methods in this class of algorithms include: (1) Principal 

Component Analysis (PCA); (2) Partial Least Squares 

Regression (PLSR); (3) Principal Component Regression 

(PCR); (4) Multidimensional Scaling (MDS); (5) Flexible 
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Discriminant Analysis (FDA); (6) Linear Discriminant 

Analysis (LDA); (7) Quadratic Discriminant Analysis 

(QDA); (8) Mixture Discriminant Analysis (MDiA) 

Ensemble 

methods 

 

Ensemble methods are models built using several weaker 

models that are separately trained and whose predictions 

are merged to boost the accuracy of the overall prediction. 

The methods in this class of algorithms 

include: (1) AdaBoost; (2) Gradient Boosting Machines 

(GBM); (3) Boosting; (4) Gradient Boosted Regression Trees 

(GBRT); (5) Stacked Generalization (blending); (6) Random 

Forest; (7) Bootstrapped Aggregation (Bagging) 

Instance-based 

algorithms 

 

Related to Clustering Algorithms. Each instance of input 

data is compared against a database using a similarity 

measure to find an optimal match and classify it into 

groups. The methods in this class of algorithms 

include: (1) k-Nearest Neighbour (kNN); (2) Learning 

Vector Quantization (LVQ); (3) Locally Weighted Learning 

(LWL) 

Regression 

 

The relationship between variables is modelled through a 

curve-fit which is refined iteratively using error 

measurements in the model predictions. The methods in 

this class of algorithms include: (1) Ordinary Least Squares 

Regression; (2) Linear and Nonlinear regression 

Regularization 

 

An extension to all ML methods wherein models are 

penalized on their complexity to support generalization. 

The methods in this class of algorithms include: (1) Ridge 

Regression; (2) Least-Angle Regression (LARS); (3) Elastic 

Net; (4) Least Absolute Shrinkage and Selection Operator 

(LASSO) 

While AI has been used successfully in space, it is still constrained to offline data 

processing but has not yet been utilised fully “on edge” within spacecraft.  

Table 9 shows some algorithms and applications that could be developed and 

evaluated for future "AI on-board" missions. For more information, the reader 

should consult Ref [189-191]. 

Table 9: A brief overview of AI on-board missions. Adapted from [189, 191]. 

Missions Applications 

Debris removal, 
Docking, and In-
orbit servicing: 

i. Feature extraction. 
ii. Identification against 3D mesh model. 

iii. Obstacle avoidance. 

EO missions (to be 
scaled to mission 

size, criticality, and 
duration) 

i. Band co-registration for push-broom multispectral and 
hyperspectral images. 

ii. Change detection in time series of Earth Observation images, 
various resolutions. 

iii. Cloud detection algorithms (F-mask or Sen2Cor, however, the 
whole Sen2Cor is quite big, maybe some essential parts of it). 

iv. Fire/flares detection. 
v. Image compression (jpeg/CCSDS), (preferably Earth Observation-

like picture). 
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vi. Increase resolution of all Sentinel-2 bands to 10m/pixel. 
vii. Monitoring of forest distribution. 

viii. Monitoring of ice at poles. 
ix. Open sea objects detection and monitoring. 
x. Reconstruction involving multiple Images alignment using SURF 

equivalent, like BRISK or ORB (SURF is patented) and RANSAC. 
xi. Super-resolution (increase resolution using series of images) 

through compressive sensing methods, like over-determined 
equations. 

xii. Supervised NN Image Classification of Multi-Spectral Images 
Based on Statistical Machine Learning (TBD if learning speed 
should be measured as the benchmark as well). 

xiii. Template matching (scale and rotation invariant) in Earth 
Observation-type image (e.g., from Sentinel-2). 

xiv. Vessel detection/identification, integration, and data fusion with 
AIS receivers - identification of piracy. 

Generic Imaging 
Instrument 
calibration 

i. Active / adaptive optics: wave front analysis + actuation. 
ii. Auto-exposure. 

iii. Flat field dynamic correction. 
iv. Focal plane adjustment and calibration. 
v. Geometric calibration. 

vi. Top of Atmosphere calibration. 

On-board platform 
imagers processing 

i. Identification of fast-moving meteoroids/disturbance/radiation. 
ii. Star tracing and multiple sensor data fusion. 

iii. Orbital propagation. 
Planetary 

Exploration 
(Autonomous 

Landing, Robotic) 

i. Camera/LIDAR fusion processing. 
ii. Identification of craters, boulders, obstacle avoidance, automatic 

path discovery. 

Reconfigurable 
platforms/on-board 
telemetry analysis, 

FDIR 

i. Adapt platforms to change in requirements or new standards. 
ii. Autonomous failure prognostic and detection. 

iii. Autonomous Safe mode management. 
iv. AI-based FDIR. 

Satellite guidance 
applications 

i. Autonomous AOCS management for constellations. 
ii. Autonomous collision avoidance. 

iii. Autonomous navigation. 
iv. Autonomous pointing and/or acquisition (AOCS-in-the-loop). 
v. Payload-in-the-loop visual-based navigation. 

vi. SDR / Beamforming / Adaptive Coding and Modulation. 
vii. Smart FDIR / failure prediction / smart HKTM. 

New missions that 
are possible credits 

to AI 

i. Reconfigurable science (several missions with the same 
Hardware/ Instrument). 

ii. Servicing / Non-cooperative approach and rendezvous. 
iii. Debris detection and removal. 
iv. On-board feature extraction/mapping. Raw data downlink only 

On-Demand basis or Added-Value basis. 
v. Rapid alert: fire, flood, earthquake detection. 

3.5 Conclusion 

Recent developments in the research of human-machine interaction were 

discussed in this chapter. Subsequently, by using the human-machine cooperative 

relationship, it may be possible to optimise the benefits while limiting the potential 

safety risks of utilising AI technology. For decades, the CHMI² community has 

used a human-centred approach. The current generation is transitioning from 
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human-centred design to human-centred AI, which is not a novel idea. While a 

technology-centric approach has dominated the development of AI technology, 

academics have studied a range of human-centred ways to address the particular 

difficulties highlighted by AI technology. A solid and comprehensive iDSS 

solution for space operation is only anticipated through the tailored integration of 

AI-based approaches. Depending on variables like available sensor data, failure 

modes/mechanisms, and overall system behaviour, the various methodologies for 

evaluating the performance of each mission element will change. Nonetheless, it 

is evident that these methodologies will increasingly rely on AI/ML techniques to 

facilitate TASO in an environment that is continually changing. 
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Chapter 4 

Disaster Management 

 This chapter discusses the applicability of iDSS for disaster management, with a 

particular focus on the management of wildfires. As a case study Australian bushfire 

that occurred in 2019 is considered as a case study. In addition to that, the development 

of an AI-based trusted autonomous system for on-board data processing to endow 

TASO is presented in this chapter. 

4.1 Wildfire 

Climate change and other environmental issues associated with human activities 

have recently received much attention in the scientific literature [240]. Such issues 

include extreme weather events [241], droughts [242], sandstorms [243], rising sea levels 

[244], tornados [245], volcanic eruptions [246] and wildfires [247]. Wildfires decimate 

global and regional ecosystems and cause a lot of damage to structures, injuries, and 

deaths [248, 249]. Due to this, it is becoming increasingly important to find fires and keep 

track of their type, size, and effects over large areas [250]. To avoid or lessen these effects, 

early fire detection and fire risk mapping are used [251]. In the past, wildfires were 

mostly found by people monitoring wide areas from fire observation towers and using 

simple devices like the Osborne fire finder [252]. Nevertheless, such methods were not 

very accurate, and their effectiveness could be affected by human fatigue accumulated 

during long observation periods. On the other hand, alternative sensors designed to 

detect gasses, flame, smoke and heat emissions usually need extended measurement 

times for molecules to approach the sensors. Also, since the range of these sensors is 

small, wide areas can only be covered using a large number of sensors [253]. Rapid 

advancements in object recognition, DL, and remote sensing have given us new ways to 

find and track wildfires. New materials and microelectronics have also made it easier 

for sensors to find active wildfire [254, 255]. There are three primary classifications of 

extensively used technologies that can identify or observe active fire or smoke conditions 

in real or near-real time, namely terrestrial, aerial, and satellite systems. These 
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technologies are typically incorporated with visible, infrared, multispectral, or 

hyperspectral sensors; once the data have been collected, they can be processed by 

applicable AI algorithms, usually a ML methodology. These techniques rely on either 

extracting hand-crafted features or on robust AI methods in order to detect wildfires in 

their earliest stages and to simulate how smoke and fires behave [254, 256, 257]. The 

different types of fire detection methods are shown in Figure 31. 

 

Figure 31: Fire detection methods. 

This research focuses on satellite-based fire detection by including appropriate AI 

approaches for on-board wildfire computation and analysis based on section 4.3.2 

suitable AI-algorithm and EO data are employed. Before proceeding, a detailed 

discussion of the satellite-based wildfire detection approach is provided. There have 

been numerous research efforts to identify wildfires from satellite imagery in recent 

years, mostly as a result of the vast number of satellites that have been launched and the 

drop in associated costs. Specifically, a constellation of satellites (E.g., Planet Lab) was 

developed for EO [258]. Satellites can be generally grouped into different categories 

based on their orbit, each with its own advantages and disadvantages. Table 10 shows 

the most significant categories of the orbits.  
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Currently, remote sensing satellites take photos of the earth, and the images are 

downlinked to the ground as soon as the satellite contacts the ground station network. 

From here, images can be loaded into machines that extract various forms of actionable 

knowledge, such as wildfire. Downloading imagery is an 𝑂(𝑛2) problem usually 

provides significant latency when considering critical operations for extreme events 

management. If time is of the essence for detecting ignitions and thus speeding 

suppression response, it would be much quicker to have the fire mapping analytics right 

on board the satellite and only download vector data (either point or polygon) of the fire 

with the data already flagged to be forwarded to the appropriate wildland fire 

dispatchers (based on location). Having the coordinates of the event would allow 

satellite managers or even the satellite itself to prioritize the transmission of the imagery 

associated with the AI-generated wildland fire event. The mission architecture would be 

even more effective when considering a constellation of satellites adequately designed 

to manage extreme events. Having AI on-board of the satellite, data processing can be 

performed in real-time, and when a wildfire is spotted from one satellite, it will 

communicate this information to the other satellites in the constellation, thereby 

enabling TASO. The most important part of this is to show that the data can be processed 

and shared with the help of the AI that is on-board, and that only the information that 

can be used is downlinked rather than all the data. Preliminary analyses and results of a 

mission concept based on DSS for wildfire management is reported in [259]. 

Table 10: Satellite categories. 

Orbit Altitude Advantages 

Geostationary Earth Orbit (GEO) 

Circular orbit with an altitude 

of 35,786 kilometres and zero 

inclination 

• The satellite does not move at all relative to the 

ground, 

• Providing a constant view of the same surface area 

• High temporal resolution 

Low Earth Orbit (LEO) Altitude of 2000 km or less 

• Requires the lowest amount of energy for satellite 

placement. 

• Provides high bandwidth and 

• Low communication latency 

Sun-Synchronous Orbit (SSO) 

Nearly polar orbit that passes 

the equator at the same local 

time on every pass. Typical 

Sun-synchronous Earth orbits 

are 600–800 km. 

• Satellite will always observe the same scene with 

the same angle of illumination coming from the 

sun. 

• Have high spatial resolution 
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The majority of low Earth polar SSO orbits of EO satellites, with precise altitude and 

inclination estimations to guarantee that the spacecraft every time observes the very 

same scenario with the same angle of light from the Sun and that on each pass, the 

shadows appear the same [260]. The spatial resolution of sun-synchronous satellite data 

is high, but the temporal resolution is low (LandSat-7/8 [261] has an eight-day repeat 

cycle, whereas Sentinel 2A/2B [262] has a two-to-three-day repeat cycle at mid-latitudes). 

In contrast, GEO satellites have lower spatial resolution contrasts with their high 

temporal resolution. As a result, they are ineffective for detecting active wildfires in real 

time; instead, they are better suited for much less time-sensitive tasks such as estimating 

burnt areas [254]. EO satellite systems have been able to find wildfires because they can 

see a large area. Most satellites that take pictures of Earth use multispectral imaging 

sensors and are either in a GEO or Sun-Synchronous Orbit (SSO) region. 

Table 11: EO satellites and their characteristics. Adapted from [254]. 

(Satellite)-Sensor Spectral Bands 
Access to the 

Data 

Spatial 

Scale 
Spatial Resolution Specs/Advantages/Limitations 

Data 

Coverage 

Accuracy 

Range 

Terra/Aqua-

MODIS 

36 (0.4–14.4 

µm) 

Registration 

Required 

(NASA) 

Global 

0.25 km (bands 1–2) 

0.5 km (bands 3–7) 

1 km (bands 8–36) 

Easily accessible, limited spatial 

resolution, revisit time: 1–2 days 
Earth 

92.75%–

98.32% 

Himawari-8/9—

AHI-8 

16 (0.4–13.4 

µm) 

Registration 

Required/ 

(Himawari 

Cloud) 

Regional 

0.5 km or 1 km for 

visible and near-

infrared bands and 

2 km for infrared 

bands 

Imaging sensors with high 

radiometric, spectral, and 

temporal resolution. 10 min (Full 

disk), revisit time: 5 min for areas 

in Japan/Australia) 

East Asia 

and Western 

Pacific 

75%–99.5% 

MSG—SEVIRI 
12 (0.4–13.4 

µm) 

Registration 

Required 

(EUMETSAT) 

Regional 

1 km for the high-

resolution visible 

channel, 3 km for 

the infrared and the 

3 other visible 

channels 

Low noise in the long-wave IR 

channels, tracking of dust storms 

in near-real-time, susceptibility of 

the larger field of view to 

contamination by cloud and lack 

of dual-view capability, revisit 

time: 5–15 min 

Atlantic 

Ocean, 

Europe and 

Africa 

71.1%–98% 

GOES-16 and 18 
16 (0.4–13.4 

µm) 

Registration 

Required 

(NOAA) 

Regional 

0.5 km for the 0.64 

µm visible channel 

1 km for other 

visible/near-IR 2 

km for bands > 2 

µm 

Infrared resolutions allow the 

detection of much smaller 

wildland fires with high temporal 

resolution but relatively low 

spatial resolution, and delays in 

data delivery, revisit time: 5–15 

min 

Western 

Hemisphere 

(North and 

South 

America) 

94%–98% 

HuanJing (HJ)-

1B—WVC (Wide 

View CCD 

Camera)/IRMSS 

(Infrared 

Multispectral 

Scanner) 

WVC: 4 (0.43–

0.9 µm) IRMSS: 

4 (0.75–12.5 

µm) 

Registration 

Required 
Regional 

WVC: 30 m IRMSS: 

150–300 m 

Lack of an on-board calibration 

system to track HJ-1 sensors' on-

orbit behaviour throughout the 

life of the mission, revisit time: 4 

days 

Asian and 

Pacific 

Region 

94.45% 

POES/MetOp—

AVHRR 

6 (0.58–12.5 

µm) 

Registration 

Required 

(NOAA) 

Global 
1.1 km by 4 km at 

nadir 

Coarse spatial resolution, revisit 

time: 6 h 
Earth 99.6% 

S-NPP/ NOAA-

20/NOAA— 

VIIRS-375 m 

16 M-bands 

(0.4–12.5 µm) 5 

I-bands (0.6–

Registration 

Required 

(NASA) 

Global 

0.75 km (M-bands) 

0.375 km (I-bands) 

0.75 km (DNB) 

Increased spatial resolution, 

improved mapping of large fire 

perimeters, revisit time: 12 h 

Earth 89%–98.8% 
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Improvements in nanomaterials and microelectronics have made it possible to use 

CubeSats, which are small spacecraft that orbit close to the Earth. PhiSat-1 (Φ-Sat-1), 

launched on September 3rd, 2020 [18, 264, 265], is a six-units (6U) European satellite and 

is the first to show how transmitting down EO data can be made more efficient using 

on-board intelligence using AI. It is part of the FSS, which is made up of two CubeSats 

[54-57] carrying AI technologies. The two CubeSats collect data using hyperspectral 

optical equipment and state-of-the-art dual microwaves. They also test inter-satellite 

communications. One of the CubeSats' hyperspectral cameras takes many pictures of 

Earth, some of which are cloudy. The Φ-Sat AI chip filters out erroneous cloudy photos 

before transmitting them to Earth, sending only usable data. CubeSats are more cost-

effective, are smaller than regular satellites and require less time to launch than 

traditional satellites. The detailed classification and their parameters are listed in Table 

11. Currently, most of the data processing are performed on the ground, but there is a 

lot of interest in bringing at least some of the computing efforts on-board of the satellite. 

The employment of AI algorithms on board satellites for analysis and segmentation, 

classification, cloud masking, and potential risk detection will be the final frontier of 

satellite remote sensing. The European Space Agency (ESA) has been a leader in taking 

the first steps in this direction with the PhiSat-1 satellite. CNN for detecting volcanic 

eruptions using satellite optical/multispectral imaging has been proposed in [18], with 

the main goal of presenting a feasible CNN architecture for on-board computing. The 

authors of P. Xu et al. [266], presented an on-board real-time ship detection based on 

Deep Learning and utilising Synthetic Aperture Radar (SAR) data. Predicting, detecting, 

and monitoring the occurrence of wildfires obviously benefits officials, civilians, and the 

ecosystem, with advantages in preparedness, reaction times, and damage control. 

OroraTech [263], created in 2018, already has a range of international customers for its 

own wildfire service, notably SOPFEU Quebec, Forestry Corporation NSW in Australia, 

and Arauco in Chile. The system uses sensor data from a range of existing satellites to 

12.4 µm) 1 DNB 

(0.5–0.9 µm) 

CubeSats (data 

refer to a specific 

design from 

[263]) 

2: MWIR (3–5 

µm) and LWIR 

(8–12 µm) 

Commercial 

access 

planned 

Global 0.2 km 

Small physical size, reduced cost, 

improved temporal 

resolution/response time, Revisit 

time: less than 1 h. 

Wide 

coverage in 

orbit 

- 
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offer intelligence for contributing to environmental protection and other properties. 

OroraTech has launched a Thermal Infrared (TIR) imager on a Spire 6U CubeSat 

featuring TIR and optical imaging equipment and on-board AI processing in a first step 

towards vertical integration.  

This chapter aims to look into whether AI approaches and on-board computing 

resources can be used to monitor dangerous events, such as wildfire detections, utilising 

hyperspectral satellite imagery. The results of this kind of analysis could be useful for 

future satellite missions, like the ESA Phisat 2 program. In this section, hyperspectral 

images taken from the PRISMA (PRecursore IperSpettrale della Missione Applicativa) 

satellite were considered, and the following main contributions were made: 

1. A One-Dimensional (1D) CNN for detecting wildfires using PRISMA hyperspectral 

imagery is considered, and promising results are shown for the edge 

implementation on three different hardware accelerators (i.e., computer hardware 

designed to perform specific functions more efficiently when compared to software 

running on a general-purpose central processing unit).  

2. It was demonstrated that AI-on-the-edge and iDSS reconfiguration paradigms are 

feasible for future mission concepts using appropriate architectures and mature 

astrionics technologies to perform time critical applications.  

The proposed CNN is described in terms of the constraints imposed by the on-board 

implementation, meaning that the initial network has been streamlined and adjusted to 

comply with the intended hardware designs. It is worth noting that the detection of 

wildfires should be considered as an example test case, and the proposed methodology 

(or similar ones) can successfully be applied to other scenarios or tasks, as already 

discussed and demonstrated in other works [18]. 

4.2 Current Wildfire Detection Methods 

A wildfire is a dynamic phenomenon that changes its behaviour over time. The 

presence of forest fuel aids the spread of fire. It is carried out by a series of intricate heat 

transmission and thermochemical processes that control fire behaviour [267]. Several 

mathematical models were created to characterise wildfire behaviour; each model was 
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built based on diverse wildfire experiences in various nations. According to the input 

and environmental parameters, each model differs from the others (fuel indexing [268], 

[269]). Some countries' researchers have been able to incorporate some of these models 

into simulation programs or even develop their own ways of mapping the terrain and 

fire behaviour on monitoring screens to study and predict fire behaviour [270].  The form 

of a wildfire burning in a steady environment is an ellipse [271]. The environment can 

change over time, and different portions of a fire may be burning in different 

environments, such as humidity levels, wind speed, wind direction, slope, etc. The 

heterogeneity of the environment could result in a very complicated fire form [268, 272].  

F. Tedim et al. [271] made an initial attempt to develop a gravity scale for wildfires that 

was comparable to the scales used for hurricanes (Saffir-Simpson scale) and tornadoes 

(Fujita scale). The first four categories are labelled as "normal fires," or incidents that can 

generally be put out within the bounds of technology and physical limits. Based on 

assessments of recent extreme wildfire incidents and a consolidation of literature, the 

three remaining categories are grouped as Extreme Wildfire Events (EWE; see Table 12). 

Table 13 shows a list of the most recent and significant wildfire incidents in Australia 

from 2007 until today. Natural disasters may have caused some of the fires or may have 

been caused directly or indirectly by human recklessness and environmental misuse 

(particularly the rise in temperature linked with global warming). One of the worst 

bushfires in Australian history ravaged Victoria. Many people were killed or injured in 

the Bushfire, which ravaged many towns and cities, destroying homes, businesses, 

schools, and kindergartens [273, 274]. From Table 13, it is evident that wildfire events 

are happening regularly. Since wildfires occur on a regular basis, there is a clear need 

for wildfire detection. To address this, the recent Australian bushfire is investigated, and 

an analysis is carried out. The designated AOI is located around 250 kilometres north of 

Sydney in Ben Halls Gap National Park (BHGNP), comprises 2500 hectares and is 60 

kilometres south of Tamworth and 10 kilometres from Nundle. Because the park is 

located at a high elevation, it receives a lot of rain and has cool temperatures. However, 

in late 2019, a combination of high temperatures and wind speeds, as well as low relative 

humidity, created the conditions for high-intensity wildfire behaviour to develop. As 
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can be observed in the PRISMA image acquired on December 27, 2019, active wildfires 

can be spotted across this AOI. 

4.3 PRISMA Mission 

A scientific and demonstration mission called PRISMA was launched aboard the 

VEGA rocket on March 22, 2019. The satellite mission was based on the HyperSpectral 

Earth Observer (HypSEO) project [275], which was a product of a partnership between 

the Italian Space Agency (ASI) and the Canadian Space Agency, served as the 

foundation for the early conceptual studies. Due to its ability to capture data globally 

with a very high spectral resolution and in a wide variety of spectral wavelengths, 

PRISMA is playing an essential role in the current and future international setting of 

Earth Observation for both the scientific community and end users. PRISMA offers the 

ability to collect, downlink, and preserve imagery of all 

Panchromatic/Hyperspectral channels totalling 200,000 km2 daily practically on the 

entire global region, obtaining 30 km by 30 km square Earth tiles. There are two 

operational modes for the PRISMA mission: a primary mode as well as a secondary 

mode. The main method of operation is gathering panchromatic and hyperspectral data 

from specified individual targets as demanded by end users. The mission will have set 

up continual "background" work in the auxiliary mode of operation that will collect 

imagery to utilise the system's resources fully. 

One modest class spacecraft makes up the PRISMA space segment. The PRISMA 

payload includes a hyperspectral/panchromatic camera featuring Visible to Near 

Infrared (VNIR) and Short-Wave Infrared (SWIR) detectors. It consists of a medium-

resolution panchromatic camera (PAN, from 400 nm to 700 nm) with a 5 m resolution 

and an imaging spectrometer with a 30 m spatial resolution that can acquire in a 

continuum of spectral bands from 400 nm to 2505 nm, i.e., from 400 nm to 700 nm in 

VNIR and from 920 nm to 2505 nm in SWIR. The PRISMA Hyperspectral Sensor uses 

the prism to measure the incoming radiation's dispersion on Two-Dimensional (2D) 

matrix detectors to collect many spectral bands from the same ground strip. The 2D 

detectors immediately provide the "instantaneous" spectral and spatial dimensions 
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(across-track) of the spectral cube, while the satellite motion (pushbroom scanning 

concept) provides the "temporal" dimension (along-track). 

 

Figure 32: Levels of processing from data to services [276]. 

0  

Figure 33: RGB composite of the selected region in New South Wales, Australia, as seen from the 

PRISMA acquisition.  



 

 
 

Table 12: Classification of wildfires based on fire behaviour and capacity of control.1 Adapted from [271]. 

 
1 Note: a Forest and shrubland; b grassland; c forest; d shrubland and grassland. 

Fire  

Category 

Real Time Measurable  

Behaviour Parameters 

Real Time Observable 

Manifestations of Extreme Fire Behaviour ((EFB) 

Type of Fire and Capacity of Control * Fireline 
Intensities 

(FLI)* 
(kWm−1) 

Rate Of 
Spread 
(ROS) 

(m/min) 

Flame 
Length 
(FL) (m) 

Pyrocumulonimbus 
(PyroCb) 

Downdrafts 
Spotting  
Activity 

Spotting  
Distance (m) 

N
o

rm
al

 F
ir

es
 

1 <500 
<5 

<15 b 
<1.5 Absent Absent Absent 0 

Surface fire 
Fairly easy 

2 500–2000 
<15 

<30 b 
<2.5 Absent Absent Low <100 

Surface fire 
Moderately difficult 

3 2000–4000 
<20 c 
<50 d 

2.5-3.5 Absent Absent High ≥100 
Surface fire, torching possible 
Very difficult 

4 
4000–
10,000 

<50 c 
<100 d 

3.5-10 Unlikely 
In some 

localised cases 
Prolific 500–1000 

Surface fire, crowning likely depending on vegetation type and stand structure 
Extremely difficult 

E
x

tr
em

e 
W

il
d

fi
re

 E
v

en
ts

 

5 10,000–
30,000 

<150 c 
<250 d 

10-50 Possible Present Prolific >1000 

Crown fire, either wind- or plume-driven 
Spotting plays a relevant role in fire growth 
Possible fire breaching across an extended obstacle to local spread 
Chaotic and unpredictable fire spread 
Virtually impossible 

6 30,000–
100,000 

<300 50-100 Probable Present 
Massive 
Spotting 

>2000 

Plume-driven, highly turbulent fire 
Chaotic and unpredictable fire spread 
Spotting, including long distance, plays a relevant role in fire growth 
Possible fire breaching across an extended obstacle to local spread 
Impossible 

7 >100,000  
(possible) 

>300 
(possible) 

>100 
(possible) 

Present Present 
Massive 
Spotting 

>5000 

Plume-driven, highly turbulent fire 
Area-wide ignition and firestorm development non-organised flame fronts because 
of extreme turbulence/vorticity and massive spotting 
Impossible 



 

 
 

Table 13:  Mostly relevant wildfires happened in Australia from 2007 to 2021 [277-280]. 

Year Event name Affected area Burned area (acres) 

1 June 2020–1 June 2021 
2020–2021 Australian wildfire 

seasons 
Nationwide 617,763 

5 September 2019 – 2 March 2020 
2019–20 Australian bushfire 

season (Black Summer) 
Nationwide 46,030,000 

February 2019 Tingha bushfire New South Wales 57,870 

11 – 14 February 2017 2017 New South Wales bushfires New South Wales 130,000 

January 2016 
2016 Murray Road bushfire 

(Waroona and Harvey) 
Western Australia 170,910 

25 November – 2 December 2015 2015 Pinery bushfire South Australia 210,000 

15 – 24 November 2015 
Perth Hills bushfire complex – Solus 

Group 
Western Australia 24,750 

October – November 2015 2015 Esperance bushfires Western Australia 490,000 

29 January – 20 February 2015 
2015 O'Sullivan bushfire 

(Northcliffe – Windy Harbour) 
Western Australia 244,440 

2 – 9 January 2015 2015 Sampson Flat bushfires South Australia 49,000 

January 2015 
2015 Lower Hotham bushfire 

(Boddington) 
Western Australia 129,420 

1 August – 9 August 2015 2015 Wentworth Falls Winter Fire New South Wales 2,000 

17 – 28 October 2013 2013 New South Wales bushfires New South Wales 250,000 

18 January 2013 Warrumbungle bushfire New South Wales 130,000 

4 January 2013 Tasmanian bushfires Tasmania 49,000 

27 December 2011 – 3 February 2012 Carnarvon bushfire complex Western Australia 2,000,000 

7 February – 14 March 2009 Black Saturday bushfires Victoria 1,100,000 

30 December 2007 Boorabbin National Park Western Australia 99,000 

 

Figure 34: PRISMA level 2D VNIR band at 411 nm. 
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Figure 35: PRISMA level 2D SWIR band at 2490 nm. The three active wildfires are identified. 

PRISMA data is made freely accessible for research purposes by ASI [281]. Different 

levels of data are available, and the differences are reported in Figure 32. In Hierarchical Data 

Format version 5 (HDF5) format, 30 m and 5 m resolution hyperspectral and panchromatic 

data are given with four choices: 

• Level 1, radiometrically corrected and calibrated Top of Atmosphere (TOA) data. 

• Level 2B, Geolocated at-ground spectral radiance product. 

• Level 2C, Geolocated at-surface reflectance product. 

• Level 2D, Geocoded version of the Level 2C Product. 

The analysis in this paper was done with Level 2D data. The RGB composite of the 

research area is shown in Figure 33. However, direct information can be retrieved by looking 

at single bands. For instance, by looking at the VNIR bands of the L2D data, smoke can be 

clearly recognised, as shown in the 411 nm band presented in Figure 34, where smoke pixels 

can be easily separated from their neighbours. On the other hand, from the far SWIR 

channels, one can very easily retrieve information on active wildfires, as appreciated in  

Figure 35. Indeed, when looking at the reflectance product, the signal easily saturates when 
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looking at active wildfires, as the signal captured from Earth is greater than the signal coming 

from the Sun (since the wildfires behave as an active power emitter).  

4.3.1 Dataset Definition  

The AI approach is used to implement automatic segmentation from the obtained 

image. From Figure 35, three active wildfires can be observed. The southern and the north-

east wildfires are the bigger ones, whereas the north-west wildfire is quite small. For the 

training and validation, reference pixels must first be labelled. The reference pixels used in 

this investigation were manually labelled, and they are shown in Figure 36. The number of 

labelled pixels selected from the PRISMA image (after investigation of the spectra and 

looking at the false colour composites) is reported in Table 14. The north-east wildfire has 

been used as training and validation dataset, while the south and north-west datasets have 

been used as test datasets. The training set accounts for 70% of the labelled data of the north-

east wildfire, while the remaining 30% was chosen for validation. 

Table 14: Number of labelled reference pixels in Australia used for training and testing the CNN [218]. 

  Pixels per classes 

Wildfire 

Location 
Usage 

0  

Fire 

1  

Smoke 

2  

Burned areas 

3  

Vegetation 

4 

Bare soil 

North-East Train & Val 58 10 30 50 40 

South Test 11 11 9 10 10 

North-West Test 5 0 5 5 5 

4.3.2 Automatic Classification with a 1D CNN Approach 

The categorisation model utilised in this study was inspired by the Hu et al. [97] 

model, which is depicted in Figure 36. The PRISMA data's input pixel spectrum includes the 

SWIR and VNIR channels. Thus, it is an array with 𝐶 = 234 element (after removal of some 

useless original data in the input hyper-cube). A 1D convolutional layer with a kernel of 3, 

𝑛1 = 112 filter, same padding, ReLU activation function, and 𝑙2 kernel regulariser is the first 

hidden layer. After the convolutional layer there is a max pooling layer with a pool size of 2 

and a stride of 2 (notice that 𝑛2 = 𝑛1 in Figure 37). The result of this max pooling is then sent 

through a flattening layer before being connected to a 128-unit fully connected layer with 



84 
 

ReLU activation. A last layer is a dense unit with the SoftMax activation function for 

multiclass classification. It's worth noting that the values of 𝐶1 and 𝐶2 in the diagram are 

easily evaluable and rely on the network's architecture. The Adam optimiser and the 

categorical cross-entropy loss function are used to train the model. Python and Keras were 

used to build the entire network [282, 283]. 

 

Figure 36: Labelled points defined in the PRISMA image for the five classes. 

 

Figure 37: Multi-class classification CNN model [282]. 
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4.4 Astrionics Implementation 

The ultimate aim is to build a model that can be uploaded to an on-board astrionics 

system, so the network complexity, parameter count, and inference execution time must all 

be optimised. Due to the chip's restricted elaboration power, the utilisation of a small chip 

limited the ability to execute the specific classification model, necessitating the development 

of an accurate model. A prototype for executing the analysis has been created in order to 

evaluate the proposed methodology. The model has been modified to work with the chosen 

hardware and detect wildfire on-board.   

A significant component of the architecture of many current AI solutions is cloud 

computing or storage. Several sectors find it challenging to apply the technology for real-

world use cases due to concerns about confidentiality, latency, dependability, and 

bandwidth. Despite its resource restrictions, edge computing can somewhat help to ease 

these difficulties. The claim that edge and cloud computing are incompatible is untrue; edge 

computing actually enhances cloud computing. Inflated expectations for edge AI and edge 

analytics have peaked, according to the Gartner hype cycles for 2019 and 2018 [284]. 

Although the sector is still in its infancy, software frameworks and hardware platforms will 

advance with time to deliver value at a reasonable price. Three important AI industry 

leaders—Intel, Google, and Nvidia—are supporting edge AI by offering hardware platforms 

and accelerators with compact form dimensions. Although each of the three has benefits and 

drawbacks, it all depends on the application, budget, and amount of experience available; 

Table 15 compares the hardware accelerators [284].  

Table 15: Edge AI device comparison [284]. 

 

The Intel Movidius Neural Compute Stick (NCS) is a high-performance, affordable 

Universal Serial Bus (USB) stick that may be used to implement DL inference applications, 

according to the comparison above. Great AI solutions are provided by the Google Edge 
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Tensor Processing Unit (TPU). The NVIDIA Jetson Nano, in conclusion, crams a lot of AI 

power into a little package. Intel Movidius stick and two Nvidia variants, the Jetson and TX2  

are used for the research work [217].  

4.4.1 Description of the Hardware Accelerators  

This section describes the three selected astrionics hardware components, with specific 

reference to the accelerators, i.e., the Movidius Stick, the Jetson TX2 and the Jetson Nano. 

4.4.2 Movidius Stick 

The Intel Movidius Neural Compute Stick (NCS) is a compact fanless DL USB drive that 

is intended to be used for inferencing. The Movidius Visual Processing Unit, which is 

minimal in power but high in performance, drives the stick. It is equipped with an Intel 

Movidius Myriad 2 Vision Processing Unit (VPU). These are the main specifications [285]: 

• Supporting CNN profiling, prototyping and tuning workflow.  

• Real-time on-device inference (Cloud connectivity not required).  

• Features the Movidius Vision Processing Unit with energy-efficient CNN 

processing.  

• All data and power provided over a single USB type-A port.  

• Run multiple devices on the same platform to scale performance. 

The workflow for executing the software modules on the hardware system is depicted 

in Figure 38. Prior to running the experiments on the Movidius Stick, the CNN must be 

translated from its original format (for example, the Keras model) to an OpenVino format, 

which may be accomplished through the use of the OpenVino library. Because of the 

Movidius Stick, DL coprocessors that are inserted into the USB socket can be inferred more 

quickly than before. Before transferring the CNN onto the Movidius, it is necessary to 

optimise the network, which may be accomplished by utilising the OpenVino Intel's 

hardware-optimised computer vision library. Intel Distribution, the OpenVino toolkit, is 

extremely easy to use and is included with the Intel processors. Indeed, once the target 

Central Processing Unit (CPU) has been determined, the OpenCV optimised for OpenVino 

can handle the rest of the setup. The toolkit supports heterogeneous execution across 
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computer vision accelerators (such as Graphics Processing Unit (GPU), CPU, and Field 

Programmable Gate Arrays (FPGA)) using a standard Application Programming Interface 

(API) in addition to enabling DL inference at the edge. It also decreases time to market by 

utilising a library of functions and preoptimised kernels, and it includes optimised calls for 

OpenCV. 

 

Figure 38: Block schematic for the Movidius stick implementation. 

Following the model's implementation on Movidius, it is tested against the PRISMA 

hyperspectral images. Using the same settings used for the training and validation datasets, 

the image was processed. Figure 39 depicts the high-level block diagram for the installation 

and optimisation of OpenVino. The internal data structure or program that a compiler or 

virtual machine uses to represent source code is known as an Intermediate Representation 

(IR). An IR is made to facilitate additional processing, such optimisation and translation. The 

model is fed to the Model Optimiser before being delivered to IR, from which the .xml and 

.bin files required to execute OpenVino is obtained. The weight and biases are saved in binary 

form in a .bin file, while the standardised architectural arrangement (and other metadata) is 

stored in a .xml file as shown in Figure 40. 

 

Figure 39: Block diagram for the optimisation and implementation with Intel OpenVino. 
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Figure 40: High-Level representation of Keras to IR Model Conversion. 

Model optimisation was performed on a Windows machine and the implementation of 

the IR model on a Windows system with NCS2, as depicted in Figure 41. 

 

Figure 41: Deployment procedure on NCS2. 

4.4.3 Jetson Nano 

The recently released JetPack offers a complete desktop Linux environment for Jetson 

Nano that is built on Ubuntu. Along with major open-source frameworks like TensorFlow, 

MXNet, Keras, Caffe, PyTorch, and the Software Development Kit (SDK) also enable the 

native installation of frameworks for robotics and computer vision development like 

OpenCV. Thanks to complete interoperability with all these frameworks and NVIDIA's high 

Calibre platform, deploying AI-based inferences applications to Jetson has become simpler 

than ever before. Jetson Nano makes real-time computer vision and inference possible for a 

wide range of intricate Deep Neural Networks (DNN) models. Advanced AI systems, Internet 

of Things (IoT) devices with intelligent edge analytics, and multi-sensor autonomous robots 
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are made possible by these capabilities. Using the ML frameworks, it is even possible to do 

transfer learning while retraining networks locally on the Jetson Nano [284, 286-289]. The 

procedure is shown in Figure 41, and the implementation procedure is the same as the Intel 

Movidius stick. 

 

Figure 42: Conversion of Keras model to TF SavedModel. 

4.4.4 Jetson TX2 

The Nvidia Jetson series of embedded platforms provides edge devices with server-

class AI computation capabilities. Regarding DL inference, Jetson TX2 is twice as energy 

efficient as its precursor, Jetson TX1, and performs better than a Xenon server CPU built by 

Intel. This increase in productivity reframes the potential for moving advanced AI from the 

cloud to the edge. With support from LSTM, Recurrent Neural Networks (RNNs), TensorRT 

libraries and the NVIDIA CUDA Deep Neural Network (cuDNN) library, Jetson TX2 

accelerates cutting-edge DNN designs. The conversion of the Keras model to the TensorFlow 

model is represented in the deployment process in Figure 43, which illustrates this by using 

simply TensorFlow and TensorFlow TRT Integration to show the vital distinction. To run 

Neural Network (NN) inferences on their hardware, Nvidia developed the TensorRT NN 

framework, and the implementation procedures are the same as the Intel Movidius stick. 

TensorRT is highly performance-optimised on NVIDIA GPUs. Currently, it is probably the 

quickest method for running models. NVIDIA's TensorRT inference acceleration library 

enables the utilisation of NVIDIA GPU resources to the fullest extent possible at the cutting 

edge [289-291]. 

Keras 

Model (.h5) 
TF_SavedModel 

Load 

Model 
Save with 

TF 
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Figure 43: Inferencing procedure in Nvidia Jetson TX2. 

4.5 Results and Discussion of 1D CNN 

The following Table 16 summarises the outcomes of the training mission conducted 

over the southern wildfire. Using the validation dataset, the final overall accuracy of the 

model is 97.83 percent, which is marginally higher than the 96.87 percent reported by Amici 

et al. [292], where Support Vector Machines (SVM) were employed to achieve the accuracy. 

Table 16: Validation dataset accuracy. 

 

 

 

 

 

 

Only the inference problem is considered when evaluating ML implementation on 

hardware accelerators. This indicates that the training is carried out on a computer with 

advanced capabilities capable of handling the large amount of data needed for the training. 

As a result, the training in this paper was also done using ground computing capabilities 

 Precision Recall F1 Score 

0 – Fire   1.00 1.00 1.00 

1 – Smoke  1.00 1.00 1.00 

2 – Burned  1.00 1.00 1.00 

3 – Vegetation  0.92 1.00 0.96 

4 – Bare soil  1.00 0.92 0.96 

Accuracy   0.98 

Macro average 0.98 0.98 0.98 

Weighted average 0.98 0.98 0.98 
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(i.e., a personal computer with an Nvidia RTX2060), and the findings are presented in Table 

17 [282]. 

Table 17: In the three areas indicated, Precision, Recall, and F1 scores were calculated. The dataset from 

Australia's North-East was utilised for training, while the others were used for testing. 

Wildfire Location  Precision Recall F1 Score 

Australia, North-East  0.98 0.98 0.98 

Australia, South 0.98 0.98 0.98 

Australia, North-West 1.00 0.95 0.97 

The results obtained by deploying the CNN into the three hardware accelerators 

revealed that the performances stated in Table 18 were not affected by the deployment of the 

CNN. As a result, this section describes the deployment performance in terms of the 

inference time and the amount of power consumed. 

a. Results on the Movidius: The results of the deployment on the Movidius indicate that 

the accuracy has not varied compared to the values presented in Table 18. At the same 

time, the inference time is approximately 5.8 milliseconds, and the computing power is 

1.4 watts on average. 

b. Results on the Jetson TX2: The results of the deployment on the Jetson TX2 reveal that 

the accuracy has not changed compared to the values reported in Table 18. On the other 

hand, the inference time is approximately 3.0 milliseconds, and the computational 

power is 4.8 W on average (2.1 W if considering the power consumed by the GPU only). 

It is important to note that these results are related to the TX2 setup that provides the 

least inference time and the maximum power consumption. Other configurations can 

be set up to lower the amount of power that is consumed, so it is essential to keep that 

in mind (and increase the inference time). 

c. Results on the Jetson Nano: The findings of the deployment on the Jetson Nano 

demonstrate that the accuracy has not changed compared to the values reported in 

Table 18. On the other hand, the inference time is approximately 3.4 milliseconds, and 

the computational power is 2.6 watts on average (2.0 W if considering the power 

consumed by the GPU only). Concerning the Jetson TX2, these findings are associated 
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with the configuration that offers the quickest possible inference time at the expense of 

the highest possible power consumption. 

Table 18: Inference time and power consumption on three hardware accelerators. 

HW accelerator Inference time (ms) Power Consumption (W) 

Movidius 5.8 1.4 

Jetson TX2 3.0 4.8 (2.1 GPU only) 

Jetson Nano 3.4 2.6 (2.0 GPU only) 

In light of the findings discussed in part before this one, the following is worth further 

investigation. The deployment of the hardware accelerators in all the reported studies used 

final models with weights given in float 32. As a result, the precision, recall, and F1 results 

remain unchanged from those achieved during the Personal Computer (PC) training and 

testing method. On the one hand, this result was possible because, due to the small 

dimension of the CNN model, further weight quantisation was not required (i.e., results in 

inference time and power consumption were already consistent with expected and/or 

required values without additional weights quantisation). Nevertheless, it should be noted 

that if the model needs to be improved further in terms of weight compression, embedding, 

or quantisation, classification performance may suffer. In any case, this investigation's 

findings show that the weights' data format does not need to be changed for the proposed 

application, and the classification performances are nearly identical while using a PC or a 

hardware accelerator. 

Table 18 compares the inference timings are perfectly consistent with a real-time early 

detection service. It should be noted that this time only pertains to the CNN model's 

inference time and does not include the pre-processing of the image or the extraction of the 

spectral signature for the pixel of interest. However, this preliminary assessment verifies the 

method's practicality and the possibility of considering it for future missions. Table 18 also 

reports power usage that is generally in line with space missions. When it comes to large 

platforms like PRISMA, all of the reported solutions are in line with the platform's total 

power budget; however, when it comes to CubeSats or small satellites, the Movidius and the 

Jetson Nano appear to be the most promising options. 
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As a review of the preceding arguments, this study highlights the potential for future 

missions to include on-board hardware accelerators to provide early-warning services [293]. 

However, if the input data and model complexity are consistent with the ones mentioned 

here, these conclusions could be applied to other image processing work. The comparison of 

the three hardware solutions reveals that the Jetson Nano is the most promising technology, 

as it offers the best combination of power consumption and inference time (even though the 

final choice may be influenced by other factors such as the hardware accelerator's 

compatibility with the on-board computer, mechanical and/or electrical interfaces, and so 

on). Furthermore, it is important to remind the reader that this comparison of accelerator 

technologies is far from complete, as additional boards exist that were not examined in this 

work for the sake of simplicity (for instance, the Google Coral TPU or FPGA system-on-

chips). This work, on the other hand, answers the question of whether or not AI can be used 

to handle complex data like hyper-spectral photography, indicating that current technology 

is ready and efficient. 

4.6 Reconfiguration in iDSS 

The current state-of-the-art operation of DSS is done when one of the satellites 

picks/detects the event, then it is sent to the ground control, and the ground control operators 

will do the reconfiguration, which is not so great in time-critical applications. For real-

time/near real-time operation, adding the reactive elements within the architecture endows 

iDSS operations. This can be achieved through ISL, with which the TASO can be performed 

in DSS. With ISL, DSS can communicate, interact and cooperate with each other. ISL makes 

up for the lack of robustness in DSS, which results in an increase in the amount of data 

exchanged and communication that takes place on-board the satellite in the DSS. Liz 

Martinez et al. [294] provide the various strategies that are suited for DSS. ISL can be 

classified as a 1) Ring, 2) Star, 3) Mesh, and 4) Hybrid configuration depending on the 

communication linkages that are established between the DSS. These topologies are depicted 

in Figure 44, with the ISL represented by the arrows. Liz Martinez et al. provide a wide range 

of solutions in their article [294] that are ideal for DSS. Communication by Radio Frequency 

(RF) is the form of transmission used in wireless networks more commonly than any other 

method. However, current space optical communication promises a bigger number of 
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benefits, such as an improved data rate, protection, lower power consumption, and a 

decrease in the weight of satellites. In the past, RF technology was used for inter-satellite 

communication; however, modern satellites are increasingly resorting to technology based 

on lasers and optics to connect with one another. Utilising technologies that are based on 

lasers comes with a multitude of advantages. To begin, infrared laser rays have a greater 

frequency when compared to RF, which results in a shorter wavelength. As a direct 

consequence, they can send a greater quantity of data in a single transmission. Second, in 

contrast to radio waves, lasers experience significantly less dispersion difficulty when 

transmitted over extensive distances. Because of this, intercepting them is far more complex, 

resulting in a significant increase in the security guaranteed to the data transfer [295-297]. 

Figure 45 illustrates the applicability of RF and optical communication (using two versions, 

i.e., Avalanche Photodiode (APD) and Erbium-Doped Fiber Amplifiers (EDFAs)) by plotting 

data rate against distance. Laser-based mesh topologies will be excellent for iDSS operations 

because they are more dependable and well-suited for real-time processing applications 

[259]. 

 

Figure 44: ISL classification [294]. 
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Figure 45: Link distance against data rates for optical and RF ISL systems. Adapted from [298]. 

iDSS collaborates actively through ISL, sharing information to achieve a common mission 

objective. ISL relationship between the ground station network, with the iDSS orbital plane 

and other orbits, is shown in Figure 46. The proposed iDSS is shown in Figure 47 with ISL to 

provide near real-time disaster management. 

 

Figure 46: (a) ISL relationship between the orbits and the ground station (b) Proposed iDSS constellation 

and their ISL. 
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Figure 47: Proposed EO constellation illustration with inter-orbital plane ISL and ground link. 

4.6.1 Coverage Analysis 

The proposed iDSS is considered in near-circular orbit (i.e., eccentricity is ~0.001) with 

500km altitude and inclination 55° with 40 satellites equally spaced (plane spacing 36°) in 4 

orbital planes.  Here continuous coverage problem, one can disregard the values of the Right 

Ascension of the Ascending Node (RAAN) and Mean Anomaly. All the participants in the 

proposed constellation are assumed to be similar and carry the same optical payload. 

Satellites are often situated in orbital planes that are complementary to one another, and they 

communicate with each other through ISL and globally dispersed ground stations. The 

Walker scenario will be suitable for the constellation model. Further, the Walker Delta design 

is appealing for this research work because of its simplicity and economic feasibility [46, 224]. 

The parameters 𝑖, 𝑁𝑠, 𝑝, and 𝑓 indicate the distribution of satellites in space, where 𝑖 is the 

inclination, 𝑁𝑠 is the number of spacecrafts, 𝑝 is the total number of orbital planes, and 𝑓 is 

the phase difference between the participating spacecrafts in the plane that forms the Walker 

Delta constellation pattern. The number of satellites in each orbit is given by 𝑠 =  
𝑁𝑠

𝑝
 , where 
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𝑝 | 𝑁𝑠 (𝑝 divisible by 𝑁𝑠). To avoid satellite collisions, the phase difference between the 

neighbouring spacecrafts of a specific plane is calculated using 𝑓 ×
360°

𝑆
, where 𝑓 is an integer 

between 0 and (𝑝 –  1). iDSS are adaptable based on the owner/operator requirements. In 

general, all the satellites will be in cyclic planning, and the camera is always nadir pointing. 

If one of the satellites in the constellation detects the event, i.e., wildfire, then the satellite 

communicate to the rest of the constellation, and the objective will be, to take as much 

imagery as possible and do the data processing on-board with the hardware accelerators. 

Then send the actionable information to the owner/operators. A typical reconfiguration is 

shown in Figure 48, where once the wildfire is detected, the satellite will do an active 

Attitude and Orbit Control System (AOCS) for real-time/near real-time event management.   

  

Figure 48: iDSS reconfiguration. 

As a satellite observes a region on Earth, it projects a circular or rectangular imprint on 

the surface. The instantaneous coverage of the satellite is the distance between the satellite 

and a target point in the satellite FOV region (imprint region) at a given time [197, 198]. 

Another fundamental parameter for the computation of the coverage and System Wide Access, 

which is the time that at least one satellite's camera can observe the AOI during this 

timeframe, must be calculated in order to compute coverage and system wide access. The 

corresponding percentage quantity is known as the system-wide access percentage, and it is 

calculated using the following equations: 
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              𝑆𝑊𝐴𝐷 = 𝑛 ∙ 𝑆𝑐   (11) 

        𝑆𝐷 =   𝑆𝑇𝑆𝑡𝑎𝑟𝑡 − 𝑆𝑇𝑆𝑡𝑜𝑝 (12) 

      𝑆𝑊𝐴𝑃 = 
𝑆𝑊𝐴𝐷

𝑆𝐷
∙ 100  (13) 

where SWAD is System Wide Access Duration, 𝑛 is the number of elements in system wide 

access status whose value is true, i.e., 1, 𝑆𝑐 is the spacecraft sample time, and SWAP is the 

System Wide Access Percentage. The equations that relate to the above are for the Nadir 

pointing, and they can also be used for systems with reconfiguration: 

            𝑆𝑊𝐴𝐷𝑇 = 𝑁 ∙ 𝑆𝑐   (14) 

      𝑆𝐷 =   𝑆𝑇𝑆𝑡𝑎𝑟𝑡 − 𝑆𝑇𝑆𝑡𝑜𝑝 (15) 

    𝑆𝑊𝐴𝑃𝑇 = 
𝑆𝑊𝐴𝐷𝑇

𝑆𝐷
∙ 100  (16) 

where, 𝑆𝑊𝐴𝐷𝑇 is system wide access duration with reconfiguration, 𝑁 is the number of 

elements in system wide access status with reconfiguration whose value is true, 𝑆𝑐 is the 

spacecraft sample time, which is considered 30 seconds for both cases, and 𝑆𝑊𝐴𝑃𝑇 system 

wide access percentage with tracking. 

4.6.2 Results and Discussion 

The TASO can be accomplished by including reactive elements in the iDSS. In our 

research works, a 1D-CNN was investigated for spotting wildfires on-board the satellite 

employing PRISMA hyperspectral imagery and encouraging results for the edge 

implementation on three different hardware accelerators were demonstrated. It was 

demonstrated that AI-on-the-edge paradigms for future mission ideas are viable by utilizing 

appropriate CNN architectures and established technology to perform time- and power-

efficient inferences [217, 256, 257]. The analysis in this research was done with Level 2D data; 

the analysis's AOI is shown in Figure 49. 
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Figure 49: Wildfire segmentation of Bushfire [257]. 

All of the reported results in Section 4.5 (Table 18) are in line with the KANYINI 

spacecraft platform's total power budget. From our previous work [217, 256, 257], the Intel 

Movidius (Inference time is 5.8 ms and Power consumption is 1.4 W) and Jetson Nano 

(Inference time is 3.4 ms and Power consumption is 2.6 W) appear to be the most promising 

options. For our situation, the Jetson Nano and Intel Movidius are considered on-board the 

constellation for detecting wildfires. With the above results and our previous work, the 

TASO is possible by incorporating reactive elements in the iDSS architecture.  

This simulation depicts an investigation of the AOI on the ground and conical sensors 

on-board a heterogeneous constellation2 of satellites.  The AOI and a satellite's conical sensor 

are said to have access if the ground station is within the conical sensor's FOV and the conical 

sensor's Elevation Angle (EA) with respect to the AOI. The simulation employs a 

constellation of 40 LEO satellites at 500 km altitude to replicate the KANYINI mission in a 

near circular orbit with AOI. The AOI is chosen to generalize the simulation results based on 

the wildfire occurrence in the four different continents. Each satellite carries a 30-degree FOV 

 
2  Homogeneous constellation: A constellation whose member spacecraft employ functional identical bus, payload, and 

operational characteristics (e.g., MMS and Iridium).  

Heterogeneous constellation: A constellation whose member spacecraft employ different bus, payload, and operational 

characteristics. 
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camera, and the entire satellite network is tasked with imaging the AOI during the sun 

sufficiently illuminates it. The satellite's EA regarding the AOI should be at least 30 degrees 

to acquire high-quality imagery with minimal atmospheric distortion. Calculating the times 

when each satellite can image the site over an imposed 6-hour interval is necessary. It is also 

necessary to calculate the percentage of time that at least one satellite's camera can observe 

the place during this timeframe which SWAP provides. The existence of the AOI within the 

contour indicates that it is within the FOV of the payload camera. Figure 50 (a) shows the 

visualization FOV of the Satellite. It is necessary to calculate the system-wide access 

percentage, which is the percentage of time from the simulation start time to the stop time 

when at least one satellite can image the site, and calculate the times when each camera can 

capture the AOI. 

 

Figure 50: Satellite Field of View (a) Nadir pointing (b) Reconfiguration at the entry (c) Reconfiguration at the 

exit. 

The satellite's default attitude arrangement is Nadir pointing. Because the cameras are 

by default aligned with the yaw axis, they always point straight down, and the AOI is no 

longer visible to the cameras before their EA falls below 30 degrees. As a result, this 

cumulative access percentage is constrained by the FOV of the cameras. Then the satellite 

cameras will be continuously pointed at the AOI through active attitude control adjustment; 

the AOI is observable as long as the Earth is not in the way, as seen in Figures 50 (b) and (c). 

As a result, the system-wide access percentage will now be limited by the AOI’s minimum 

EA rather than the camera FOV. This is done based on the owner/operator requirement for 

the requested time period. The access periods in the former scenario began and terminated 

when the site entered and exited the camera's FOV. Specifically, it enters the FOV after the 

camera's EA exceeds 30 degrees and exits before the camera's EA falls below 30 degrees. The 
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camera will be pointed at Nadir for the rest of the period. The system-wide access for four 

different AOIs is shown in Table 19 for the NADIR pointing and tracking configuration. 

Table 19 contains the latitude and longitude coordinates of the four selected AOI, expressed 

in the World Geodetic System (WGS84). The total simulation was carried out for 21600 

seconds, i.e., 6 hours, and the respective system wide access with Nadir pointing and 

tracking is reported. Because the cameras are firmly affixed to the satellites, each satellite 

must be constantly reoriented (i.e., manoeuvred with the on-board actuators) along its orbit 

so that its yaw axis tracks the AOI location. 

Table 19: System wide coverage parameters with respect to a scenario duration of 6 hours, i.e., 21600 seconds. 

Location Latitude (deg) Longitude (deg) n SWAD (sec) SWAP (%) N 𝐒𝐖𝐀𝐃𝐓 (sec) 𝐒𝐖𝐀𝐏𝐓 (%) 

Africa 11.2027 17.8739 10 300 1.3889 545 16350 75.6944 

Australia -31.25 146.92 5 150 0.6944 691 20730 95.9722 

Europe 40.1209 9.0129 10 300 1.3889 712 21360 98.8889 

North 

America 
44 -120.3 14 420 1.9444 699 20970 97.0833 

In Figure 51, the list of satellites that will access the AOI in the proposed constellation 

and the length of time they will have access to Australia is shown, and their corresponding 

orbits are presented for the simulation time.  

 

Figure 51: Australia satellite access duration with tracking and its orbit. 
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a) Australia 

 Due to its climate, topography, and vegetation, Australia is susceptible to large-scale 

wildfires due to the interaction of all three factors. In the most recent year, there have been 

multiple instances of wildfires breaking out. A region in New South Wales with a high risk 

of being affected by wildfires has been considered, and the analysis is currently taking place 

[299]. According to the analysis findings, the computed reconfiguration coverage for the 

Australian AOI is 95.9722%. This represents a coverage level that is nearly equivalent to real-

time for the monitoring of catastrophic events. Examining Figure 52 and Figure 53, which 

depicts the system with access status being given for the (a) Nadir configuration and (b) the 

reconfiguration, which comprehends this result in a more clear and more concise manner. In 

the second scenario, the AOI is hidden from view for very short periods, which endows real-

time/near real-time monitoring. 

 

Figure 52: Australia system wide access status with Nadir configuration. 

 

Figure 53: Australia system wide access status with reconfiguration. 
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b) Africa 

In southern Africa, drier conditions have become more pronounced over the years, which 

has led to an increase in wildfire occurrence and extreme drought conditions. These 

conditions, either on their own or in combination, have led to a loss of crop productivity, the 

deaths of livestock and other wildlife, famine, the degradation of ecosystems, and a 

reduction in water quality and quantity. There is anticipated to be a 5.4% rise in the annual 

burned area throughout southern Africa in particular. These conditions, which are typical of 

southern Africa with their significant variations in rainfall and regular droughts, make the 

arid and semi-arid regions more prone to the outbreak of wildfires [300]. Considering all of 

these factors, Angola is factored into our analysis, and the results are shown in Figure 54 and 

Figure 55. In conclusion, there is a decrease in performance in the African site, which reflects 

a value for 𝑆𝑊𝐴𝑃𝑇 that is 75.6944%. This is due to the geographical position of Angola in the 

globe (the distance between spacecrafts is maximum when close to the equator). 

 

Figure 54: Africa system wide access status with Nadir configuration. 
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Figure 55: Africa system wide access status with reconfiguration. 

c) Europe 

In Europe, the island of Sardinia, located in Italy, is home to many urban interfaces, 

recreational values, and highly valued agricultural areas, all of which are in danger of being 

destroyed by severe wildfires due to the island's large population density. Individuals start 

most of the fires that occur on these islands and can be traced back to human negligence, 

agricultural and pastoral land use, and intentional arson. Based on the collected data from 

1995 to 2009, the island of Sardinia has an annual average of 2219 fires, and the size of each 

fire is on average 7 ha. Each year, wildfires consume an area that is equivalent to 16,601 

hectares on average, with the largest fire ever recorded consuming 9029 hectares. While fires 

larger than 50 ha make up only 1.8% of all fires (or about 40 per year), they are responsible 

for 68.7% of the total annual area that is burned [301, 302]. In accordance with the results of 

the simulation, as shown in Figure 56 and Figure 57, with the capability of reconfiguration, 

the 𝑆𝑊𝐴𝑃𝑇 percentage is 98.889%, which provides real-time/near real-time monitoring over 

the region in the event of a wildfire is detected. 
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Figure 56: Italy system wide access status with Nadir configuration. 

 

Figure 57: Italy system wide access status with reconfiguration. 

d) North America 

The western United States of America (USA) is facing a growing threat from wildfires, 

which are being fuelled by synergies between historical fire suppression efforts, shifting land 

use, insects and disease, and climate shifts that are becoming drier and warmer. In the United 

States, wildfires, which are the most significant form of natural disturbance in temperate 

forest ecosystems, affect an average of 4,500 km2 each year. Communities and land managers 

in areas at risk of wildfire have an immediate need for mitigation strategies to lower the 

likelihood of wildfires and adaptation strategies to improve the resilience of ecosystems in 

the face of changing weather patterns and fire patterns. One of the regions that have been 
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impacted is the rugged terrain of north-east Oregon, whose economies have traditionally 

been dependent on the region's forests and other natural resources. For the purpose of this 

research work, the Oregon region has been chosen, and after conducting the analysis, it was 

determined that the 𝑆𝑊𝐴𝑃𝑇 is 97.0833% as shown in Figure 58 and Figure 59, which 

guarantees continuous coverage over that AOI. 

 

Figure 58: USA system wide access status with Nadir configuration. 

 

Figure 59: USA system wide access status with reconfiguration. 

These findings suggest that astrionics, i.e., hardware accelerators for on-board edge 

computing, could be considered for future space missions. This would allow for the 

improvement of the framework, the efficient organisation of space-to-ground dataflow, and 
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the provision of real-time or near real-time information, which could be very helpful in 

managing extreme events and humanitarian emergencies. It was discovered that the 

outcomes were influenced by the direction in which the sensors were pointed when the 

measurements were taken. These results can also be affected by the orbits of the satellite, the 

minimum EA of the AOI, the camera mounting position, and location in respect to the 

FOV of the satellite if the satellite is not continually pointed at the AOI. The orbits of the 

satellites can be altered by employing Keplerian parameters and by modifying to the 

appropriate AOI in accordance with the needs of the owner or operator. In the future, 

cameras will be able to be mounted on gimbals that really can rotate freely of the satellite, 

and the many sensors that are distributed across the constellation will be able to be used to 

improve the results. This not only makes it possible for the satellites to point directly 

downward, also known as Nadir pointing, but it also makes it possible for the gimbals to be 

adjusted so that they can track the AOI independently, and it makes it possible for 

heterogeneous sensors to provide valuable data at a diverse array of wavelengths. 

4.7 Conclusion 

The objective of this research work is to use CNN models for the analysis of 

hyperspectral data to examine the performance of astrionics. Australian bushfire 

investigation has been used as a working example, and input data has been taken into 

account for hyperspectral imagery obtained with PRISMA. Considering three distinct 

hardware accelerators—the Intel Movidius Myriad 2, the Nvidia Jetson Nano and the Nvidia 

Jetson TX2—demonstrated that the on-board application is possible in terms of both 

inference time and power consumption. These accelerators were employed to show that the 

on-board application is practicable. In line with other earlier works in the literature, this 

paper suggests the opportunity to investigate hardware accelerators for on-board edge 

computing in upcoming space missions in order to improve the services, better manage the 

entire space-to-ground dataflow, start providing real-time information, and enable TASO 

which could be really important in the event of disasters and extreme event management. 

Future research will evaluate other accelerators, including the FPGA and Google Coral TPU. 

The proposed method is evaluated in DSS for real-time disaster management and will 

increase the AOI coverage and decrease the revisit time. A Low Earth Orbit (LEO) iDSS 
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constellation is suggested in this research study for real-time or near real-time wildfire 

monitoring. It has been shown that the on-board application is feasible in terms of inference 

time and power consumption. The proposed satellites feature hardware accelerators on 

board for edge computing, which is performed utilizing COTS components. This research 

work shows that real-time/near real-time monitoring is possible by altering the camera FOV, 

which is consistent with our earlier results. Since the iDSS is always connected through ISL, 

it is not necessary to always do active AOCS; instead, only when one of the constellation's 

satellites detects a wildfire this can communicate the other nearby satellites and perform 

active reconfiguration to collect as much data as possible. The results show that the proposed 

work can provide almost near real-time monitoring for Australia using the chosen 

constellation, which has a constellation system wide access percentage of 95.9722%. In order 

to enable the TASO in iDSS, an enhanced model using CNN will be embedded within this 

framework in future research. In order to improve the framework, efficiently organize space-

to-ground dataflow, and provide real-time/near real-time information, which could be very 

helpful in disaster and extreme event management, this research also suggests that hardware 

accelerators for on-board edge computing can be considered for future space missions. It was 

observed that the results were affected by the direction in which the sensors were pointing. 

These outcomes are also affected by the satellite’s orbits, AOI's minimum EA, camera 

mounting position and placement in relation to the satellite's FOV if they are not constantly 

pointing at the AOI. The satellites’ orbits can be modified using Keplerian parameters and 

adjusting to the desired AOI based on owner/operator requirements. In the future, cameras 

can be put on gimbals that can rotate independently of the satellite, and the heterogeneous 

sensors in the constellation can be used to enhance the outcomes. This not only allows the 

satellites to look straight down, i.e., Nadir pointing but also allows the gimbals to be adjusted 

to track the AOI independently, as well as the heterogeneous sensors able to provide useful 

data at different wavelengths. Further, the applicability of iDSS for rare events in astronomy 

and astrophysics-based missions will be considered.  Furthermore, heterogeneous satellites 

and sensors will be considered, and effective scheduling and planning will be considered on-

board the satellite without the involvement of a human operator. Humans will play a 

supervisory role in the operation, shifting from human-in-the-loop to human-on-the-loop, 

enabling trusted autonomous operations. In future work, the resilience component of iDSS 
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will be taken into consideration, i.e., if one satellite malfunctions, the others in the iDSS can 

reconfigure themselves to continue the mission and successfully accomplish it.  
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Chapter 5 

Maritime Domain Awareness 

The core focus of this chapter is the applicability of iDSS to maritime monitoring. 

Given that reliable and robust maritime security arrangements are essential for supporting 

Maritime Domain Awareness (MDA) and Intelligence, Surveillance, and Reconnaissance 

(ISR) activities. It is possible to do this with the help of satellite technology. The constellation 

of formations is proposed as a solution for this issue, and the autonomous orbital control of 

the proposed configuration is investigated and the findings are presented.  

5.1 Research Background 

A satellite technology-based approach becomes essential for countries in the southern 

hemisphere, with a sizeable maritime domain to protect in terms of sovereignty and 

sovereign rights, naval assets, infrastructure, resources and people [303-305]. These 

capabilities can significantly help with resource and biodiversity preservation, economic and 

environmental sustainability, disaster mitigation, and security at marine, as well as 

supporting sea safety and security [306]. This is especially true for isolated regions like 

Australasia [307, 308] and resource-rich regions such as the Gulf of Guinea [309], the South 

China Sea [310], Micronesia [311], the Argentine Sea [312], the Mediterranean Sea [313] and 

the Indian Ocean [314], to name but a few. According to the United Nations (UN), Illegal, 

Unreported and Unregulated (IUU) fishing significantly contributes to more than 90% of 

global fisheries stocks getting fully exploited, overexploited, or depleted, affecting regions 

most impacted by climate change. This practice also accounts for one-fifth of global fisheries 

catches, which can be worth up to $23.5 billion per year, making it the third most lucrative 

business natural resource crime after timber and mining [315]. For MDA, satellites can 

provide data for tracking ship movements, i.e., for ISR operations, and data for observing 

the marine environment, such as meteorological and oceanographic conditions. In 2014, the 

International Maritime Bureau (IMB) estimated that maritime piracy caused US$16 billion in 

economic losses annually, mainly due to theft, transportation delays, insurance costs, anti-

piracy measures, etc. The DSS involves a set of small satellites working together that can 
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simultaneously cover larger areas and outperform a single large (i.e., monolithic) satellite, 

which is often more expensive and less effective. DSS has many advantages, including easier 

design, faster build time, lower replacement costs and increased redundancy [22, 65, 259, 

316]. One issue is to keep the formation geometry (required to accomplish the mission) while 

avoiding inadvertent collisions due to uncertainty in the state of the formation and/or 

failures. Recent research focuses on various control strategies to address these changes, 

including the possible adoption of AI techniques [24, 317]. The requirements of the 

application have been met with SAR. Figure 60 depicts a possible classification and examples 

of SAR satellite mission types [318, 319]. The satellite systems are classified into monolithic 

and DSS, and the latter is divided into several possible implementation branches as the 

constellation (flying far from each other, without relative navigation/control), formation 

flying (close flight, requires relative control) and other options as swarms or hybrid 

approaches [317].  

 

Figure 60: A possible satellite system classification with SAR satellite implementation examples. 

In this research work, a constellation of formations is proposed to combine the benefits of the 

repeat cycle given by the constellation with the single-pass products allowed only by the 

formation flying distribution. An example of a monolithic SAR satellite was the Envisat [320], 

which provided a repeat cycle of 35 days. To perform interferometry, the product shall 
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construct the interferogram from different acquisitions of the same scene, which in this case 

would be separated for 35 days. The constellation solution reduces the revisit time to a few 

days as the Satellite System for Emergency Management (SIASGE) system (Satélite 

Argentino de Observación COn Microondas (SAOCOM-1) and Cosmo-Skymed SAR 

constellations). However, this could not be enough for applications needing real-time 

generation of the interferogram. Further, real-time interferometry is required for the MDA 

application, which must be computed on every single pass over a target zone or AOI. This 

requirement may be derived from two primary motivations: the need for a fast 

determination of the interferogram, and the need for high coherence in the interferometry, 

in order to avoid artifacts caused by differences in the background of the scene due to the 

atmospheric changes or other effects not related to this specific application. Furthermore, as 

a new iDSS architecture type, a constellation of these formations with AI on-board for data 

processing is considered to keep this feature and reduce the revisit time. This also 

investigates the possibility of allocating control accelerations among satellites on each 

formation as a function of the formation objective (relative geometry) and the constellation 

objective (ground track repetition cycle period). he following contributions were made: 

• A safe multi-baseline shifted-Helix Formation Flying is proposed for Along-Track 

Interferometric Synthetic Aperture Radar (AT-InSAR) Distributed Satellite System 

(iDSS), in the context of a Maritime Domain Awareness (MDA) mission over 

Australia. 

• Autonomous orbital control is evaluated for reconfiguration and maintenance of this 

iDSS formation. 

• For an increased revisit of maritime surveillance, a novel iDSS Archetype, 

“Constellation of Formations”, is proposed, with an associated autonomous control 

law evaluated by simulations. 

The objective of this work is not to define the constellation parameter but to propose a 

concept for its implementation (adding autonomy) by employing this two-level 

(constellation/formation) autonomous orbit control. Single pass interferometry is selected to 

maximise the coherence, which can be achieved by satellites flying very closely using a 

Formation Flying (FF) approach, as was implemented on TanDEM-X [321]. This pioneering 
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mission generated new SAR products by defining the acquisition modes as a function of the 

relative orbits between both satellites, each of them having a complete SAR instrument. 

Satellite Formation Flying (SFF) is the coordination of multiple neighbouring satellites to 

accomplish an objective/goal stated in terms of the relative orbits between them. There are 

various formation flying mission configurations to satisfy the user requirements. Each 

configuration can be obtained by small changes in the orbital parameters of each deputy 

satellite with respect to the nominal parameters of the chief satellite. In order to meet the 

needs of the users, different configurations of formation flying missions have been proposed. 

SFF can be classified depending on the configuration, mode of operation, and other factors. 

Figure 61 shows a possible Formation Flying classification. 

 

Figure 61: Chief-Deputy Classification (a) Leader-Follower, (b) Pendulum, (c) Cartwheel, (d) Helix 

Configuration, (e) Same-Ground Track. 

5.2 Synthetic Aperture Radar 

A satellite radar instrument produces and transmits its own energy using a known 

microwave signal pattern, then records the reception of that signal reflected back after 

interacting with the Earth's surface. When this instrument moves with a known velocity 

relative to the Earth's surface, the reflection also adds azimuthal information due to the 

Doppler frequency deviation and is referred to as Synthetic Aperture Radar data collection. 

( )

( ) ( )

( )

( )
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SAR data must be interpreted differently from optical images because the signal responds to 

surface characteristics like structure and wetness rather than being a static image. As 

compared to optical technology, SAR technologies can "see" through the darkness, clouds, 

and rain to notice trends in habitat, water and moisture levels, the consequences of natural 

or human disturbance, and variations in the Earth's surface as a result of quakes or sinkhole 

openings. These products are created by analysing the reflections of signals off a target 

location and measuring the two-way transit time back to the satellite, its frequency deviation, 

and the polarisation changes. The SAR interferometry technique "interferes" (differences) 

two SAR images of the same area, producing maps called interferograms that reveal ground-

surface displacement (range change) here between two time periods. The phase differences 

are used to extract information about the captured objects (in comparison to a single image). 

As a result, at least one aspect ("Baseline") must differ between the images.  

Future SAR missions will benefit from increased capability, reliability, and flexibility as a 

result of this spatial separation [321]. Applications for multistatic SAR systems include 

single-pass cross-track and along-track interferometry, spaceborne tomography, wide-swath 

imaging, resolution augmentation, ground-moving target acquisition, interference 

suppression and multistatic SAR imaging. Simultaneous data collection from numerous 

satellites reduces temporal and atmospheric disruptions, enhances performance, and allows 

the identification of rapid changes.  

Along-Track Interferometric Synthetic Aperture Radar (AT-InSAR) systems are employed to 

estimate the radial velocity of targets moving on the ground by combining the 

interferometric phases, which are acquired by combining the two intricate SAR images 

obtained by two antennas spatially separated along the platform moving direction [322]. The 

AT-InSAR can be used in various applications such as monitoring real-time traffic 

management, ocean currents, coastal surveillance, ice drift, etc. In AT-InSAR, the baseline 

difference is an along-track distance, with a magnitude depending on the mission type, and 

determines the time difference associated with the pass of the satellite over the particular 

target, hence measured in seconds for single pass interferometry (two consecutive satellites 

looking at the same target) or days/years for multiple-pass interferometry (i.e., to process a 

stack of images taken on different passes over the same scene by the same satellite, other 
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different satellites in a SAR constellation). Figure 62 shows different types of SAR in a 

simplified classification. The two main branches, interferometric and polarimetric, can also 

be combined as in the POLInSAR techniques [323].   

 

Figure 62: A simplified SAR classification. 

The interferometric SAR missions can be implemented by multi-static SAR, which is 

characterised by their relative position or equivalent time, known as the baseline. This 

subfield of SAR categorisation will serve as the primary focus of the analysis. Some baseline 

types usually implemented on SAR interferometric missions are shown in  

Table 20 and the baseline position difference is shown in Figure 63 for Along-Track 

interferometry. These baselines can be implemented in multiple passes, on which the 

interferogram is constructed with data of points of view obtained after several days when 

there is a repetition cycle on the ground track, or along a single pass when the multi-static 

SAR is composed by neighbouring satellites flying in formation. The latter may improve the 

SAR product in several ways, as the interferogram can be obtained in almost real-time. 

 

 



116 
 

 

Table 20: Some Baseline Types for Interferometric SAR [321]. 

 

 

Figure 63: AT-InSAR Baseline difference. 

In FF, several topologies exist to implement the relation between the satellites, for instance, 

the typical leader-follower approach. In this case, a Deputy satellite (also called follower or 

secondary) can choose from among the several formation geometries described previously 

to follow the chief, which can be reconfigured on-board [324]. The chief may also have an 

autonomous control objective to maintain the absolute orbit (for instance, drag-free), which 

the Deputy therefore follows. Beyond the topology, designers can see that there are 

objectives to follow the absolute orbit (for example, to follow a ground track), and other 

objectives is to follow a specific relative orbit geometry within the formation. A more general 

approach will be proposed to deal with these two types of objectives, to be presented as a 

Constellation of Formations. The type of formation useful for the MDA application is first 

 

Baseline SAR type Measurement and Application 

𝜟𝝋 (Look angles difference) Across-Track Topography, Digital Elevation Models 
𝜟𝒕  =  𝒎𝒔, … ,  𝒔 Along-Track Ocean currents, moving object detection 

𝜟𝒕  =  𝒅𝒂𝒚𝒔 Differential Glacier/ice fields, lava flows, hydrology 

𝜟𝒕  =  𝒅𝒂𝒚𝒔,   … ,  𝒚𝒆𝒂𝒓𝒔 Differential 
Subsidence, seismic events, volcanic activities, crustal 

displacements 

𝜟𝒕  =  𝒎𝒔,   … ,  𝒚𝒆𝒂𝒓𝒔 
Coherent 
Estimator 

Sea-surface decorrelation times, land cover 
classification 
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taken into account, followed by simulation results using low-thrust continuous control for 

formation maintenance and reconfiguration. 

5.3 Robust Multiscale AT-InSAR 

As mentioned, the Along Track formation relies on precise control of the along-track 

separation to avoid collision between the leader (or chief) and follower. This entails a risk 

due to the typical drift between satellites in case the orbit control was not active for a period 

of time. On the other hand, the possible need for two different baseline scales simultaneously 

multiplies the risk, as there are now three possible collision events if only one more follower 

satellite is added to the configuration. D’Amico showed in [325] a description of a relative 

orbit in terms of Relative Orbital Elements 𝛿𝛼  =  (𝛿𝑎,  𝛿𝜆,  𝛿𝑒 , 𝛿𝑖), where 𝛿e = (𝛿𝑒𝑥,  𝛿𝑒𝑦) is 

the relative eccentricity vector and 𝛿𝑖 = (𝛿𝑖𝑥,  𝛿𝑖𝑦) is the relative inclination vector. The orbit 

phase difference is given by 𝛿𝜆, while the semi-major axes relative difference is 𝛿𝑎 . A safe 

formation is guaranteed when 𝛿𝑒 and 𝛿𝑖 are parallel or anti-parallel, for 𝛿𝑎 = 0 . A strict AT-

InSAR formation only has an orbit phase difference between satellites, thus it is not possible 

to guarantee the safe condition (as 𝛿𝑒 = 𝛿𝑖 = 0, here parallelism cannot be evaluated.). Here 

a variation of this along track formation is proposed and as follows: 

1) To add a small helix component to each follower relative to the chief, where the 

across-track component is one order of magnitude smaller than the chief/follower 

along-track baseline.  

2) To scale the chief/follower relative eccentricity and relative inclination vectors in 

order to generate low-risk "pipes" for each satellite.  

Figure 64 shows a particular case of parallel relative eccentricity and relative inclination 

vectors for two followers with respect to the chief.  
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Figure 64: Example of relative eccentricity 𝛿𝑒𝑖
 (in red) and relative inclination 𝛿𝑖𝑖

 (in green) vectors of two 

followers 𝑖 = 1,2. 

Notice that the difference between the followers also preserves the relative eccentricity and 

relative inclinations vectors as collinear, therefore achieving a safe condition. This formation 

can include more followers by adding other scales on the same axis, preserving the 

collinearity between the relative eccentricity and inclination vectors for the given follower. 

On the other hand, different along-track baselines could be chosen for each of these 

followers. As the chief orbit is sun-synchronous and frozen, the satellite altitude and relative 

orbit baselines are guaranteed to repeat for the same latitude; hence the interferogram 

products generated on each pass have geometric coherence between different passes, 

enabling to perform differential interferometry by taking a set of images generated by the 

SAR system for the same zone. Moreover, the multiple along-track channels make it possible 

to track different velocity ranges for the targets on the Earth's surface, see [325], which can 

also be compared along the same pass by adding followers with different along-track 

baselines with the safe configuration previously presented.  

The following equation, adapted from [325] (Equation 2.22), defines a metric 𝛿𝑟𝑟𝑛
𝑚𝑖𝑛 to 

evaluate the minimum distance, on the radial/normal plane, between two satellites in a 

formation, by using the Relative Orbital Elements, as follows, for a chief orbit with semi-

major axis (𝑎𝑐):  

           𝛿𝑟𝑟𝑛
𝑚𝑖𝑛 =

√2𝑎𝑐 |𝛿𝑒 ∙ 𝛿𝑖|

√𝛿𝑒2 + 𝛿𝑖2 + |𝛿𝑒 + 𝛿𝑖| ∙ |𝛿𝑒 − 𝛿𝑖|

 
(17) 

where 𝛿𝑒 =  |𝛿𝑒| and 𝛿𝑖 =  |𝛿𝑖| . The following section will use this metric to evaluate the 

stationary regime after reconfiguration using an autonomous orbit control.  
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5.4 Autonomous Orbit Control 

The Relative Orbital Elements are used by an autonomous feedback orbit control law 

derived in [324]. This control law guarantees a bounded control acceleration expressed in the 

Radial, Transverse, Normal (RTN) frame. This section examines the reconfiguration between 

the unsafe along track formation and the safe one proposed in the previous section. Figure 

65 shows the simulation results for two followers after a reconfiguration manoeuvre starting 

with a pure along track (unsafe) condition. Figure 65  (a) shows the eccentric vector 𝛿𝑒 and 

the inclination vector 𝛿𝑖 components, which achieves a final state close to the pattern defined 

in Figure 64. Figure 65  (b) shows the evaluation of the radial/normal minimum distance 

metric 𝛿𝑟𝑟𝑛
𝑚𝑖𝑛. Figure 65 (c) shows the along-track separation, which can be defined 

dynamically for each of the followers. As there is a small Helix component added to the 

along-track formation, there will also be an oscillation on the along-track distance, whose 

amplitude doubles the amplitude of the radial/normal component.  The proposed geometry 

only sketches the idea of the relative geometry, while the application should give the 

definition of the parameters and can be changed dynamically using autonomous orbit 

control. This section examines the reconfiguration between the unsafe along-track formation 

and the safe one proposed in the previous section. 
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Figure 65: Simulation of a Robust Multibaseline AT-InSAR formation. (a) shows the 

components of 𝛿𝑒 and 𝛿𝑖, (b) shows the 𝛿𝑟𝑟𝑛
𝑚𝑖𝑛 and (c) shows the along track separation 

between each follower and the chief. 

Figure 66 shows the result for follower 1 with an orbit control period of 20 seconds, and 

assuming here ideal orbit navigation. For a satellite mass of 100kg, the simulated thrust 

bound would be 1mN in all directions. Figure 67 shows the coordinates given by the 

difference between relative perigee angle 𝜑 and relative ascending node angle 𝜃, with respect 

to the norms of the relative eccentricity 𝛿𝑒 and relative inclination 𝛿𝑖 vectors, scaled by the 

chief’s semi-major axis 𝑎𝑐 [325]. Notice that the beginning of the trajectory is at the origin of 

𝛿𝑒 and 𝛿𝑖 , and thus it is not under a safe condition, while at the end, the difference 𝜙 − 𝜃 is 

nearly zero (i.e., the relative eccentricity and inclination vectors are collinear) while the 

stationary relative eccentricity and inclination norms are approximately 40 meters when 

scaled by the semi-major axis. Therefore, the reconfiguration achieves the desired baseline 

and the required safe condition.  
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Figure 66:  Control acceleration for the follower 1 - chief formation, where red is the Radial, green is the 

Transverse and blue is the Normal component. 

 

Figure 67: Safe condition evaluation for the follower 1 – chief formation. 

5.5 Constellation of Formations 

The formation presented in the previous section has a ground-track repeatability 

described by the repeatability of any of the ground tracks of the satellites in the formation. 

These ground tracks limit the observation coverage for a given instrument’s field of view. A 

constellation of satellite formations is proposed to increase the repeatability and coverage of 

the desired iDSS while keeping the formation advantages.  Figure 68 shows an example of 

two formations flying in a constellation.  Notice that each formation preserves the single-
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pass SAR interferometry objective.  On the other hand, the resulting constellation can be 

designed by using the centre of mass of each formation as the constellation-equivalent 

satellite.   

 

Figure 68: A constellation of two formations with three satellites. 

Let the constellation 𝐶 =  {𝐹1, 𝐹2, . . . , 𝐹𝑁𝑐} be a set of 𝑁𝑐 formations 𝐹𝑖, each of them composed 

by 𝑁𝐹𝑖
 satellites, i.e. 𝐹1  =   {𝑠1,1,  𝑠1,2,   … ,  𝑠1,𝑁𝐹1

}, 𝐹2  =   {𝑠2,1,  𝑠2,2,   … ,  𝑠2,𝑁𝐹2
}, etc. As each 

satellite 𝑠𝑖,𝑗  belongs to the formation 𝐹𝑖 and to the constellation C, there are at least two 

objectives for the orbit controller:  

𝑂𝐹) To keep the relative orbit of the satellite 𝑠𝑖,𝑗 within the formation 𝐹𝑖.  

𝑂𝐶) To keep the formation 𝐹𝑖 in the constellation 𝐶.  

The formation objective 𝑂𝐹  has been treated in the previous section by using the relative 

orbital elements to describe the feedback error. However, there is flexibility in implementing 

the control law that designers can now use. For any given acceleration control determined 

by the follower relative orbit feedback law, designers can implement it on the follower alone, 

on the chief satellite alone, or on both. In this case, the freedom is used to implement the 
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formation orbit control laws in such a way that it does not modify the dynamics of the formation’s 

centre of mass.  

The constellation objective 𝑂𝐶  is stated considering the absolute orbit elements as generated 

by the constellation design, which is typically free of non-conservative forces, i.e., without 

drag and solar pressure effects, and with a certain reduced order model of the gravitational 

effects.  On the other hand, to build the constellation control error estimation of the centre of 

mass of each formation 𝐹𝑖 is needed. This requires the knowledge of the centre of mass and 

the mass of each of the satellites but has the benefit of enabling a smoothing of the navigated 

orbit, as the centre of mass is a weighted average. In particular, if all the satellites have the 

same mass and independent identical navigation error distributions, the navigated position 

and velocity of the centre of mass will have their standard deviation reduced by a factor of 

√𝑁𝐹𝑖. On the other hand, if there is a satellite dominant in mass, the centre of mass navigation 

error is dominated by the navigation error of this satellite.  In this way, the constellation 

objective has been reduced to the problem of the control of the centre of mass of the systems 

or particles determined by each formation. Once the control acceleration for the centre of 

mass is computed, this is translated into the specific forces to be implemented on each 

satellite, considering their masses. A high-level control system architecture of satellite is 

shown in Figure 69. Additional features of this proposal are developed in the following 

sections. 

 

Figure 69: Spacecraft control system high-level architecture. 
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5.5.1. Dedicated Navigation 

It is well known that the relative navigation based on Global Navigation Satellite 

System (GNSS) receivers can be improved by using interferometry in the L-band by means 

of the carrier phase (see [326]), which is known as Real-Time Kinematics (RTK). Other 

sensors can also be used to improve the accuracy of relative navigation, which confirms the 

benefit of implementing specific feedback for the formation control separated from the 

absolute control. On the other hand, the maintenance of the absolute orbit within the 

constellation must use absolute information, which can be implemented by using Precise 

Point Positioning (PPP) as proposed in [327].  

The Relative Orbit Elements (ROE) for each of these objectives are computed using 

the Mean Orbit Elements (MOE) based on the Ustinov parameters and the analytic formulas 

as shown in [324] and the works of literature. However, this could not be enough to attain 

the high accuracy needed for autonomous orbit control, even using the PPP and RTK 

methods. To this end, a nonlinear filter with finite time memory can directly smooth the 

control error given by the Relative Orbital Elements, which is compatible with low thrusts, 

as shown in [327]. This filter can be applied by storing all the implemented control 

accelerations and measured Relative Orbital Elements, during a certain time horizon, for 

instance, the last (moving) orbit period. The resulting smoothed control error has enough 

accuracy to enable autonomous orbit control with a feasible propellant consumption (i.e., the 

navigation noise is not translated into a permanent actuation and waste of propellant).  

5.5.2. Dedicated Control 

Every satellite on the formation implements the same control computed for the centre 

of mass of this formation to preserve/achieve the constellation objective. This can be seen as 

a "common mode" control, using absolute orbit navigation of the centre of mass. On the other 

hand, for each satellite on the formation, there is an additional term obtained as the necessary 

feedback to implement the relative orbit control within the formation with the restriction that 

the dynamics of the centre of mass of the local formation is not perturbed. Following the 

previous analogy, this can be seen as a "differential mode", using relative navigation between 

the satellites on the same local formation. Consider the two followers and the chief in the 

previous section's application as a formation; thus, the control acceleration to achieve relative 
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dynamics while preserving the formation's centre of mass must be computed. Let 𝑎0𝑅, 𝑎1𝑅 

and 𝑎2𝑅 be the relative terms of the control accelerations for the chief (index 0), follower 1 

(index 1) and follower 2 (index 2). Because the SAR interferometry requirements are written 

in terms of the error between the chief and each of the followers, rather than the error 

between the followers, one can begin by stating the desired formation objectives:  

−𝑘𝐹 𝛿𝛼01𝑅
  = 𝐵 (𝑎1𝑅 − 𝑎0𝑅) (18) 

−𝑘𝐹 ⋅  𝛿𝛼02𝑅
  = 𝐵 (𝑎2𝑅 − 𝑎0𝑅) (19) 

where 𝑘𝐹 is a proportional gain for the formation control and 𝛿𝛼01𝑅 and  𝛿𝛼02𝑅 are the relative 

orbital elements of each of the followers with respect to the desired Maneuver orbit (see 

[324]) written in both cases relative to the same chief: 

               𝛿𝛼01𝑅 = 𝑇0 (𝜉1 − 𝜕𝜉1 − 𝜉0) (20) 

              𝛿𝑎02𝑅 = 𝑇0 (𝜉2 − 𝜕𝜉2  −  𝜉0) (21) 

where 𝜉 0,  𝜉1,  𝜉2 are the mean Ustinov parameters (see [14-15]) of the chief, follower 1 and 

follower 2 orbits respectively, while 𝜕𝜉1 and 𝜕𝜉2 are the desired deviation relative to the chief 

necessary to implement the mission orbit requirement for follower 1 and follower 2 

respectively. The matrix 𝑇0 is written in terms of the chief parameters and can be found in 

[323]]. Finally, the matrix 𝐵 in (42)-(43) is the control input matrix of these relative orbit 

elements dynamics, which is assumed equal for all the satellites in the formation. These 

relative orbital elements dynamics are given as (see [324, 325]):  

               
𝑑𝛿𝛼01𝑅

𝑑𝑡
= 𝑓01𝑅   +  𝐵 (𝑎1𝑅 − 𝑎0𝑅) (22) 

𝑑𝛿𝛼02𝑅

𝑑𝑡
= 𝑓02𝑅   +  𝐵(𝑎2𝑅   −  𝑎0𝑅) 

(23) 

where 𝑓02𝑅 and 𝑓02𝑅 are considered very small disturbances, which can be partially 

compensated as a feed-forward term by the control law. The common input matrix 𝐵 for a 

formation 𝐹𝑖 will be determined by the orbit parameters of its centre of mass orbit, using its 

orbital elements as follows:  
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   𝐵 =
1

𝑎 𝑛

[
 
 
 
 
 
 

0 2 0
−2 0 0

𝑠𝑖𝑛 (𝜆) 2cos (𝜆) 0

−cos (𝜆) 2𝑠𝑖𝑛 (𝜆) 0

0 0 cos (𝜆)

0 0 cos (𝜆)]
 
 
 
 
 
 

 (24) 

where 𝑎, 𝑛 and 𝜆 are the mean orbital elements of the centre of mass of the formation 𝐹𝑖, 

associated respectively with the semi-major axis, mean motion and mean argument of 

latitude. The columns of matrix 𝐵 span the whole vector space 𝑅𝟞 every orbit, but locally 

only can generate a subspace of dimension 3. Therefore (42) and (43) cannot actually be met 

unless the left-hand sides belong to the column vector space of matrix 𝐵 , but this can be 

solved in general by using the pseudo-inverse 𝐵+ of the input matrix 𝐵 :  

      𝑎1𝑅   = 𝑎0𝑅 − 𝑘𝐹 ⋅ 𝐵+ ⋅ 𝛿𝛼01𝑅 (25) 

 𝑎2𝑅   = 𝑎0𝑅 − 𝑘𝐹 ⋅ 𝐵+ ⋅ 𝛿𝛼02𝑅 (26) 

The centre of mass constraint for the control accelerations is given as follows, for a chief with 

mass, and the followers with masses: 

𝑎0𝑅 ⋅ 𝑚0 + 𝑎1𝑅 ⋅ 𝑚1 + 𝑎2𝑅 ⋅ 𝑚2 = 0                     (27) 

The linear equations (25)-(27) can be solved for the control vectors 𝑎0𝑅 ,  𝑎1𝑅 and 𝑎2𝑅 as 

follows: 

𝑎1𝑅   =  −𝑘𝐹 ⋅ 𝐵+ (
(𝑚0 +  𝑚1) 𝛿𝛼01𝑅   − 𝑚2 ⋅ 𝛿𝛼02𝑅

𝑚0 +  𝑚1 + 𝑚2
) (28) 

𝑎2𝑅   = −𝑘𝐹 ⋅ 𝐵+  (
 (𝑚0 + 𝑚2) ⋅ 𝛿𝛼02𝑅 −  𝑚1 𝛿𝛼01𝑅

𝑚0 +  𝑚1 + 𝑚2
) 

      

(29) 

𝑎0𝑅   =   − 𝑘𝐹 ⋅ 𝐵+ (
𝑚1 ⋅ (𝑚0 + 𝑚1 − 𝑚2) ⋅ 𝛿𝛼01𝑅 + 𝑚2 ⋅ (𝑚0 + 𝑚2 − 𝑚1) ⋅ 𝛿𝛼02𝑅

𝑚0⋅(𝑚0 + 𝑚1 + 𝑚2)
) (30) 

This method can incorporate disturbance rejection, control saturation and fuel consumption 

management as made in [324], but the emphasis on the linear combination of the relative 

orbital elements is maintained. Notice that the control acceleration shown in the previous 

section's example for each of the followers did not specify the implementation completely, 

as there were undefined degrees of freedom. For instance, one could define zero relative 
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control acceleration for the chief, as can be found in a non-cooperative leader-follower 

approach. Exploiting these degrees of freedom more generally allowing to preserve the 

centre of mass for relative control, and on the other hand, one can compute the control 

acceleration for the centre of mass in order to track the desired constellation objective as a 

common control acceleration 𝑎𝐶
𝐹𝑖 for a given formation 𝐹𝑖. Therefore, the total control 

accelerations to be implemented on each of the satellites of this formation 𝐹𝑖 are as follows:  

 𝑎0
𝐹𝑖 = 𝑎𝐶

𝐹𝑖 + 𝑎0𝑅
𝐹𝑖   (31) 

 𝑎1
𝐹𝑖 = 𝑎𝐶

𝐹𝑖 + 𝑎1𝑅
𝐹𝑖   (32) 

 𝑎2
𝐹𝑖 = 𝑎𝐶

𝐹𝑖 + 𝑎2𝑅
𝐹𝑖  (33) 

which is the control law for each formation 𝐹𝑖 in the constellation of formations 𝐶. For a given 

objective for the centre of mass of the formation 𝐹𝑖 in the constellation, it is defined as a 

relative orbital element 𝛿𝛼𝐶
𝐹𝑖  which determines the control term 𝑎𝐶

𝐹𝑖 as follows:  

𝑎𝐶
𝐹𝑖   =   − 𝐵𝐹𝑖

+   (𝑘𝐶 ⋅ 𝛿𝛼𝐶
𝐹𝑖 + 𝑓𝐶

𝐹𝑖)                                           (34) 

where the input matrix corresponds to the formation 𝐹𝑖 which is explicitly stated in the 

notation. The term 𝑓𝐶
𝐹𝑖  may be used for feed-forward compensation of non-conservative 

dynamics, as aerodynamic drag or Solar radiation pressure, as a degree of freedom for the 

designer. In order to compute the constellation error, it is necessary to compute the desired 

orbit for the centre of mass, which can be performed on-board with a suitable orbit 

propagator, which should be modified/initialised considering the mission needs. As both 

control objectives 𝑂𝐶 and 𝑂𝐹 have different accuracy limits, the proposed separation helps to 

optimise the application of each of the laws on the specific time periods on which they may 

be more effective. 

Note on the control law: In [65], several relative orbit control laws are formulated in terms 

of the linearised Clohessy-Wiltshire equation as: 

1.            
𝑑𝑥

𝑑𝑡
  =  𝐴𝑐𝑤 𝑥  +  𝐵𝑐𝑤 𝑢 (35) 

 and the control is obtained as:  
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𝑢  =  − 𝐾(𝑥) (𝑥 – 𝑥𝑑) (36) 

for a given desired coordinate 𝑥𝑑. As the relation between the control and the error (𝑥  −  𝑥𝑑) 

can be considered linear as in (55)-(56), the same approach can be implemented to determine 

the relative control component associated with the formation objective, restricted to 

determine a null deviation of the centre of the mass formation. 

Note on the saturated control law: The thrust control authority must be selected to achieve 

the constellation objectives with a large enough margin. In this way, it is always possible to 

select a small enough gain 𝑘𝐹 for the formation control which achieves stabilisation of the 

formation objective. As there might be time and propellant consumption restrictions, this 

gain and the thrust and satellite masses allocation in the formation should be selected 

carefully (see [324, 328]). In particular, the gain 𝑘𝐹 could be selected specifically for each 

chief/follower pair in order to consider different features of each follower satellite and 

associated objective. However, to make the presentation simpler on (12)-(14), a unique gain 

𝑘𝐹 is chosen for all the followers.  

5.5.3. Allocation of Satellite Masses on Each Formation  

In the studies of a companion satellite for the L-band SAR Argentine MicroWave 

Observation Satellite SAOCOM mission [329, 330], the relation of masses between the chief 

and the follower was around ten times. It is reasonable to fix the same mass for the followers, 

i.e., 𝑚1  =  𝑚2  =  𝑚𝐹, and the chief mass is given as 𝑚0  =  𝛽 𝑚𝐹 for  𝛽  ≥  1 . Moreover, it 

would be convenient to implement on the chief a thruster 𝛽 times bigger in terms of force 

and propellant mass, for a given common propulsion technology and specific impulse. 

Under this mass model, the total mass of the constellation of formation would be 𝑚𝑇   =

 𝑁𝑐 (2 + 𝛽) 𝑚𝐹, where 𝑁𝑐. is the number of formations of three satellites (one chief and two 

followers). The following particular cases can be identified by inspection of equations (28)-

(30):  

• 𝛽 ≫ 1 : In this case, the required chief's control acceleration becomes negligible with 

respect to the control acceleration of the followers, which tends to be like a classical 

leader-follower topology on which the control is made by the follower only.    

• 𝛽 = 1 : The required chief's control acceleration authority doubles the required control 

acceleration authority of each of the followers.  
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• 𝛽 = 2 : The required chief's control acceleration authority equals the required control 

acceleration authority of each of the followers. 

• 𝛽 > 2: The required chief's control acceleration authority is smaller than the required 

control acceleration authority of each of the followers.  

In general, if there were 𝑁𝐹𝑖
 satellites on a formation 𝐹𝑖, the mass ratio for equal control 

acceleration authority for a chief with mass 𝑚0  =  𝛽𝑚𝐹 is given by 𝛽 = 𝑁𝐹𝑖
− 1. Moreover, 

notice that the case with 0 < 𝛽 < 1 would be feasible, but this case is not practical for a SAR 

formation, where the chief performs more tasks than the followers and thus requires more 

satellite mass. 

Figure 70 and Figure 71 show the control acceleration evolution to implement the same 

formation reconfiguration as proposed for AT-InSAR, with 𝛽 = 2 and 𝛽 = 10 respectively. It 

is verified fact that for a larger value of 𝛽, the control authority required on the chief becomes 

reduced in comparison with the followers. This also has an impact on the DeltaV of each 

satellite, as shown in Figure 72. This could be taken for a trade-off on the specific 

constellation/formation system design under the particular restrictions and mission 

objectives, which is beyond the scope of this work. 

Finally, notice that the implementation of this distributed control requires knowledge of the 

satellite masses, which are time-varying. One of the main uncertainties is knowing the 

satellite mass given by the propellant consumption. However, this becomes negligible by 

using very high specific impulse electric propulsion of several thousands of seconds. The 

feasibility of this specific impulse level can be verified with the Field Emission Electric 

Propulsion (FEEP) technology, which is available now as COTS products for small satellites 

(see [331, 332]).   
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Figure 70: Control acceleration results with chief/follower mass ratio 𝛽 = 2. 

 

Figure 71: Control acceleration results with chief/follower mass ratio 𝛽 = 10 . 



131 
 

 

Figure 72: DeltaV on a formation reconfiguration as a function of the mass ratio 𝛽. 

In order to simplify the implementation of the saturation, the saturation on the control 

acceleration differences is defined as follows:  

𝛥𝑎1𝑅 = 𝑠𝑎𝑡(𝑎1𝑅   − 𝑎0𝑅)            (37) 

𝛥𝑎2𝑅 = 𝑠𝑎𝑡(𝑎2𝑅   − 𝑎0𝑅)            (38) 

Therefore, it can be found that under previous assumptions and two followers:  

𝑎1𝑅 = 𝛥𝑎1𝑅 ⋅ (1 −
1

𝛽+2
) + 𝛥𝑎2𝑅 ⋅ (−

1

𝛽+2
)          (39) 

𝑎2𝑅 = 𝛥𝑎2𝑅 ⋅ (1 −
1

𝛽+2
) + 𝛥𝑎1𝑅 ⋅ (−

1

𝛽+2
)        (40) 

𝑎0𝑅 =
−1

𝛽+2
(𝛥𝑎1𝑅 + 𝛥𝑎2𝑅)         (41) 

There is no real actuator saturation in (31) and (32), as the saturation is applied here to a 

difference between control accelerations on different satellites. However, one could use an 

estimate of the upper bounds on these maximum available differences, considering the 

margin to guarantee that the real actuator on the full expressions (25)-(27) does not reach any 

saturation limit.   
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5.5.4. Inter-Satellite Communications  

The implementation of this control law requires communication between the satellites 

in each formation, i.e., ISL, in such a way that all the absolute positions are known at least 

by one of the satellites, while all of the satellites receive all the relative errors and the centre 

of mass acceleration command in order to implement the associated force. ISL allows for 

satellite-to-satellite communication on each iDSS formation 𝐹𝑖, and many possible 

implementations are shown by Liz Martinez et al. [333]. A direct solution is given by the Star 

topology, where the follower satellites of the formation communicate this navigation states 

to the chief, and hence this chief can broadcast this information to all the followers, including 

also its own navigation state and the relative navigation respect to each of the followers. 

Figure 44 shows this and other feasible topologies, with the full-duplex ISL being 

represented by double arrows. By including reactive components into the architecture, ISL 

allows the iDSS operations to be enhanced and data to be processed on-board the satellite 

for real-time operation. The ground station network and/or geostationary satellite service 

can be used to facilitate communications between satellites of different formations, which 

may be useful to perform constellation reconfigurations and process collision avoidance 

alarms from external objects [22]. As the communications become part of the control loop, a 

complete infrastructure to validate autonomous orbit control shall be able to emulate the 

inter-satellite links, as proposed in [334].  

5.6 Conclusion  

Autonomous orbit maintenance paves the way for TASO to become a reality in iDSS. 

Here it is shown that TASO is attainable with low-thrust electric propulsion for two main 

objectives: achieve and maintain the satellite orbit on the constellation, using absolute orbit 

navigation, and on the formation, using a more precise relative orbit navigation. In this way, 

each autonomous orbit control objective has a dedicated navigation type.  

As a case study, iDSS mission for MDA is considered using distributed SAR 

instruments and demonstrated a formation geometry capable of tracking ship movements 

using single-pass AT-InSAR. In particular, a single pass and multi-baseline implementation 

was proposed using a safe three-satellite formation, which allows us to avoid temporal 



133 
 

decorrelation and to have different velocity scales to track simultaneously. In order to 

improve the repeatability of these SAR products, a constellation of these formations is 

proposed. A demonstrated, this can be solved by autonomous orbit control using low thrusts 

compatible with electric propulsion.  A particular formation mass distribution was analysed 

on which there is a chief whose mass is equal or greater than the mass of the followers by 

certain common factors.  It was shown that for the combined formation/constellation control 

the relative importance of the control authority (in terms of manoeuvre total Delta V) of the 

chief decreases in relation of the equivalent figure for the followers, as this mass ratio 

increases.  

A Constellation of Formations approach was proposed as a way to model the 

problem, and the solution's concept has been determined. The approach is based on the 

concept of a system of particles to describe each of the formations in the constellation in such 

a way that the relative control within the formation determines the formation flying, while 

there is a separate constellation control objective stated in terms of the centre of mass of each 

formation, i.e., a constellation of formation's centre of masses.  Both objectives were solved 

with the same feedback control law structure using relative orbital elements obtained from 

the mean orbit elements of each of the spacecrafts. This requires an inter-satellite 

communication link between the satellites on the same formation for the formation flying 

feedback computation and the knowledge of the constellation objective in terms of mean 

orbital elements for the constellation feedback computation, which may be obtained on-

board by the desired orbit propagation.  

Finally, notice that with the recent evolution of inter-satellite communications, it is 

possible to augment this ISL capacity to share also the SAR data information to generate the 

interferogram on-board and, therefore, deliver it in near real-time to the user. In this way, as 

iDSS solutions become more readily available, a concept of operation with on-board single 

pass multibaseline interferometry computation will make it possible to deliver high-quality 

SAR data products faster to the user for effective maritime monitoring. Additional work 

must be addressed to perform more realistic simulations, including hardware in the loop to 

test GNSS navigation hardware, control nonlinearities, and possible inter-satellite links 

topologies, in order to complete the mission concept at the flight segment system level.   
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Chapter 6 

Multidisciplinary Design and Optimisation of iDSS 

This chapter focuses on the design and optimisation of the iDSS for EO specifically for 

Australia and Australasia, with the goal of providing persistent coverage over the region. 

The iDSS subsystem and mathematical model is presented and a Multidisciplinary Design 

Optimisation (MDO) is carried out to optimise the iDSS in terms of mass and coverage. The 

results are presented and discussed in this chapter.  

6.1 MDO of iDSS 

Outer space is dominated by small satellites, especially in LEO [192]. In an iDSS, 

several satellites or modules work collaboratively via ISL to achieve mission objectives using 

AI astrionics that are challenging for a single small satellite to achieve on its own. Previous 

research [193-196] focused on improving coverage and lowering costs by optimising the 

geometric arrangement of the satellite constellation, but the satellite subsystems and their 

characteristics were not considered in the optimisation. Additionally, iDSS platforms can be 

linked via ISL, allowing data sharing among the platforms. As demonstrated in Chapter 4, 

to ensure that only actionable and meaningful information is downlinked to the ground, this 

is accomplished by utilising cutting-edge astrionics with AI algorithms [217, 218]. An iDSS 

long-term success relies on significant budget reduction, which is possible only when the 

interconnection between the constellation and satellite subsystems is exploited to its full 

potential. As a result, the iDSS design that considers all disciplines with interdisciplinary 

interaction must be optimised. Due to its disciplinary restrictions, iDSS becomes a MDO and 

cannot be solved as a conventional Non-Linear Programming (NLP) problem [197, 198]. 

When solving a multidisciplinary design problem, it is important to examine the system's 

design for each discipline and how those disciplines interact with one another. MDO is a 

branch of engineering that deals with optimisation problems to determine the ideal solution 

in a specific design space while considering the constraints [197, 199-202]. When integrated, 

the optimisation of distinct subsystems may conflict with one another. As a result, the whole 

system must be optimised in its entirety. In an iDSS, modelling subsystem interactions 
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complicate the optimisation problem since subsystem compatibility must be preserved while 

the objective function is minimised [197]. Martin et al., [201] described various MDO 

architectures and classified Hierarchical and Non-hierarchical MDO architectures. In a 

hierarchical architecture, each child element solely interacts with a parent element. However, 

in non-hierarchical structures, besides the parent-child interaction, there are other significant 

interactions among the child elements [203]. Since there are substantial interactions among 

some of the satellite subsystems, a non-hierarchical strategy is required in the current 

scenario. Depending on the problem formulation, non-hierarchical architectures are further 

divided into the Monolithic and Distributed categories. Monolithic architecture is 

formulated as a single optimisation function. Whereas, in distributed architecture, the 

problem is split into subproblems and reassembled to produce a combined solution. 

In recent decades, several efforts have been made to compare different MDO architectures, 

and a conclusion has been established based on the specific situation and can be found in the 

literature [203-211]. These studies suggest that the success of architecture depends on the 

task at hand, and there is no such architecture ideal for all the applications. The research 

findings reveal that the chosen MDO architecture impacts the solution's optimality and the 

processing resources required. iDSS design optimisation using MDO techniques is seldom 

discussed in the literature. 

OpenMDAO [212], a specialised framework for MDO optimisation, is used to represent 

multiple disciplines of iDSS and their interconnections. The use of such a framework 

eliminates most of the human factors in architecture programming. Therefore, the results are 

unbiased. The following are the main contributions: 

• Design of an iDSS Constellation for an Australia/Australasia-specific EO mission for 

persistent coverage. 

• The proposed MDO is discussed in terms of constraints, then optimised in terms of 

mass and coverage modified to be consistent with the iDSS design. 

The chapter begins with a thorough analysis of the iDSS design challenge that defines the 

objectives and links across disciplines in section 6.2. Each iDSS subsystem and its 

corresponding analytical model are presented in Section 6.3. Section 6.4 provides the 

background for the iDSS design challenge for the examination of Multidisciplinary Feasible 
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(MDF) architecture. Results and analysis are presented done in Section 6.5, followed by the 

conclusion in section 6.6 where the optimisation outcomes for the MDO-MDF architectures 

investigated in this research are presented. 

6.2 Problem Description 

This research mainly focuses on designing and optimising an iDSS for persistent 

coverage over Australia. iDSS is a multidisciplinary system that includes the disciplines, as 

shown in Figure 73.  

 

Figure 73: iDSS Project Elements. 

The primary need for iDSS is to provide a more responsive and resilient option to 

address the growing needs of Australia. Only the Constellation, Power, Thermal, Structure 

and Payload subsystems are considered in this initial analysis. The attitude control, 

command and data handling, Telecommunication, and Propulsion subsystems are assumed 

to be readily available, and employing design estimation relationships, their mass and power 

budgets are assessed [215, 216]. The other elements, such as the Launch system, Tracking 

and data, and mission operations will be considered in future research. The MDO 

optimisation problem necessitates a set of design variables and subsystem inputs to produce 
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subsystem states through the processing of the corresponding analysis model. The calculated 

subsystem states are either required for calculating the objective/constraints or by other 

subsystems (coupling). Figure 74 depicts the relationships between the disciplines of the 

modelled iDSS. The Telemetry, Tracking, and Control (TT&C) component of a spacecraft 

serves as a link between the spacecraft in the iDSS and the facilities the link to the ground. 

On-board Data Handling (OBDH) is responsible for processing the data on the satellite itself. 

 

Figure 74: iDSS Subsystem couplings. 

The handling of coupling variables is the distinction between the different MDO 

architectures. Although most of the design variables in the current problem are continuous, 

some of them are discrete. The optimisation problem changes to a Mixed Integer Non-Linear 

Problem (MINLP) when both types of variables are considered [219], whereas MINLP is 

extremely challenging to solve. Launch costs directly impact the number of satellites and 

orbital planes, which are independent of another subsystem. These discrete factors will 

simultaneously impact the final satellite design and computation time. For MINLP to a Non-

Linear Problem Reduction (NLPR) [220], the number of satellites and orbital planes are fixed 

and solely optimises the elevation, inclination, and altitude angles in the context of 

constellations. 

This research work proposes a constellation of LEO satellites [37, 47-49, 52, 221] for EO [222]. 

The constellation is made up of 25 satellites that are uniformly spaced across five orbital 
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planes. All the participants in the proposed constellation are assumed to be similar and carry 

the same optical payload. In this iDSS optimisation problem, the major challenge is to offer 

full coverage over Australia. The optimisation challenge aims to reduce the overall mass of 

the iDSS system while keeping a variety of limitations in mind. The following equation is 

used to compute the mass 𝑚𝑠𝑦𝑠 of iDSS. 

𝑚𝑠𝑦𝑠 = 𝑁𝑆 ∗ (𝑚𝑠𝑡𝑟𝑢𝑐 + 𝑚𝑝𝑎𝑦𝑙𝑜𝑎𝑑 + 𝑚𝑝𝑜𝑤𝑒𝑟 + 𝑚𝑡ℎ𝑒𝑟𝑚𝑎𝑙 + 𝑚𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔) (42) 

where 𝑁𝑠 denotes the number of satellites, 𝑚𝑠𝑡𝑟𝑢𝑐 denotes the structural mass of the 

spacecraft, 𝑚𝑝𝑎𝑦𝑙𝑜𝑎𝑑 denotes the Payload mass, 𝑚𝑝𝑜𝑤𝑒𝑟 denotes the mass of the power 

subsystem, 𝑚𝑡ℎ𝑒𝑟𝑚𝑎𝑙 denotes the mass of the thermal subsystem, and 𝑚𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 denotes the 

mass of the subsystems other than the ones mentioned above. 

6.3 iDSS Subsystems 

The mathematical framework for each discipline considered for the iDSS is presented 

in this section. The iDSS represents the parent element, whereas the constellation model, 

payload, thermal, power and structure represent the children’s elements. 

6.3.1 Constellation Model 

Constellation Model refers to a group of satellites whose orbital parameters ensure an 

orderly sequence of handovers to obtain the desired coverage. Different types of coverage 

are available. a. Global, b. Zonal (Latitude belt), and c. Regional, as illustrated in Figure 75. 

 

Figure 75: Distinct coverage modes (a) Global, (b) Zonal, (c) Regional. 

In contrast to the monolithic satellite system, a constellation could provide persistent global 

or near-global coverage, meaning that at any given time, at least one satellite is visible from 



139 
 

anywhere on Earth. Satellites are often situated in orbital planes that are complementary to 

one another and communicate with globally dispersed ground stations. Inter satellite 

communication may also be used to communicate with each other. The two main types of 

constellations: (i) Polar and Near-polar Constellations and (ii) Walker Constellation. Other 

constellation types are available in the literature, but the two mentioned above are the most 

important and widely used. 

6.3.1.1 Polar and Near-Polar Constellations 

The polar orbit is inclined at an angle of 90°, while the near-polar orbit constellation 

has an inclination similar to the polar orbits but can be tuned according to the orbit's specific 

requirements. The polar constellation model is interesting because it allows a purely 

geometrical solution, as shown in Figure 76. Walker [46, 223] looked at a variety of 

constellations, typically covering them with a street approach. Walker star patterns are near-

polar constellations with just an orbital seam between ascending and descending planes. 

This is because so many orbits cross at the Poles, and the orbital planes intersect to form a 

star when viewed from one of the Poles. 

 

Figure 76: Street coverage of two satellites in a polar constellation, with red and green representing the 

satellites fields of view. 

Motion 
relative to 

ground

Satellite 
coverage 

areas

Street of 
coverage



140 
 

6.3.1.2 Walker Constellation 

Walker proposed uniform constellations, as illustrated in Figure 77, with the inclination 

criterion relaxed to lower the needed number of satellites by reducing superfluous overlap 

at the poles. There is no way to identify a geometrical solution, but numerical analysis can 

reveal the total number of satellites (checking that coverage is ensured every time). The Delta 

constellation, sometimes called the Walker Delta or a Rosette, is one of the most well-known 

constellations [223].  

 

Figure 77: Walker delta constellation. 

Aiming for effective coverage across the Australian continent, the Walker scenario will be 

appropriate for the constellation model. On the other hand, the Walker Delta design is 

appealing for the current research work because of its simplicity and economic feasibility 

[46, 224]. The parameters 𝑖, 𝑁𝑠, 𝑝, and 𝑓 indicate the distribution of satellites in space, where 

𝑖 is the inclination, 𝑁𝑠 is the total number of spacecrafts, 𝑝 is the total number of orbital planes, 

and 𝑓 is the phase difference between the participating spacecrafts in the neighbouring plane. 

The number of satellites in each orbit is given by 𝑠 =  𝑁𝑠/𝑝 , where 𝑝 | 𝑁𝑠. To avoid satellite 

collisions, the phase difference between the neighbouring spacecrafts of a specific plane is 

calculated using 𝑓 ×(360°)/𝑁𝑠, where 𝑓 is an integer between 0 and (𝑝 –  1) in this research.  

The semi-major axis (𝑎), eccentricity (𝑒), inclination (𝑖), the longitude of ascending node (Ω), 

the argument of perigee (𝜔), and true anomaly (𝜐) are the six Keplerian elements that make 

up a satellite's orbital parameters in three dimensions. Since the Walker Delta constellation 



141 
 

is comprises of circular orbits, 𝑒 =  0 and 𝜔 =  0, 𝑎 is equal to the radius of the orbit, and 𝜈 

indicates the angle from the satellite's position vector to the ascending node. The ascending 

node's right ascension is expressed as Ω = (360°)/𝑝. At epoch 𝜐𝑛  =  𝑓𝑛, where 𝑛 =

 1, 2, . . . , 𝑁𝑠. The altitude (ℎ), inclination (𝑖) and elevation angle (𝜖) are optimisation design 

variables utilised by the constellation model. The orbital elements are utilised to establish 

the satellite's initial state (position and velocity). The initial state is then stretched around the 

Earth for a set amount of time. Finally, each satellite's coverage is calculated and updated. 

The steps are explained in detail below. 

Satellite State Determination: At any given point in space, the satellite's position and 

velocity vectors determine its state (�⃗� ). In the Perifocal coordinate system, 𝑃𝑄𝑊, the state 

(�⃗� 𝑃𝑄𝑊), position (𝑟 𝑃𝑄𝑊), and velocity (𝑣 𝑃𝑄𝑊) vectors are represented by Equation (43-45), 

where 𝜇 is the standard gravitational parameter. The 𝑃 axis is pointing towards perigee (𝜔), 

the 𝑄 axis points 90° degrees from 𝑃 in the direction of satellite motion, and the 𝑊 points 

perpendicular to the orbit. Thus, we have: 

�⃗� 𝑃𝑄𝑊 = [
𝑟 𝑃𝑄𝑊

𝑣 𝑃𝑄𝑊
] (43) 

𝑟 𝑃𝑄𝑊 =

[
 
 
 
 

acos (𝑣)

1 + 𝑒𝑐𝑜𝑠(𝑣)
asin (𝑣)

1 + 𝑒𝑐𝑜𝑠(𝑣)
0 ]

 
 
 
 

 (44) 

𝑣 𝑃𝑄𝑊 =

[
 
 
 
 
 
 

−√
𝜇

𝑝
sin (𝑣)

√
𝜇

𝑝
(e + cos(𝑣))

0 ]
 
 
 
 
 
 

 (45) 

Since ω = 0, the perifocal frame of reference is no longer used for calculations. Hence, the 

state variables are transformed into the Earth-Centred Inertial (ECI) system, 𝐼𝐽𝐾, where the 

𝐼 axis points to the Aries direction, the 𝐽 axis points 90° east in the equatorial plane and the 

𝐾 axis passes through the north pole, using coordinate transformation. 

Satellite State Propagation: Due to the gravitational interactions between the satellite and 

Earth, the movement of a satellite orbiting around the Earth is considered a two-body 
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problem. Ideally, this can be expressed by simple equations of motion, but the presence of 

the perturbations complicates the problem: (i) Earth's non-homogeneity and oblateness, (ii) 

Third-body effects, (iii) atmospheric drag, and (iv) solar radiation pressure. In a real-world 

setting, the effect of satellite disturbances cannot be overlooked. The perturbing accelerations 

are taken into account in the two-body equation of motion using Cowell's Formulation: 

𝑟 ̈ = −
𝜇

𝑟3
𝑟 + 𝑎 𝑝 (46) 

where 𝑎 𝑝, is the perturbing acceleration, which corresponds to the total acceleration induced 

by external forces experienced by the satellite, and 𝑟 ̈ is the resultant satellite acceleration. The 

number of perturbation sources considered in the problem determines the precise shape of 

𝑎 𝑝. As part of this study, a simplified acceleration model that incorporates perturbations 

caused by the non-spherical central body is used. The perturbing acceleration experienced 

by the satellite is calculated using the gradient of the non-spherical Earth's gravitational 

potential, which is described using spherical harmonics [225]. The analysis is carried out 

considering the perturbations from the second (𝐽2), third (𝐽3), and fourth (𝐽4) zonal harmonics. 

Pertubations are taken into account because propulsion subsystem is not considered in the 

MDO; typically, orbit keeping strategies are always performed. Vallado [226] provides the 

components of the perturbing acceleration due to the 𝐽2, 𝐽3, and 𝐽4 zonal harmonics and are 

linearly added to Equation 46. The initial state of the spacecraft is denoted by a first-order 

system by combining equation (12) with Cowell's second-order equation of motion: 

�⃗� ̇ = [
𝑣 

−
𝜇

𝑟3
𝑟 + 𝑎 𝑝

] (47) 

Equation 47 is the modified Cowell's formulation and can be solved using numerical 

integration methods. 

Coverage Analysis: As a satellite observes a region on Earth, it projects a circular or 

rectangular imprint on the surface. The instantaneous coverage of the satellite is the distance 

between the satellite and a target point in the satellite field of view region (imprint region) 

at a given time. The value of Earth Central Angle 𝜆 is determined by Equation 48, where 

(𝛩𝑠, 𝛬𝑠),  denotes the latitudes and longitudes of the sub-satellite point and (𝛩𝑡, 𝛬𝑡) denotes 

the latitudes and longitudes of the target  [227]. 



143 
 

           𝑐𝑜𝑠𝜆 =  𝑠𝑖𝑛𝛩𝑠𝑠𝑖𝑛𝛩𝑡  +  𝑐𝑜𝑠𝛩𝑠𝑐𝑜𝑠𝛩𝑡𝑐𝑜𝑠|𝛬𝑠 − 𝛬𝑡| (48) 

Then, using the design variable 𝜖 from Equation 19, the nadir 𝜂 is computed, which is then 

utilised to get the maximum earth central angle 𝜆𝑚𝑎𝑥.  

𝑆𝑖𝑛 𝜂𝑚𝑎𝑥 = 𝑐𝑜𝑠 𝜖𝑚𝑖𝑛 [
𝑅𝐸

𝑅𝐸 + ℎ
] 

(49) 

𝜆𝑚𝑎𝑥 = 90° − 𝜖𝑚𝑖𝑛 −  𝜂𝑚𝑎𝑥 (50) 

Where 𝑅𝐸 is the radius of the earth, ℎ is the altitude, 𝜂𝑚𝑎𝑥 is the maximum nadir angle, 𝜖𝑚𝑖𝑛 

is the minimum elevation angle. For this research, a total of 465 grid points were chosen as 

objectives, dispersed across the specified region (Australia), as illustrated in Figure 78. 

 

Figure 78: Selected data points. 

For each grid point, the requirement for coverage, 𝜆 < 𝜆𝑚𝑎𝑥 is evaluated. The following 

equation determines the entire temporal coverage: 

𝐶 =
∑ ∑ 𝑇𝑖𝑗

𝑚
𝑗=1

𝑛
𝑖=1

𝑛𝑚
 (51) 

where 𝐶 is the constellation's coverage performance, 𝑛 denotes the total number of time 

points analysed, 𝑚 denotes the number of grid points, and 𝑇𝑖𝑗 denotes the coverage matrix.  

6.3.2 Mission Payload 

The system design is driven by the payload, which is the most significant subsystem 

of a satellite. Satellite design must consider factors such as payload size, weight, and power 

requirements early on. Typically, the payload for constellation missions is pre-defined and 
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must be adequately launched in orbit. In the current scenario, however, the payload design 

is optimised. At this stage, knowing the exact value of the payload parameters is uncertain. 

As a result, practical estimating approaches to determine its approximate value [216, 224, 

227-229] is employed. The size of the payload is determined using the calculations below, 

which are based on the satellite's altitude: 

𝑓 =
ℎ𝑑𝑥

𝑋/𝑁𝑠𝑎𝑚𝑝
 (52) 

𝐷 =
𝐵𝑓

𝑄𝑑𝑥
 (53) 

where ℎ is the altitude, 𝑓 is the focal length, 𝐷 is the diameter of the aperture, 𝑑𝑥 is the width 

of the cross-track detector, 𝑋 is the resolution of the cross-track ground pixel, 𝑁𝑠𝑎𝑚𝑝 is cross-

track detector samples per pixel, 𝐵 is the operating wavelength, and 𝑄 indicates the imaging 

quality factor. Sub-scaling from a reference payload is used to determine the payload's mass 

𝑚𝑝𝑎𝑦𝑙𝑜𝑎𝑑, and power 𝑃𝑝𝑎𝑦𝑙𝑜𝑎𝑑 based on the estimated aperture diameter 𝐷𝑝𝑎𝑦𝑙𝑜𝑎𝑑 [216]: 

𝑅 =
𝐷𝑝𝑎𝑦𝑙𝑜𝑎𝑑

𝐷0
 

(54) 

𝑚𝑝𝑎𝑦𝑙𝑜𝑎𝑑 ≈ 𝐾𝑅3𝑊0 
(55) 

𝑃𝑝𝑎𝑦𝑙𝑜𝑎𝑑 ≈ 𝐾𝑅3𝑃0 (56) 

where 𝑅 is the aperture ratio, 𝐷0,𝑊0, and 𝑃0 are the reference payload's aperture diameter, 

mass, and power, and 𝐾 is the scaling factor, which is 2 when 𝑅 is less than 0.5; otherwise, 1 

is considered. Here one should guarantee that the satellite footprints overlap to maximise 

total system coverage. Thus, satellite swaths must be larger than node crossings near the 

Equator. In this way, the orbits can cover a larger area at higher latitudes. The satellite's 

swath is determined by 2𝜆𝑚𝑎𝑥. The perpendicular spacing between the orbits is used to 

calculate successive node crossings, as shown in the following equation: 

𝑆 = 𝑠𝑖𝑛−1 (𝑠𝑖𝑛(∆𝐿)𝑠𝑖𝑛(𝑖)) (57) 

where 𝑖 is the orbital inclination angle, and ∆𝐿 is the longitudinal shift per orbit. The 

following part provides the list of sensors with their classification and characteristics. These 

models are organised to carry out the work in the most effective way possible. Figure 79 and 
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Figure 80 present a typical strategy for selecting the EO sensor and the AI algorithm. Given 

that there are two types of sensing approaches, active and passive, the classification is based 

on imaging and non-imaging sensors for the EO application. Imaging sensors can be further 

divided into three categories: optical, thermal, and radar sensors. Table 21-24 provides the 

detailed categorization of these sensors. The potential AI algorithms and the use cases in EO 

are outlined in Table 25. According to what has been reported, a variety of sensors and AI 

algorithms are currently available. It is essential to establish a formulation technique with 

which the choice of the algorithm may be made for the various applications. In space 

operations, it is impossible to keep to a specific type of AI because AI constantly evolves, and 

the models that makeup AI integrate within projects.  

 

Figure 79: EO specific sensor application resolution requirements [66]. 
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Figure 80: Classification standard of AI algorithm [67]. 

Table 21: Thermal sensor types and its applications [232]. 

Sensor 
Operational wave 

band 
Definition 

Satellites 
sensors 

Applications 

IR imaging 
radiometer 

UV, mid-to-far-
infrared, or 
microwave 

Measures the 
intensity of 

electromagnetic 
radiation 

ASTER 

Volcanological, mineralogical, and 
hydrothermal studies, forest fires, 

glacier, limnological and 
climatological studies and DEM 

Imaging 
spectroradiometer 

Infrared 

Measure the 
intensity of 
radiation in 

multiple 
spectrums 

MODIS, 
ASAS, IRIS 

Sea surface temperature, cloud 
characteristics, ocean color, 

vegetation, trace chemical species in 
the atmosphere 

Infrared imaging 
camera 

Mid-far infrared 
Measure reflected 
energy from the 

surface 
- 

Volcanology, determining 
thunderstorm intensity, identifying 

fog and low clouds 

Table 22: Optical sensor types and its applications  [232]. 

Sensor Panchromatic systems Multispectral systems Hyperspectral systems 

Spectral range (nm) ~430–720 
~430–720 

~750–950 
~470–2000 

Satellites QuickBird, SPOT, IKONOS SPOT, QuickBird, IKONOS TRW Lewis, EO-1 

Method

Classic Machine 
Learning

Classic 
Reinforcement 

Learning

ProblemPolicy / 
Problem 
to solve

Known 
Answer

Deep 
Neural 

Network

Shallow 
Network, 
Decision 

Tree, 
SVM

Deep Learning
Deep 

Reinforcement 
Learning
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Spectral band 
Monospectral, black and 

white, gray-scale image 
Several spectral bands 10 to 100 of spectral bands 

Spatial resolution Submeter Up to 1–2 m Up to 2 m 

Applications 

Earth observation and 

reconnaissance 

applications 

Red-green-blue (true color): 

visual analysis; Green-red-

infrared: vegetation and 

camouflage detection; Blue-

NIR-MIR: visualizing water 

depth, vegetation coverage, soil 

moisture content, and the 

presence of fires, all in a single 

image 

(i) Agriculture;  

(ii) eye care; (iii) food 

processing; (iv) 

mineralogy; (v) 

surveillance; (vi) physics; 

(vii) astronomy; (viii) 

chemical imaging; (ix) 

environment 

Advantages 

High applicability in (i) imaging multiple targets; (ii) mosaic strips to large area; (iii) 

stereo and tristereo acquisition; (iv) linear feature acquisition, such as coastlines, 

pipelines, roads, and borders 

Disadvantages 
Affected by sun illumination and cloud coverage. Polar areas with seasonal changes in 

sun illumination and the equatorial belt with persistent cloud coverage 

Table 23: Radar types and its applications  [232]. 

Sensor 
Operational 

wave band 
Definition Satellites sensors 

Ka 40–27 0.75–1.11 Usually for astronomical observations 

K 27–18 1.11–1.67 
Used for radar, satellite communications, astronomical observations, 

automotive radar 

Ku 18–12 1.67–2.5 Typically used for satellite communications 

X 12.5–8 2.4–3.75 Widely used for military reconnaissance, mapping and surveillance 

C 4–8 3.75–7.5 
Penetration capability of vegetation or solids is limited and restricted to 

the top layers. Useful for sea-ice surveillance 

S 4–2 7.5–15 
Used for medium-range meteorological applications, for example, 

rainfall measurement, airport surveillance 

L 2–1 15–30 
Penetrates vegetation to support observation applications over vegetated 

surfaces and for monitoring ice sheet and glacier dynamics 

P 1–0.3 30–100 

So far, only for research and experimental applications. Significant 

penetration capabilities regarding vegetation canopy, sea ice, soil, and 

glaciers 

Table 24: Non-Imaging sensor types and its applications [232]. 

Sensor Operational wave band Definition Application 

Radiometer 
Ultraviolet, IR, 

microwave 

To measure the amount of 
electromagnetic energy present 

within a specific wavelength range 

Calculating various surface and 
atmospheric parameters 
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Altimeter 
IR, 

microwave/radiowave, 
sonic 

To measure the altitude of an object 
above a fixed level 

Mapping ocean-surface topography and 
the hills and valleys of the sea surface 

Spectrometer Visible, IR, microwave 
To measure the spectral content of 

the incident electromagnetic 
radiation 

Multispectral and hyperspectral imaging 

Spectro-radiometer Visible, IR, microwave 
To measure the intensity of 

radiation in multiple spectrums 

Monitoring sea surface temperature, 
cloud characteristics, ocean color, 

vegetation, trace chemical species in the 
atmosphere 

LIDAR Ultraviolet, visible, NIR 

To measure distance and intensity Ocean, land, 3D topographic mapping 

Doppler LIDAR: measure the wave 
number for speed; Polarization 

effects of LIDAR: shape 

Meteorology, cloud measurements, wind 
profiling and air quality monitoring 

Sodar Acoustic 

As a wind profiler, sodar systems 
measure wind speeds at various 

heights above the ground and the 
thermodynamic structure of the 
lower layer of the atmosphere 

Meteorology: atmospheric research, 
wind monitoring (typically in a range 
from 50 to 200 m above ground level) 

Table 25: AI algorithms and potential sensors choices. 

AI Type Potential Use Cases Widely used AI Algorithms 
Widely used EO 
Sensors (Imaging 
sensor) 

M
ac

h
in

e 
L

ea
rn

in
g

 

Supervised 
Learning  

• Prognostic and Diagnostic 
• Image Classification 
• Forecasting 

• Prediction 

• Feature Selection 

• Structure Discovery 

• Segmentation 

• Land Cover Classification 

• Contrastive Sensor Fusion 

• Crop Classification 
• Image Scene Classification 
• Road Surface Extraction 
• Crop Type Classification 
• Wildfire Fuel Mapping 
• Wildfire Detection 
• Hazardous Mapping 
• Monitoring Volcanoes 
• Mining 
• Ship Detection 
• Oil Spill Detection 
• Sea Ice Monitoring  
• Forest Monitoring 
• Soil Moisture 
• Critical Infrastructure 
•  High Precision Agriculture 
• Weather Forecasting 
• Study Of Regional 

Vegetation Coverage  
• Wide-area Weather 
• Cloud Patterns. 

• Support Vector Machine 
• Association Rule 

Learning Algorithms 
• Bayesian Algorithms 
• Artificial Neural 

Networks  
• Clustering Algorithms 
• Decision-trees 
• Deep Neural Networks 
• Dimensionality 

Reductions 
• Ensemble Methods 
• Instance-based 

Algorithms 
• Regression 
• Regularization 
• Random Forest 
• Logistic Regression 
• Regression Decision Tree 
• K-means 
• K-nearest Neighbor 
• Principal Component 

Analysis 
• Linear Discriminant 

Analysis 
• Graph-graph Based 

Method 
• Heuristic Approach 
• Monte Carlo Method 
• Direct Policy Approach 

• Panchromatic  
• Multispectral 
• Hyperspectral 
• Radar 
• Thermal IR 

Unsupervised 
Learning 

Semi-
Supervised 
Learning 

Reinforcement 
Learning 

Deep Learning 
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6.3.3 Thermal Subsystem 

Spacecraft orbiting Earth have several heat sources, which is shown in Figure 81. The 

major thermal radiation sources are the Sun, Albedo, Earth Infrared Radiation, Power on-

board, and Re-emitted Radiation. Internal power dissipation in electrical components is 

another example (Joule effect). Aerothermal flux must also be considered during launch and 

re-entry, which is not depicted in the diagram. Internal heat dissipation and Earth's outgoing 

radiation are the only heat sources that thermal impact the spacecraft during the eclipse, and 

the spacecraft will begin to cool. As a result, the temperature of the satellite fluctuates 

cyclically along its orbit, rising and lowering during solar eclipses. Deep Space, which should 

be perceived as a dark body emitting at 3K, acts as the main contributor to cold.  

 

Figure 81: Spacecraft Thermal Environment. 

The Sun radiation, the Earth's thermal radiation, and Albedo influence the satellite 

thermally in orbit. To keep the electronics in their operating range, the temperature within 

the satellite must be kept constant. Radiators positioned in the sun-facing orientation release 

excess heat accumulated inside the satellite into space. A typical orbit cycle of the satellite is 

depicted in Figure 82. The external environment and internal heat generation are the most 

frequent heat sources. Insulation and controlled heat rejection from radiators are the most 

common heat sinks. Initially, the satellite is assumed to be in steady-state equilibrium. The 

thermal balance equation for a spacecraft in orbit is expressed using Equation 58 [201]. The 

first element of the equation represents the capacitive term, and it takes into consideration 

the energy stored inside the structure as a function of its temperature variation. The 
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parameters 𝑚 and 𝑐 represent the spacecraft's mass and specific heat, respectively. The 

incoming and outgoing fluxes owing to the Sun (𝑄𝑠), the Earth (𝑄𝑒), the Albedo (𝑄𝑎), the 

power generated on-board (𝑃), and the energy re-emitted by the satellite surface (𝑄𝑟) 

combine to form this term [227, 233] as follows: 

𝑄𝑠𝑜𝑢𝑟𝑐𝑒  =  𝑄𝑠𝑖𝑛𝑘 

𝑚𝑐 
𝑑𝑇

𝑑𝑡
 =  𝑄𝑠  + 𝑄𝑒  +  𝑄𝑎  + 𝑃 − 𝑄𝑟 

𝑄𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙  + 𝑄𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙  =  𝑄𝑅𝑎𝑑𝑖𝑎𝑡𝑜𝑟  + 𝑄𝑀𝐿𝐼 

(58) 

 

 

Figure 82: An illustration of the spacecraft's thermal environment in orbit. 

Here it was assumed that the Sun is the primary source of radiation and that any external 

sources are insignificant. Except for the faces where the radiators are placed, the entire 

satellite is encased in Multi-Layer Insulation (MLI). Heat leaks from MLI are minimal and 

not included in the calculations. As a result, the heat balance equation is rewritten using the 

Stefan-Boltzmann law as follows: 

𝛼𝑆0𝐴𝑅  + 𝑄𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙  =  𝜀𝐴𝑅𝜎𝑇4 (59) 

where 𝛼 is the material's absorptivity, 𝜀 is the material's emissivity, 𝑆0 is the solar constant, 

𝜎 is the Stefan-Boltzmann constant, 𝑇 is the temperature of the spacecraft, 𝐴𝑅 is the area of 

the radiator, and 𝑄𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 is the internal heat generation. The temperature 𝑇 is computed for 

hot and cold situations using Equation 59 and 𝐴𝑅 as the design variable. In the hot scenario, 

𝑄𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 is 60% of the satellite power, while in the cold situation, it corresponds to 40% of the 

total satellite power. In the hot case, the temperature must not exceed 340K; in the cold case, 

it must not fall below 263K. Finally, Equation 60 and Equation 61 are used to calculate the 



151 
 

mass and power of the thermal subsystem in which 𝜌𝑅 is the areal radiator density. Thus, we 

have: 

𝑚𝑡ℎ𝑒𝑟𝑚𝑎𝑙  =  𝐴𝑅 𝜌𝑅 (60) 

𝑝𝑡ℎ𝑒𝑟𝑚𝑎𝑙  =  𝜀𝜎𝐴𝑅𝑇4 (61) 

6.3.4 Power Subsystem 

The power subsystem generates the satellite's electrical power, which uses solar 

panels to do so. In addition to generating power and storing it, the power subsystem is 

responsible for delivering it to each subsystem and controlling it as needed. The size of the 

satellite and the area of solar panels have an impact on power generation. The eclipse's length 

determines the rechargeable battery's size and capacity used to store the generated energy. 

[227]. A typical architecture is shown in Figure 83.  

 

Figure 83: Power system architecture. 

Solar Panel Sizing: Solar panels must be sized so that they generate more than the required 

power. The quantity of power required by the satellite determines the size of the solar panel. 

The satellite's power requirements are calculated as follows: 

𝑃𝑟𝑒𝑞  =  
𝑃𝑝𝑎𝑦𝑙𝑜𝑎𝑑𝑇𝑝𝑎𝑦𝑙𝑜𝑎𝑑  +  𝑃𝑡ℎ𝑒𝑟𝑚𝑎𝑙𝑇𝑒  +  𝑃𝑏𝑎𝑡𝑡𝑇𝑒  +  𝑃𝑜𝑡ℎ𝑒𝑟𝑠𝑇 

𝑇 − 𝑇𝑒
 (62) 

Here, 𝑃𝑝𝑎𝑦𝑙𝑜𝑎𝑑 is the required payload power  in time 𝑇𝑝𝑎𝑦𝑙𝑜𝑎𝑑, 𝑃𝑡ℎ𝑒𝑟𝑚𝑎𝑙 is the power required 

by the thermal subsystem during an eclipse 𝑇𝑒, 𝑃𝑏𝑎𝑡𝑡 is the power required for the battery to 

charge, and 𝑃𝑜𝑡ℎ𝑒𝑟𝑠 is the overall power required by the remaining during the orbital period 
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𝑇. The power provided by the solar arrays [234] is dependent on a number of factors, as 

shown in the following equation: 

𝑃𝑔𝑒𝑛  =  𝑆0𝑋𝑖𝑋𝑠𝑋𝑒𝑋0𝐴𝑠𝜂𝐹𝑐(𝛽𝑝∆𝑇 +  1)𝑐𝑜𝑠(𝜒) (63) 

The solar constant is 𝑆0  =  1367 𝑊/𝑚2, the correction factors are 𝑋𝑖 =  0.95, 𝑋𝑠 =

 0.9637, 𝑋𝑒 = 1 and 𝑋0  =  0.98. 𝐴𝑠 is the area of the solar panel, 𝐹𝑐 is the solar array loss 

coefficient, 𝛽𝑝 is the power temperature coefficient, 𝜂 represents photoelectric conversion 

efficiency, and 𝜒 is the sun vector divergence angle from the solar array normal in the worst-

case scenario (full-hot). The surplus power is computed using required and generated power 

as follows [234]: 

𝑃𝑠𝑢𝑟𝑝𝑙𝑢𝑠  =  (1 −  𝑑𝑦)𝐿𝑡𝑃𝑔𝑒𝑛  −  (1 +  5%)𝑃𝑟𝑒𝑞 (64) 

wherein 𝑑𝑦 is just the annual solar panel power deterioration and 𝐿𝑡 is the total duration of 

the mission. 

Battery Sizing: The solar panel generates no power in the eclipse phase. Maintaining the 

satellite's power source necessitates the use of a rechargeable battery. The battery's discharge 

capacity, 𝐶, is determined by the eclipse duration and the amount of power required during 

the eclipse. The battery’s Depth-of-Discharge (DOD) is 80 percent of its rated capacity, or 

𝐶𝑟𝑎𝑡𝑒𝑑. The area of the solar panels and projected battery capacity are used as design variables 

to calculate the mass of the power subsystem (𝑚𝑝𝑜𝑤𝑒𝑟): 

𝑚𝑝𝑜𝑤𝑒𝑟  =  𝜌𝑠𝐴𝑠  +  𝐶𝑟𝑎𝑡𝑒𝑑.
𝑉𝐷𝐵

µ𝑏
 (65)                      

Where, 𝜌𝑠 is the areal density of the solar array, 𝑉𝐷𝐵is the battery voltage and µ𝑏 𝑖𝑠 the 

battery's specific energy. 

6.3.5 Structure Subsystem 

The satellite structure protects the satellite subsystems in the launch and space 

environments. The structural elements can be treated as a separate subsystem for design and 

analysis purposes. This subsystem is in constant touch with the launch vehicle during launch 

and is subjected to significant static and dynamic loads. A satellite's load-carrying capacity 

is determined by its strength, and stiffness can be increased by careful material selection and 
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suitable reinforcing. However, the satellite's weight must be kept as low as possible to lower 

the launch cost. The satellite in consideration for the current work is a semi-monocoque 

cuboid with identical lengths in both the X and Y directions, as shown in Figure 84. 

 

Figure 84: Satellite structural arrangement. 

In the launcher, the launch adapter is attached to the outside of the bottom tray. The payload 

and other subsystems are stored in trays. The number of structural design elements is fixed 

with optimal dimensions and the material chosen for the spacecraft is space-grade 

aluminium alloy AL7075 T6. The material parameters of the product are presented in Table 

26. The structural design of the spacecraft in this work is inspired by analytical structural 

design approaches from various works of literature [235-237]. Geometric dimensions and 

launch loads are the design variables and restrictions for structural optimisation, 

respectively. The size of the launch payload varies depending on the launchers. The launch 

loads corresponding to the launcher are tabulated in Table 27. 

Table 26: Material properties of AL7075T6. 

𝑬 (𝑮𝑷𝒂) 𝝂 𝑮 (𝑮𝑷𝒂) 𝝆 (𝒌𝒈/𝒎𝟑 ) 𝝈 (𝑴𝑷𝒂) 𝝉 (𝑴𝑷𝒂) 

71.7 0.33 26.9 2810 503 331 

Table 27: Launch loads. 
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Launch load Longitudinal Lateral 

Acceleration (g) ± 10g ± 7.5g 

Frequency (Hz) ≥ 50Hz ± 45Hz 

Static Model: Static models or time-invariant satellite models are used to evaluate the 

structure under quasi-static limits imposed by the launcher. In the initial calculations, the 

satellite is assumed to be a cantilever beam locked by the launch adapter at the base. The 

satellite is subjected to a maximum axial force of 10g and a uniform lateral load of 7.5g. The 

maximum normal stress, 𝜎𝑚𝑎𝑥   and maximum shear stress, 𝜏𝑚𝑎𝑥, are then computed using 

Equations 66-68, in which 𝑡𝑝 is the thickness of the side panels, 𝐼𝑥 is the satellite moment of 

inertia, 𝑀𝑚𝑎𝑥 is the maximum bending moment, and 𝑉𝑚𝑎𝑥 is the maximum shear force. 𝐴𝑠𝑎𝑡 

is the cross-sectional area of the satellite, 𝐿𝑋𝑌 is the satellite dimension in 𝑋 and 𝑌 directions. 

By replacing lateral acceleration 𝑎𝑙𝑎𝑡 and longitudinal accelerations 𝑎𝑙𝑜𝑛𝑔 in 𝐹 =  𝑚𝑠𝑎𝑡 ∗ 𝑎, 

the lateral load, 𝐹𝑙𝑎𝑡 and longitudinal load, 𝐹𝑙𝑜𝑛𝑔 are produced. The computed stress should 

be smaller than the material's yield strength, as shown in Table 26. Therefore, we have:  

𝐴𝑠𝑎𝑡  =  4[𝐴𝑏  +  𝑡𝑝(𝐿𝑋𝑌  −  𝑡𝑝)] (66) 

𝜎𝑚𝑎𝑥   =
𝑀𝑚𝑎𝑥ℎ𝑝

2𝐼𝑥
  +

𝐹𝑙𝑜𝑛𝑔

𝐴𝑠𝑎𝑡
 (67) 

𝜏𝑚𝑎𝑥   =
𝑉𝑚𝑎𝑥𝑄

𝐼𝑥𝐿𝑋𝑌
 (68) 

Dynamic Model: The satellite must be able to bear both static and dynamic loads. 

Traditionally, the design is verified for static loads followed by dynamic loads. As part of 

our optimisation process, a set of design factors is iteratively evaluated against both static 

and dynamic loads. As part of our optimisation process, design factors are iteratively 

evaluated against static and dynamic loads. The dynamic model uses a spring-mass system 

with four degrees of freedom. The lumped masses for trays A, B, C, and D are represented 

by the masses 𝑚1, 𝑚2, 𝑚3, and 𝑚4. The launch adapters as well as structural pieces that 

connect the trays, work as springs. The following are the equations of motion in the 

longitudinal and lateral directions, respectively: 
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[

𝑚1 0 0 0
0 𝑚2 0 0
0 0 𝑚3 0
0 0 0 𝑚4

] [

�̈�1

�̈�2

�̈�3

�̈�4

] + [

𝑘1 + 𝑘2 −𝑘2 0 0
−𝑘2 𝑘2 + 𝑘3 −𝑘3 0
0 −𝑘3 𝑘3 + 𝑘4 −𝑘4

0 0 −𝑘4 𝑘4

] [

𝑧1

𝑧2

𝑧3

𝑧4

] = [

0
0
0
0

] (69) 

[

𝐼𝑚 0 0 0
0 𝑚2 0 0
0 0 𝑚3 0
0 0 0 𝑚4

] [

�̈�
�̈�2

�̈�3

�̈�4

] +

[
 
 
 
𝑘𝜑 0 0 0

0 𝑘4 + 𝑘5 −𝑘6 0
0 −𝑘6 𝑘6 + 𝑘7 −𝑘7

0 0 −𝑘7 𝑘7 ]
 
 
 
[

𝜑
𝑥2

𝑥3

𝑥4

] = [

0
0
0
0

] (70) 

The launch adapter's longitudinal and lateral stiffnesses are 𝑘1, 𝑘𝜙. The longitudinal stiffness 

of the structural components between the trays A-B, B-C, and C-D is 𝑘2−4, while the lateral 

stiffness of the structural elements between the trays A-B, B-C, and C-D is 𝑘5−7 . 𝐼𝑚 is the 

satellite's mass moment of inertia. The solution of the eigenvalue problem ([𝐾]  − 𝜔𝑛
2[𝑀])  =

 0 corresponds to the angular velocity of the satellite. 𝑓𝑛  =
𝜔𝑛

2
 is used to calculate the first 

natural frequency. Table 27 shows the frequency restrictions of the launcher. The calculated 

frequency must be greater than the launcher restrictions. 

6.4 MDO Architecture 

MDO problems are typically constrained nonlinear programming problems as long as 

the disciplinary boundaries are absent. They require determining the values of design 

parameters that maximise or minimise a particular design objective function while 

remaining constrained by constraints on the design. In a given system, the designer 

determines the design goals, limitations, and sometimes even the variables to be changed. 

Modelling the behaviour of a single element inside the system uses a disciplined analysis. 

Each disciplinary research is typically presented as a computer program, with complexity 

levels varying between empirical curve-fit statistics and a very detailed physics-based 

simulation. There are three different MDO architectures, as shown in Figure 85 [201]. 

a) Monolithic: Generally, MDO problems are solved by transforming them into single 

optimisation problems. The methodologies utilized to ensure the multidisciplinary 

feasibility of the optimal design are what distinguish architectures [201]. 

b) Distributed Architectures: The architectures that divide a large optimisation problem 

into smaller problems, each of which has the same solution when reassembled. [201]. 
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c) Hybrid architecture:  It refers to an architecture that combines features from two or 

more other architectures in a way that handles different discipline analyses or 

optimisations differently. Using MDF and Individual Discipline Feasible (IDF), a 

hybrid monolithic architecture could be developed by resolving the coupling of some 

disciplines within an MDA while resolving the remaining coupling variables through 

constraints. The usage of hybrid architectures is an area of MDO that has yet to be 

fully explored [201]. 

 

Figure 85: MDO Architecture classification. 

According to Matins [201], distributed MDO architectures can be classified into three 

categories: MDF, IDF, or Simultaneous Analysis and Design (SAND) based on their 

monolithic counterparts due to the various approaches to handling the state and the coupling 

variables. It is similar to the classifications discussed previously in which for each variable 

eliminated from the problem statement, an equality constraint must also be eliminated from 

the optimisation problem. Even when distributed architectures are designed in isolation, a 

classification based on monolithic structures makes it a lot easier to see the links between 

them. A distributed architecture's problem formulation can often be easily derived from a 

monolithic architecture by adding certain parts and assumptions and following a specific 

decomposition scheme. This is because a distributed architecture always begins with a 

monolithic architecture and this classification can also be considered as a framework for 

developing new distributed architectures [199-201]. This architecture classification is 

depicted in Figure 86. Arrows indicate known links between the architectures. They included 

the "core" architectures in the diagram due to the enormous number of adaptations produced 
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for some distributed architectures, such as introducing surrogate models and variations to 

address multi-objective problems [201]. 

 

Figure 86: Distributed MDO architecture classification. Adapted from [201]. 

For our research work, MDF is selected because if the optimisation process is 

terminated early, MDF returns a system design that always satisfies the consistency 

constraints [197, 198]. As shown in Table 28, the MDO problem is formulated using a single 

objective function (minimise iDSS mass) and continuous design variables. The MDF 

architecture is used to overcome the problem. The process of handling the multidisciplinary 

coupling is the fundamental distinction between the architectures. Sequential Least-Squares 

Quadratic Programming (SLSQP) optimiser [238] is used, with the optimiser's convergence 

tolerance set to 1 × 10−3.   MDF requires a solver to handle the coupling. The section below 

provides the problem formulations in MDF architecture and their corresponding extended 

Design Structure Matrix (XDSM) diagram for each iDSS model. XDSM's architecture is 

described using expressions proposed by Ref [201] to describe operation sequences and data 

interactions. The conventions used in XDSM are as follows:  

(i). The rounded rectangle represents the optimiser that controls the entire 

optimisation. 

(ii). Rectangular-shaped nodes indicate the diagonally placed discipline modules. 

(iii). The Parallelogram-shaped nodes represent the data and results.  

(iv). The thick grey lines and thin black lines indicate the data flow and process flow.  
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(v). The input to the module is represented by the data flow in the vertical direction, 

whereas the data flow in the horizontal direction denotes the output from the 

module.  

(vi). In addition to the thin black lines, a numbering system is also incorporated to 

indicate the process flow.  

(vii). The process flow direction starts from module-0 and continues in sequential order 

up to module-n.  

(viii). The process 𝑖 is followed by process 𝑗 until a specified condition is met is 

represented by 𝑖 →  𝑗 .  

(ix). The initial guesses 𝑥(0), variables at their optimum 𝑥∗  and discipline-specific 

variables are placed in the outer nodes. 

Table 28: Optimisation design variables. 

Variable Symbol Unit Range Initial Guess 

Altitude ℎ 𝑘𝑚 [1200,1300] 1250 

Inclination 𝑖 𝑑𝑒𝑔 [45,55] 47 

Elevation Angle 𝜖 𝑑𝑒𝑔 [15,25] 15 

Length in X & Y direction 𝐿𝑥𝑦  𝑚 [0.6,1.7] 0.8 

Length in Z direction 𝐿𝑧 𝑚 [1,2] 1.2 

Thickness of panel 𝑡𝑝 𝑚 [0.001,0.005] 0.005 

L-bar width 𝑑𝑠𝑡  𝑚 [0.02,0.05] 0.03 

L-bar Thickness 𝑡𝑠𝑡  𝑚 [0.001,0.005] 0.005 

Length Ratio between plates A and B 𝐴𝐵 − [0.2,0.5] 0.325 

Length Ratio between plates B and C 𝐵𝐶 − [0.25,0.375] 0.25 

Area of Solar Panel 𝐴𝑠 𝑚2 [1,5] 2 

Area of Radiator 𝐴𝑟 𝑚2 [0.1,2] 1.06 

 

The MDF architecture is useful since it provides a viable interdisciplinary solution at 

each iteration. However, the optimisation must consider the practical design approach for 

this to be the case. The optimiser is placed on top of the Multidisciplinary Analysis (MA) 

modules in the MDF architecture. This means that a viable multidisciplinary solution is 

present in each MDF iteration. The disciplinary analysis models are iterated using the design 

variables (x) provided to the MA modules as inputs until a stable set of coupling variables 

(y) is generated. The design and the resulting coupling variables compute the objective and 
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constraints. The MA is solved using standard iterative solvers such as block Gauss-Seidel 

and Newton solvers. Figure 87 shows the XDSM of the iDSS problem implementation in 

MDF architecture [201]. MDF architecture's general mathematical formulation is provided in 

the following equation:  

                                         𝑚𝑖𝑛 𝑓(𝑥, 𝑦(𝑥, 𝑦)) 

𝑤. 𝑟. 𝑡.      𝑥  

𝑠. 𝑡.          𝑔𝑖(𝑥0, 𝑥𝑖 , 𝑦𝑖(𝑥0, 𝑥𝑖  , 𝑦𝑖))  ≥  0 𝑓𝑜𝑟 𝑖 =  1, . . . , 𝑁 

(71) 

 

 

Figure 87: MDF XDSM representation. 

6.5 Results and Discussions 

The iDSS problem has been exacerbated and optimised, and Free-Flyer software is 

used to perform a coverage evaluation. The iDSS design problem for Australia was planned 

and addressed in MDF architecture, and the SLSQP optimiser was employed to optimise the 

solution once it was complete. To address the coupling between the disciplines in MDF, a 

solver is required. A Linear Direct solver is also required for the computation derivatives of 

the Nonlinear Block Gauss–Seidel Method (NLGBS). An 𝑁2 diagram, sometimes referred to 

as an N-squared diagram, is a diagram that takes the form of a matrix and depicts the 

functional or physical interfaces that exist between the various elements of a system. It is 



160 
 

implemented to methodically locate, define, tabulate, design, and analyze functional and 

physical interfaces. It applies to system interfaces and interfaces between hardware and/or 

software. The 𝑁2 variable in the linear, non-linear, and all variables in the model are 

presented in Figure 88, Figure 89 and Figure 90. Figure 88 illustrates the 𝑁2 diagram of the 

linear solvers connected with the model of the parameters that are being considered, and 

Figure 89 illustrates the 𝑁2 diagram of the model; the only difference between the two is the 

solver. The clear relationship between all the variables connected to the model is illustrated 

in Figure 90, which is helpful for both the simulation and the optimisation processes. 

 

Figure 88: 𝑁2 of linear solvers. 
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Figure 89: 𝑁2 of non-linear solvers. 

 

Figure 90: 𝑁2 of all the variables in the model. 

The optimisation was carried out using a COREi7 8th Gen Intel processor. The number of 

functions evaluated/called during optimisation indicates the processing power required by 

the architecture. The calls to calculate derivatives are likewise counted as part of the 

functional call estimates for each subsystem. The list of function calls of each subsystem for 

the MDF architecture is tabulated in Table 29. 
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Table 29: Function evaluation counts. 

Subsystem Function calls 

Constellation 1014 

Payload 1056 

Power 2151 

Thermal 2099 

Structure 2490 

Mass 2470 

Total 11260 

The optimisation results of the MDF problem are tabulated in Table 28. Due to careful 

consideration of design variable ranges and iDSS coverage computation, the computation 

time required is significantly shorter than the time generally required to solve a problem of 

this size. In the real world, the design variables have a wide range of values, and the temporal 

coverage is estimated throughout the mission's duration. However, the results obtained are 

sufficient for the MDF architecture. The information shown in Table 30 reveals that the total 

mass of the proposed satellite constellations is approximately 4668.63 kg, whereas the mass 

of a single satellite is about 187 kg. The simulations are performed with the help of the data 

currently at our disposal, but the results can be improved even further if more precise data 

is used. The literature and our simulations of the optimised result have led to a conclusion 

that for Australia, an inclination of 45 degrees is optimal to achieve the highest possible 

temporal coverage with the given constraints, which is approximately 70%. The other results 

are consistent with the constraint maintained based on the evidence available in the 

literature. Furthermore, it is clear that, from an optimisation standpoint, constellation design 

and payload significantly influence the MDO. 

Table 30: Optimisation results. 

Symbol Unit MDF Optimisation Results 

𝒎𝒔𝒚𝒔 𝑘𝑔 4668.632 

𝒎𝒔𝒂𝒕 𝑘𝑔 186.82 

𝒉 𝑘𝑚 1200.4 
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𝒊 𝑑𝑒𝑔 45 

𝝐 𝑑𝑒𝑔 16.8 

𝑳𝒙𝒚 𝑚 0.6 

𝑳𝒛 𝑚 1 

𝒕𝒑 𝑚 0.005 

𝒅𝒔𝒕 𝑚 0.03 

𝒕𝒔𝒕 𝑚 0.005 

𝑨𝑩 − 0.25 

𝑩𝑪 − 0.2502 

𝑨𝒔 𝑚2 2.3641 

𝑨𝒓 𝑚2 0.879 

𝑷𝒕𝒉𝒆𝒓𝒎𝒂𝒍 𝑊 55.89 

𝑷𝒑𝒂𝒚𝒍𝒐𝒂𝒅 𝑊 213.52 

𝑷𝒔𝒂𝒕𝒆𝒍𝒍𝒊𝒕𝒆 𝑊 568.324 

Coverage % 70 

Execution time ℎ ~6 

 

FreeFlyer [239] is a package of COTS software that stands out as the most effective tool of its 

kind since it provides users with access to a comprehensive programming language for 

solving all types of astrodynamics problems and is free for academic use. The mission is 

analysed to validate our results even further. The mission simulation has been carried out 

with a start date of January 1st, 2020. Figure 91 illustrates the coverage for Australia for 

various situations. Clearly, the proposed constellation achieves constant monitoring; the 

pink points denote the time seen or observed; the cone indicates the Field of View (FOV) of 

the EO payload. The spatial coverage of the suggested walker constellation is 88.36%, and 

the Acquisition of Signal and Loss of Signal (AOS/LOS) are illustrated in Figure 91. Figure 

92 depicts coverage on the poles; lower coverage is evident there. Figure 93 represents the 

entire mission coverage. 
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Figure 91: Coverage of Australia. 

 

Figure 92: Coverage in Poles. 
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Figure 93: Coverage of the entire mission. 

The resultant constellation parameters provide satisfactory spatial coverage. The spatial 

coverage is further enhanced by adding more satellites to the constellation and repeating the 

optimisation process. 

6.6 Conclusion  

iDSS represents a paradigm shift compared to monolithic satellites both in a standalone 

and in a constellation layout. To unleash the potential of this emerging technology, it is 

critically important to evolve the design methodology and the associated models compared 

to the traditional satellite system engineering best practices.  

The research presented in this chapter developed and optimised an iDSS constellation for 

the EO mission. For maximum coverage, mission adaptability and to improve the revisit 

frequency, iDSS are used, the same has been modelled as an MDO problem. The MDF design 

of the design problem was then optimised, and the iDSS problem was then incorporated. 

Later, in the iDSS design process, straightforward analytical models are insufficient.  

To create a more comprehensive design, all subsystems must be considered, and high-

fidelity simulation models must be used. This increases the complexity and cost of the 

optimisation procedure. In the context of engineering design, it may be useful to be able to 

produce a superior design that is not always mathematically optimal. When this occurs, MDF 

architecture is useful since it consistently produces a practicable multidisciplinary solution, 
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provided that the workable design approach is taken into account during optimisation. 

Other discipline models and components will be included in future studies to enhance the 

iDSS model. The problem will be transformed into a mixed-integer non-linear problem 

having discrete variables for optimisation based on the knowledge learned about their 

behaviour. The other architecture available in the literature will be compared with the results 

to determine which is more appropriate and efficient for the application. In the upcoming 

research, optimisers that are available as COTS software will be employed to obtain higher 

precision. 

  



167 
 

Chapter 7 

Conclusion and Recommendation for Future Research 

This chapter summarises and concludes the doctoral research work and provides 

future research directions in this area. The concluding remarks are drawn to address the 

research objective. 

7.1 Conclusion 

The thesis summarizes doctoral research results on Trusted Autonomous Satellite 

Operations (TASO) for Distributed Satellite Systems (DSS). The research focused on the 

functionality and potentialities of Artificial Intelligence (AI) to develop and enhance the 

autonomy level of Earth Observation (EO) missions. Several factors influenced the choice of 

domain, methods, and case studies, which can be understood in light of the research group 

in which this research was conducted, as well as the Australian EO space strategy and 

SmartSat CRC research priorities. 

Even while the increased efficacy in operational capacities was one of the early drivers 

of autonomous operation in the space domain across the industry, it is evident that the 

immense potential of the TASO extends even further. In the context of implementing state-

of-the-art DSS, a review of the whole body of literature in space operations identified major 

gaps that need to be addressed, notably with regard to trusted autonomy. In this regard, a 

novel concept known as intelligent DSS (iDSS) was presented to address both the system's 

mission astrionics and service astrionics aspects by employing the predictive and reactive 

components of AI within the architecture. It is envisaged that iDSS solutions will go beyond 

the traditional satellite operating role and become components crucial to the mission and 

safety-critical in the next generation of trusted autonomous space flight systems. On-board 

data processing, in which a combination of real-time measurements from distributed sensor 

networks are used to process the data on-board the satellite and facilitate the resultant 

reconfiguration of systems and re-planning of mission activities, is at the forefront of this 

transformation. In addition, iDSS systems are distinguished by their innovative capabilities 

of real-time decision-making and the dynamic management of missions. 
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The following is a summary of the findings from this investigation in terms of the 

research objectives that were accomplished: 

1. Conduct a thorough and in-depth analysis of the AI and DSS current state-of-the-art 

to find new requirements for TASO. 

A comprehensive review of the current state-of-the-art in DSS was performed to 

identify existing findings in the sector as well as the prerequisites associated with developing 

iDSS for trusted autonomous systems. This was done in light of the recognized potential, 

and to capitalise on it. This review's scope was expanded so that it would also look into the 

different DSS architectures and provide a unified classification. A comprehensive 

investigation at the use of TASO in space, as well as the ever-changing human-machine 

interaction. Then a review of the AI methods that have been implemented in space, along 

with an analysis of the potential applications of AI in space operations, beginning with the 

various segments, applications, and orbits. The review concluded that the most significant 

barrier to the actualisation of the iDSS concept was not associated with the limitations of the 

existing technologies or methods but rather the engineering approach to design and develop 

iDSS systems, in particular TASO. A solution was proposed for employing iDSS in space 

operations. Design case studies were carried out to verify this comprehensive approach of 

iDSS operation and their potential is demonstrated. 

2. Identify AI inference techniques for wildfire detection and develop an iDSS for real-

time/near real-time disaster management. Finally, identify and implement mission 

management and reconfiguration options to ensure an acceptable level of operational 

capability for wildfire management. 

In this case study, on-board data processing of hyperspectral data from the PRISMA 

Mission was considered, and the same has been used to detect wildfires on-board the satellite 

to provide real-time alerts during the catastrophe event. A One-Dimensional (1D) 

Convolution Neural Network (CNN) has been used to process data in the space segment. 

Commercial-Off-The-Shelf (COTS) astrionics, i.e., hardware accelerators, are used to 

demonstrate this capability. The proposed model has been tested in the DSS for real-time 

disaster management, which will increase AOI coverage while decreasing revisit time. Since 
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the DSS are connected via Inter Satellite Links (ISL) and the AI on-board, the data can be 

processed and communicated within the DSS network, enabling intelligent DSS (iDSS) 

operations. This thesis proposed a Low-Earth Orbit (LEO) iDSS constellation for real-

time/near real-time wildfire monitoring. Because the iDSS is always connected via ISL, active 

AOCS is not always required; rather, only when one of the constellation's satellites detects a 

wildfire, it can communicate with the remaining nearby satellites and perform active 

reconfiguration to achieve the mission objective. 

3.                                                 ’                                 

control.  

Australia is surrounded on all sides by water, and its maritime resources are one of 

its most valuable assets. As a result, strong and robust maritime security arrangements are 

required to contribute to Intelligence, Surveillance, and Reconnaissance (ISR) operations and 

MDA, which can be accomplished using iDSS technologies. It is demonstrated here that 

TASO is feasible with low-thrust electric propulsion for two main goals: achieving and 

maintaining satellite orbits on the constellation using absolute orbit navigation and, on the 

formation, using a more precise relative orbit navigation. As a result, each autonomous orbit 

control objective has its own navigation type. The potential application of this approach for 

Synthetic Aperture Radar (SAR) Along-Track (AT) interferometry with multiple baselines is 

demonstrated by selecting the relative orbit elements in such a way that the formation is 

robust in the sense of passive collision avoidance. 

4. Develop a Multidisciplinary Design Optimisation (MDO) methodology for iDSS to 

ensure persistent coverage over Australia. 

This case study was designing and developing an iDSS to provide persistent coverage 

across Australia/Australasia, as there is no indigenous satellite constellation of iDSS specific 

to Australia. This was accomplished using the free data that was available online. In order 

to carry out comprehensive surveillance over Australia as part of an EO mission, an 

iDSS constellation was designed, developed, and optimised. Due to the fact that the 

frequency of wildfire breakouts has significantly increased over the past few years due to 

climate change, the EO operation consists of an optical payload (Hyperspectral) for the 

detection of wildfires, was chosen. iDSS are utilised to achieve maximum coverage as well 
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as to enhance the revisit frequency. This problem has been modelled as an iDSS 

Multidisciplinary Design Optimisation (MDO) problem. The results of the optimisation were 

provided, and a simulation of the coverage in both spatial and temporal aspects was carried 

out and presented. 

7.1 Recommendation for Future Research 

The contributions of this thesis serve as a foundation for the future work and complete 

operation of iDSS systems as key enablers for on-board autonomy and mission performance 

assurance in TASO. These contributions include a critical review of the state-of-the-art in 

DSS and the operation of iDSS in TASO, the development of a generalised methodology for 

the design and integration of iDSS systems, as well as its application to the case studies that 

were considered. In particular, initiatives for the continued development of the fundamental 

iDSS components of distributed sensor networks and intelligent and dynamic decision-

making based on situational awareness should be addressed by future studies. The following 

areas have been identified and recommended for future research in the field of iDSS: 

i. Utilising the other optical sensor data for the wildfire management: In order to make 

use of both the spectral and spatial information contained within the PRSIMA data, 

additional research is required. It is possible to conduct transfer learning and assess the 

applicability of the model that has been developed by applying it to other 

hyperspectral data sets. In addition, a hardware-in-the-loop test could be carried out in 

order to compare the results of the simulation with the results of the experiment.  

ii. Exploring the use case of iDSS for other disaster events: Additional study can be done 

to investigate the application of iDSS to other kinds of natural disasters, such as the 

detection of floods or volcanic eruptions, for example. 

iii. Exploring the iDSS use and applicability in space exploration missions: Further 

investigation into the use case of iDSS in the interplanetary mission is something that can 

be done. The iDSS will be of great assistance for opportunistic science, the monitoring of 

rare events, and other similar pursuits. 
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iv. iDSS Mission Planning and Scheduling Operations: Additional research can be done 

in the autonomous mission planning and scheduling for the iDSS operation. This research 

can be based on the iDSS potential to dynamically adapt to the external environment. 

v. Resilient components in iDSS: Future work can be done to address the iDSS's resilience 

component, which needs to be taken into account. The remaining satellites in the iDSS 

can therefore reconfigure themselves to continue the mission and successfully complete 

it even if one of them degrades. AI integration into the iDSS framework of the cyber-

security measures should also be taken into account. 

vi. Heterogeneous iDSS and Data fusion: Probability exists for additional research on the 

integration and processing of both hyperspectral and SAR data from heterogeneous iDSS. 

This can be difficult as different systems frequently employ distinct data processing and 

monitoring techniques. Various types of integrated models, such as sensor correction and 

calibration, are also in demand. This requires the formation of a team of developers with 

diverse backgrounds in areas like data fusion, subsystem modelling, etc. Regardless of 

the nature of the application, iDSS development requires a substantial amount of data 

and experience. 

vii. Incorporation of AI in the iDSS Design and Optimisation: Further research is required 

to enhance the presented iDSS model with all subsystem models and components with 

high-fidelity simulation models should be included. Moreover, AI and surrogate models 

should be included in the design phase to automate the design process. 
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