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Abstract 

Severe earthquakes always lead to catastrophic building damage. Post-earthquake building 

damage level classification (BDLC) is an important task to rescue persons and make rapid 

earthquake responses for the reduction of severe injuries and casualties. To reduce data 

processing time for post-earthquake disaster response, pre-earthquake building data are 

always prepared, because pre-existing information about building locations and 

characteristics can reduce the time of post-earthquake localising buildings. Therefore, both 

pre-earthquake building information preparation and post-earthquake building damage 

information collection facilitate swift BDLC. Compared with conventional labour-intensive, 

time-consuming, and possibly dangerous in-situ observations, remote sensing technology 

provides a rapid and efficient approach to these pre- and post-event data collections 

because of its capability to acquire large-scale data remotely and rapidly. There are several 

remote sensing data types with their own advantages. For instance, two-dimensional (2D) 

optical satellite images provide large-scale information of the earth. Three-dimensional (3D) 

Light Detection and Ranging (Lidar) point clouds, as another type of remote sensing data, 

provide additional information on elevations of ground and non-ground points, including 

the heights of buildings.  

Among the methods for processing 2D and 3D remote sensing data, deep learning semantic 

segmentation (DLSS) technology has a high potential in applications for BDLC on remote 

sensing data. However, the potential of these methods for BDLC has not been thoroughly 

studied in previous research. Indeed, there are four gaps in the literature in this domain. 

Firstly, few DLSS methods have been applied to 2D satellite images or 3D point clouds for 
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building damage classifications specifically related to earthquakes. Secondly, several well-

known DLSS algorithms were proposed and tested only on small or indoor case studies in 

2D and 3D applications. The large-scale outdoor scenarios have yet to be fully discussed or 

tested. Thirdly, most current post-earthquake BDLC studies lack detailed multi-level 

classification methods in the remote sensing field. Fourthly, for the training of the DLSS 

methods, there is a lack of labelled datasets for multi-level BDLC at large study extents in 

pre- and post-earthquake events. 

This study solved these problems by applying these methods to both 2D and 3D remote 

sensing data on large-scale outdoor areas and by proposing novel DLSS approaches to 

classify building damage into four levels. To overcome the lack of training data, this study 

prepared and developed labelled datasets for the training of the proposed DLSS methods.  

Ablation studies have been designed to test the performance of these proposed DLSS 

methods. The results in this study show the good performance of these methods at large-

scale building footprint extraction and four-level BDLC with either satellite or Lidar data. 

Indeed, these novel methods have increased the accuracy of the chosen backbones in large-

scale outdoor study areas. The channel attention mechanism helps to improve the accuracy 

of building information extraction in both 2D and 3D methods with higher Intersection over 

Union (IoU) values compared to the chosen backbones. Overall, this study overcomes the 

issues of the current methods of BDLC and will benefit society by providing a safe and 

speedy post-earthquake BDLC method that requires minimal fieldwork to support rescue 

teams for quick response. It will also help disaster management systems to store 

information efficiently for post-earthquake recovery planning. 
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1 

Chapter 1  

Introduction 

1.1 Background 

Earthquakes have the potential to trigger catastrophic building damage and inflict casualties 

on numerous communities (Ji et al., 2018a). For instance, a Mw 6.4 (ML 6.2) earthquake 

occurred in Croatia in December 2020 where several individuals were reported wounded 

and deceased, and roughly half of the city was left devastated (United States Geological 

Survey, 2020). Furthermore, as a severe earthquake that caused the most significant number 

of deaths in the last 15 years, the 2010 Haiti Earthquake resulted in an official death toll of 

about 230,000. Nearly half of all buildings collapsed or were severely damaged in the 

epicentral area in this Haiti earthquake, including more than 300,000 homes (Desroches et 

al., 2011). The damaged buildings were among the key factors contributing to the high 

number of casualties in that earthquake. 

The seismic cycle is typically categorised into four stages: inter-seismic, pre-seismic, co-

seismic and post-seismic. In the post-seismic stage, the primary objective is to rescue 

individuals and safeguard properties. In order to accomplish that, post-earthquake analysis 

becomes essential. Earthquake analysis generally contains three phases: disaster 

information analysis, post-earthquake emergency rescue decision-making, and post-

earthquake recovery and reconstruction decision-making. The initial phase invariably 

involves the collection and analysis of disaster information. One of the foremost 
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responsibilities within this phase is the evaluation of post-earthquake building damage 

since it offers information for rescue, safety, and recovery. However, it is often hard for 

rescue teams to decide where to begin the rescue operation due to the dearth of prompt 

building damage information immediately following an earthquake. The lack of this 

information is caused by the difficulty of rapidly judging the levels of building damage due 

to the differences in structure and lack of rapid methods. Moreover, the search and rescue 

resources of the stricken area are usually insufficient in the first several hours. 

Consequently, the need arises for a fast, reliable, and efficient approach to building damage 

level classification (BDLC) aimed at rapidly identifying the most critical areas requiring 

rescue efforts and facilitating a prompt post-earthquake disaster response. 

To reduce data processing time for post-earthquake disaster response, pre-earthquake 

building data preparation is advantageous. This is because pre-existing information about 

building locations and characteristics can help to assess the extent of building damage. 

Therefore, both the extraction of pre-earthquake building footprints and the evaluation of 

post-earthquake building damage are significant in facilitating swift emergency responses. 

The subsequent subsections delve into the contextual underpinnings of these two aspects. 

1.1.1 Pre-earthquake building footprint extraction 

As mentioned above, to avoid disastrous and chaotic aftermath, it is prudent to take pre-

emptive measures before earthquakes, thereby streamlining data processing for post-

earthquake emergency responses to rescue individuals and recover communities rapidly. By 

having accurate information about building locations before earthquakes, emergency 
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responders and relief organisations can quickly prioritise areas for search and rescue 

operations, allocate resources, and plan recovery efforts. As a result, it is necessary to 

conduct a meticulous building footprint extraction from the pre-earthquake source data. 

Remote sensing provides a rapid and efficient approach to pre-earthquake data collection, 

owing to its capability to rapidly acquire large-scale data. 

After the initial pre-earthquake data collection, the need for a rapid and accurate method to 

extract buildings from remote sensing data becomes evident. Deep learning (DL) may be a 

suitable choice. With the rapid advancements in DL, it has been gradually applied in the 

remote sensing field for urban observation. Several papers applied DL to pre-event building 

extraction for the purpose of earthquake disaster analysis (Gupta et al., 2021, Zhang et al., 

2022). DL-based pre-earthquake building footprint extraction using remote sensing 

involves identifying and mapping buildings in an area using remote sensing data, such as 

satellite imagery or Lidar. This process generates a baseline dataset that provides 

information about the spatial distribution, size, and shape of buildings before the 

earthquake. 

1.1.2 Post-earthquake building damage level classification 

Several elements influence the rescue decision making such as the damage degree of 

buildings, the number of trapped victims and the number of rescue labourers. The 

immediate damage estimation and classification after the occurrence of earthquakes will 

help emergency response plans to save human lives. In order to classify how serious the 

damage is, several scholars propose classification methods. Three common methods are 



Chapter 1: Introduction 

4 

widely used for post-earthquake BDLC including 1) on-site investigation to calculate the 

loss, 2) evaluating the loss according to loss prediction models, and 3) evaluating loss 

based on remote sensing data. 

The first investigation method is accurate, but it puts the lives of field investigators in 

danger of strong aftershocks and tsunamis. Further, the first method is time consuming, 

often weeks or even months, and very labour intensive. Detecting all buildings manually on 

the ground is time-consuming and ineffective, so it cannot be applied for rapid evaluation 

of earthquake damage. Because of the long processing time, rescue teams may miss the best 

time for rescuing the trapped and wounded. Meanwhile, some places cannot be reached by 

terrestrial vehicles after an earthquake. This increases the difficulty of investigation. 

The second method most relies on the accuracy of prediction models, which might not be 

realistic. Due to the field restriction, the tools should be able to work remotely and 

automatically in terms of detection and classification. 

The third remote sensing-based method usually represents the method using airborne or 

spaceborne remote sensing data. This method can collect large-scale data in the target area 

within a shorter time compared with the first in-situ method.  This is because remote 

sensing devices can scan land from a great height, covering a much larger area than what 

can be obtained through in-situ observations. Moreover, this collection method is safer as it 

avoids potential on-site dangers. Another advantage is that the presence of multiple earth 

observation satellites allows for more frequent image information through them. In addition 

to these benefits, unlike the second method which generates estimated damage degrees, the 
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third method provides real damage degrees obtained from collected data. Therefore, among 

these three methods, the third one is considered superior due to its convenience, safety, and 

accessibility for frequent earth imaging coverage. This method has gained increasing 

interest on a global scale. With the fast development of artificial intelligence (AI), as a 

subset of AI, DL techniques have started to widely be utilised in various fields. DL teaches 

computers to process data automatically in a way that is inspired by the human brain (Guo 

et al., 2020). To accelerate the process of the remote sensing data, DL algorithms are being 

applied for BDLC (Su et al., 2020, Ji et al., 2018a, Yang et al., 2021, Wheeler and Karimi, 

2020). 

Based on the introduction of Sections 1.1.1 and 1.1.2, both pre-earthquake building 

footprint extraction and post-earthquake building damage evaluation are crucial for a 

successful earthquake disaster response. DL-based methods using remote sensing data are 

handy to do these two tasks. DL models or networks can be trained using both pre-

earthquake information and post-earthquake building damage level data to establish 

relationships with them. Thus, these trained DL models or networks can then be used to 

predict or estimate the likely damage levels for buildings in a specific area following an 

earthquake. The following section discusses the current research problems of DL 

applications related to this study. 
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1.2 Research problems of deep learning-based semantic segmentation 

applications in earth observation 

In recent years, with the fast development of DL, its related technologies have been widely 

utilised in different applications in the remote sensing field. Semantic segmentation is a key 

application, which labels every pixel in images or every point in Lidar point clouds. Lidar 

is a type of remote sensing technology that provides three-dimensional (3D) information of 

land covers. DL-based semantic segmentation (DLSS) using remote sensing data provides 

an accurate approach to both pre-earthquake building footprints extraction and post-

earthquake BDLC, because it can outline the detailed building locations and shapes.  

Although there is a trend of applying DLSS in the remote sensing field, it is still a 

challenging task (Gupta et al., 2019a). This is because there are several key technical 

problems and data limitations that need to be solved. Remote sensing data that can be used 

for the purpose of building-related research are always categorised into 2D and 3D 

applications according to data sources. One of the most common 2D data sources is satellite 

imagery, and Lidar is one of the widely used 3D sources in the remote sensing field. Based 

on the literature review, there are several problems of DL-based building related semantic 

segmentation research that need to be solved. Therefore, the following subsections discuss 

these problems from literature categorised by different data sources, including 2D satellite 

images and 3D Lidar point clouds. 
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1.2.1 Problems using 2D satellite images  

One significant challenge associated with the employment of 2D satellite images is the lack 

of DL models that are designed for earthquake-related purposes. In detail, DL-based 

methods of building footprint extraction are widely discussed in the computer vision field. 

Nonetheless, most of these DL methods are not designed for earthquake-related purposes 

(Krupiński et al., 2019, Majd et al., 2019). For instance, most studies apply DL methods for 

building footprint extraction. However, few of them are designed for pre-earthquake 

building footprint extraction. Similarly, most existing DL methods may not be suitable to 

be applied in post-earthquake BDLC. Moreover, several DL-based 2D imagery processing 

methods, such as UNet (Ronneberger et al., 2015) and ResNet (He et al., 2016a), in the 

remote sensing field are not initially designed for data analysis of large-scale outdoor 

scenarios, because these models were initially proposed for classifying or segmenting 

indoor or small objects from images in the computer vision field which are not visible in 

satellite images. 

Another issue is that most current studies for analysing post-earthquake building damage 

levels only classify damages into two levels, i.e., collapsed and intact. This is not enough 

for either a rescue or recovery plan because the information is too general. Few studies 

have discussed multi-level BDLC. 

Another problem is the insufficiency of labelled image datasets of post-earthquake 

damaged buildings. Very limited satellite image datasets for damaged building levels are 

accessible publicly for applying DL methods. Popular 2D semantic segmentation datasets 
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in computer vision, such as ImageNet (Deng et al., 2009), do not always contain damaged 

building information. There are some available datasets containing information about 

collapsed or not, which is not enough for post-disaster rescue and management. Therefore, 

labelled images with more than two levels (damaged or not) are needed for DL study. 

1.2.2 Problems using 3D Lidar point clouds 

With the increasing popularity of Lidar applications in remote sensing, there is a trend to 

apply Lidar data for urban observation and building related research. The current problems 

of 3D Lidar data applications are very similar to the problems of 2D related research 

mentioned in Section 1.2.1. First, there is a lack of DLSS methods for focusing on 

earthquake-related building footprint extraction or damage level classification. Second, 

although some methods can be applied or transfer learnt for the purposes of this thesis, they 

were not designed for large-scale or city-scale. The third problem is that few DL-based 

studies discuss multi-level BDLC. The fourth problem is the lack of suitable labelled data 

for DL model training. Most open-source Lidar datasets are published for indoor 

observation or small-area outdoor semantic segmentation. 

1.2.3 Summary of the problems of 2D and 3D data applications 

Although a DL-based remote sensing method could be an approach for both pre- and post-

earthquake data collection and analysis, there are still some challenges that exist. 

1) Most existing 2D optical imagery based DLSS methods are not designed for large-

scale post-earthquake BDLC. 
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2) Although some 3D Lidar-based DLSS methods are applied for pre-earthquake 

building extraction analysis, the locations of these studies do not consider the 

possibility of earthquakes. 

3) Few 3D Lidar-based post-earthquake DLSS studies discuss its application in large-

scale BDLC after earthquakes. 

4) Labelled multi-level building damage 2D imagery or 3D Lidar point clouds datasets 

are limited in the public domain.  

A detailed review of the state-of-the-art literature in related research fields for finding 

research gaps is presented in Chapter 2. 

1.3 Research aim and objectives 

To address the abovementioned issues, this research aims to propose novel DL models to 

classify building damage into four levels with large-scale in-house labelled datasets 

considering both pre- and post-earthquake periods. 

This thesis has four objectives to achieve this goal with 2D satellite images and 3D Lidar 

point clouds. 

• Objective 1: To propose a 2D BDLC method considering both pre- and post-

earthquake periods using DL with large-scale optical satellite images. 

• Objective 2: To offer a DL-based pre-earthquake building footprint extraction 

method with large-scale Lidar data tested in the case studies whose locations have 

the possibility of earthquakes. 



Chapter 1: Introduction 

10 

• Objective 3: To provide a DL-based post-earthquake BDLC method with large-

scale Lidar data. 

• Objective 4: To build 2D satellite and 3D Lidar in-house labelled datasets of pre-

earthquake building footprints and post-earthquake multi-level damaged building 

information. 

1.4 Significance of the study 

One of the main tasks of rescue teams after an earthquake is to save lives and safeguard 

properties. The best time for rescuing people is in the first 36 hours from the time an 

earthquake happens, so several countries require researchers to provide an emergency 

response plan every several hours. For instance, the Chinese government requires China’s 

Earthquake Administration to provide updated responses every six hours after an 

earthquake. The main reason for death in large-scale earthquakes is the collapse of 

buildings: “Earthquakes don't kill people, buildings do (Ross, 2021).” If rescue teams know 

where the location of severe building collapses are and respond fast, more lives will be 

saved. To save more people, one of the urgent worldwide issues is to know how to assess 

detailed building damages after an earthquake quickly. Therefore, BDLC as a detailed 

building damage assessment is one of the critical tasks that requires to be done quickly to 

rescue more people and formulate a more effective earthquake emergency response plan.  

Conventional in-situ detailed building damage level estimations have several issues, 

including being labour-intensive, time-consuming, expensive, manual, potentially 

dangerous and imprecise due to risks to the field investigators and estimators in 
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catastrophic situations. This study addresses this issue by offering automatic, precise, and 

rapid building damage estimation using remote sensing data. Remotely sensed data 

collection, for this purpose, significantly reduces the risks involved in the conventional in-

situ manual data collection. For both pre-earthquake building information update and post-

earthquake BDLC, the proposed novel methods in this study can be applied to large human 

settlement areas, while maintaining the acceptable Intersection over Union (IoU) of the 

results.  

With the capability of detecting, analysing, and classifying city-scale building damages 

using multi-source data, this study provides a valuable tool for emergency response teams 

and disaster management authorities to efficiently prioritise resources and aid efforts in 

affected areas. In addition to saving lives, this study offers rapid and timely information for 

the recovery planning of earthquake-affected areas. The results from a detailed BDLC can 

also help different countries design and update seismic building standards and codes (see 

Section 2.3 for more details of related standards and codes). 

1.5 Structure of the thesis 

This thesis comprises eight chapters. The first chapter introduces background information 

of this study. The second chapter discusses the existing relevant literature in detail. The 

third chapter states the research methodology and the specific methods for each main part 

of the thesis are presented in their respective chapter. The fourth to seventh chapters are the 

main parts of the thesis. The last chapter is the conclusion of this study. The structure of 

each chapter is outlined in Figure 1-1 below. A brief description is stated as follows: 
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Figure 1-1. The structure of the thesis and the purpose of each chapter 

Chapter 1 is the introduction to this study. It begins by presenting the background of DL 

applications for both pre-earthquake building footprint extraction and post-earthquake 

BDLC. Then, research problems are stated and turned into the research aim and objectives 

of this study, followed by the significance of the study. 

Chapter 2:
Literature review

Statement of current development, identification of gaps
in related research.

Chapter 3:
Research design

Research focus, methodology design, workflow, data,
models and scenarios.

Chapter 4:
2D-based building
damage estimation

Proposing a four-level building damage classification
model with 2D optical images; Creating a manually

labelled 2D dataset.

Chapter 6:
3D-based building

footprint extraction

Proposing a 3D deep learning model for urban semantic
segmentation with Lidar focusing on building footprints ;

Creating a manually labelled 3D urban object dataset.

Chapter 7:
3D-based building
damage estimation

Propose a 3D deep learning model for building damage
level classification with Lidar; Creating a manually

labelled four -level post -disaster building damage dataset.

Chapter 8:
Conclusion

Discussion on findings, contributions, limitations and
suggestions for future studies .

Chapter 1:
Introduction

Introduction to the background of remote sensing and its
application in the related research field, problem

statement and aim of the thesis.

Chapter Purpose

Chapter 5:
3D-based test of

influence of feature
selection

Testing influence of feature selections on the accuracy of
urban semantic segmentation with Lidar; Creating a

manually labelled 3D urban object dataset.
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Chapter 2 reviews the literature on the adoption of state-of-the-art remote sensing and DL 

techniques in building footprint extraction and BDLC. Significant gaps in DL adoption in 

both pre- and post-earthquake applications are identified. The literature review leads to the 

design of this research. 

Chapter 3 presents the research focus and the workflow of the whole study. This chapter 

also describes general reasons for the design and explains how the design aligns with the 

research objectives. The detailed methods of each main chapter are explained in their own 

chapters. 

Chapter 4 analyses the performance of the proposed DL model for BDLC using 2D satellite 

images. The model contains two steps, including pre-event building footprint extraction and 

post-earthquake damage level analysis. This chapter presents a comparison of the proposed 

model with other DL models that no one has previously compared. Four types of 

comparison experiments have been conducted with their advantages and limits. 

Chapter 5 is the preparatory work for Chapter 6. It examines the performance of feature 

selections on the accuracy of DL-based large-scale outdoor Lidar semantic segmentation. 

Results of the DL models with and without surface normal vectors are tested. The down-

sampling scales and numbers of down-sampling layers are designed for four different 

feature selection options. In total, the chapter compares eight selections to evaluate their 

performance in relation to the accuracy of semantic segmentation. The building class is the 

focus.  
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Chapter 6 proposes a novel method of pre-event semantic segmentation for large-scale 

colourised Lidar. Some parameters and features are designed according to the experiments 

of Chapter 5. It performs acceptably for the extraction of the building class. Satellite images 

are fused with Lidar data to provide colourised point clouds. 

Chapter 7 introduces a new DL-based approach for classifying building damage levels in 

the aftermath of earthquakes. The method combines surface normal information and 

attention-based DL techniques to effectively identify various levels of building damage 

from post-disaster colourised Lidar data. The proposed method showcases the results that 

no damage or total story failure is easier to be tested than other damage levels. 

Chapter 8 draws conclusions and states the contributions of this study. The feasibility of 

applying DLSS to classify building damage into four levels after earthquakes is discussed. 

Finally, this chapter provides an overview of the limitations and offers suggestions for 

future research. 

1.6 Conclusion 

The gist of this chapter is to explain the backgrounds, aim and objectives, and the 

significance of this study. The aim and objectives of this study are proposed based on the 

current gaps and problems from the literature review. The design of this study is formulated 

based on the research aim and objectives. An overview of the structure of this thesis is 

drawn in Section 1.5. 
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In summary, utilising both pre-existing building data and post-event information can assess 

and classify the building damage caused by an earthquake. This study applies 2D and 3D 

data, remote sensing technology, and DL data analysis techniques to produce intelligence 

that helps the rescue team allocate the limited resources optimally. It also provides valuable 

insights for emergency response, recovery, and future urban planning. 

The next chapter will review previous related literature. State-of-the-art DL methods 

applied in this field have been discussed. This review helps this study discover research 

problems and design the aim and objectives for this research. 
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Chapter 2  

Remote sensing and deep learning applications 

related to building damage level classification 

2.1 Chapter introduction 

This chapter offers a review of the relevant literature. First, definitions of key terms in this 

study are stated (Section 2.2). BDLC codes and standards of different countries and regions 

are listed (Section 2.3). Then, the literature on 2D satellite imagery applications for 

predisaster building extraction and post-disaster BDLC is reviewed (Section 2.4). Then, the 

background of Lidar is introduced and literature discussing 3D Lidar techniques in 

predisaster building extraction and post-disaster BDLC is reviewed (Section 2.5). Related 

datasets are introduced in Section 2.6. Finally, a summary of reviews explaining the gaps in 

the literature that need to be bridged (Section 2.7). 

2.2 Definition of related terms 

2.2.1 Remote sensing related terms 

Optical satellites use optical sensors to detect the reflection of solar radiation by ground 

features in the optical part of the spectrum, such as visible and infrared waves. Most optical 

ones are in the passive mode. 
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Atmospheric calibration 

Atmospheric correction is a step for optical image processing to characterise the surface 

reflectance, which removes the scattering and absorption effects from the atmosphere 

(Liang and Wang, 2020). 

Active and passive remote sensors 

Active sensors generate and detect electromagnetic energy. Passive sensors do not generate 

energy and only generate externally detected electromagnetic radiation, such as the 

emittance by or reflectance from a target (Gerke and Kerle, 2011). 

Lidar 

Lidar, also called LiDAR or LADAR, is an acronym for “light detection and ranging” or 

“laser imaging, detection, and ranging” (Shan and Toth, 2018). Lidar measures distance by 

launching a laser and measuring the reflection. Those laser beams propagate in a straight 

line with good directivity and very narrow beams, so it is hard to find. The limitation of 

Lidar is that it is influenced by weather. If the beams encounter heavy rains, smoke, fog, or 

other bad weather conditions, the beams are hard to detect. 

Laser 

Laser is an acronym for light amplification by stimulated emission of radiation (Shan and 

Toth, 2018). Unlike other lights, laser emits monochromatic light with a wavelength 

between 0.1 μm and 3 mm (infrared, visible light, or ultraviolet). 
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Surface normal 

A surface normal is a vector that is perpendicular to a given surface at a point on the 

surface. 

2.2.2 Earthquake-related terms 

Natural disaster definition 

There is no official definition of “natural disaster”. A natural disaster can be an event 

brought about by the natural processes of the Earth that leads to widespread environmental 

destruction and an increase in mortality and morbidity. 

Earthquake definition 

United States Geological Survey (2023) defines “An earthquake is what happens when two 

blocks of the earth suddenly slip past one another. The surface where they slip is called the 

fault or fault plane”. 

Seismic magnitude scales 

Earthquake or seismic magnitude is the most well-known measure of earthquake strength 

for historical reasons. There are several types of seismic magnitude scales, but all are 

proposed according to the largest recorded amplitude. Various magnitude scales represent 

different methods of deriving magnitude from such information as is available. Common 

types of magnitude include local magnitude (ML), surface wave magnitude (Ms), body 

wave magnitude (Mb) and Moment magnitude (Mw). The calculation methods for these 

types are not the same, resulting in different meanings for the same number of various types. 

For instance, MS 6.0 is not the same as MW 6.0. Different countries and regions adopt 

different magnitudes. 
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Charles Richter introduced a well-known magnitude scale in 1935, what is called the 

“Richter” scale or local magnitude ML  (Richter, 1935). This was determined by measuring 

the largest amplitude of seismic waves recorded on a standard instrument, the Wood–

Anderson seismograph. It is logarithmic, so each increase of one unit is a tenfold increase 

in the amplitude, which is about 31.6 times more earthquake's energy release.  The moment 

magnitude scale (Mw) estimates the seismic moment released by an earthquake to measure 

the earthquake’s magnitude, as proposed in 1979 (Hanks and Kanamori, 1979). It is also a 

logarithmic scale. Another general magnitude scale used for global seismology is the body-

wave magnitude, Mb. The surface wave magnitude (MS) is also a well-known scale using 

Rayleigh wave measurements on vertical instruments. 

Seismic intensity scales 

The seismic intensity provides another quantitative measure of the earthquake's energy 

release. Seismic intensity refers to the assessment of the effects and damage caused by 

ground shaking at specific locations (Shearer, 2019). It focuses on the resulting impact on 

structures, people, and the environment. The seismic intensity is always measured using 

scales. Seismic intensity scales focusing on effects caused by an earthquake are different 

than seismic magnitude scales, which measure the overall strength of that earthquake. In 

other words, two earthquakes with the same magnitude scale may have different intensity 

scales. Intensity scale categorisation methods vary across different regions worldwide. 
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2.2.3 Deep learning related terms 

Training, validation, and testing 

Deep learning network experiments mainly contain three phases: training, validation, and 

testing (Liu et al., 2022). These phases have separate datasets. “Training” means the 

training stage where the network learns features. “Validation” represents the process of 

evaluating the performance of a trained network during the training on another dataset. The 

purpose of validation is to assess how well the model generalises to new data and then 

adjust or optimise the trained network. Finally, a fully trained network with good validation 

results is generated for testing. “Testing” means the process where the performance of a 

fully trained model is evaluated on a testing set. 

Supervised and unsupervised learning 

The most significant difference between supervised and unsupervised learning in the AI 

field is the need for labelled data. Supervised learning relies on labelled input data. 

Unsupervised learning does not need the label of data, which can process unlabelled or raw 

data directly. 

Down-sampling 

Down-sampling decreases the size of chosen data, such as an image or a point cloud dataset, 

by a specific rule or algorithm. 

Semantic segmentation 

Semantic segmentation in this thesis represents a task that associates a label or category 

with every pixel or voxel in images or Lidar point clouds. 
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2.3 Building damage level classification codes and standards worldwide 

One of the critical effects of earthquakes is ground shaking. Buildings are damaged by the 

shaking itself or by the ground subsidence beneath them after earthquakes. The damages of 

buildings vary from each other, so a code or standard is necessary to classify them for 

disaster response and recovery. BDLC codes and standards vary across different countries 

and regions, and some are established by local authorities. Moreover, most of them are 

based on structural engineering and in-situ observations. These codes are usually 

implemented as guidelines for assessing and categorising the level of damage to buildings, 

which is helpful for future building designs, repairability, and construction. Below are some 

examples of building damage level codes in different countries. 

European countries 

European countries often adopt the European Macroseismic Scale (EMS-98) as the basis 

for assigning building damage levels (Grünthal, 1998). EMS-98, published in 1998, 

classified single building damage into five levels for both masonry buildings and reinforced 

concrete buildings, as shown in Table 2-1. 

Table 2-1. Classification of damage in EMS-98 

Building Type 
Damage level 

Masonry buildings Buildings of reinforced concrete 

  

Level 1: 
Negligible to 
slight damage 
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Level 2: Moderate 
damage 

  

Level 3: 
Substantial to 
heavy damage 

  

Level 4: Very 
heavy damage 

 
 

Level 5: 
Destruction 

China 

signs of damage, as shown in Table 2-3. This DB/T 75-2018 standard also designs a 

building damage levels classification standard for group buildings. Since group building-

related topics are not the focus of this thesis, this study does not introduce relevant codes. 

Table 2-2. Damage characteristics of single buildings in DB/T 75-2018 

No collapse The building structure is intact, and the main structure has not collapsed or 

partially damaged. 

Partial collapse Some parts of the building have collapsed, or the roof has been partially 

damaged, or the retaining wall is damaged, with 10% to 50% deformation. 

Collapse The entire building has completely collapsed, or the roof has completely 

collapsed, or more than 50% of the main structure has collapsed, twisted, 

deformed, or tilted. 
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Table 2-3. Sub-levels of single buildings that have no collapse 

No significant 

signs of damage 

The building structure is intact, and the main structure has not collapsed, 

but the roof has fallen tiles and collapsed, or the roof ridge has been 

partially damaged, or parapet walls have collapsed. 

Showing 

significant signs 

of damage 

The building structure is intact and has not collapsed with no obvious 

damage to the roof and retaining walls. 

 

Two damage assessment methods have been listed in DB/T 75-2018. The first method is 

visual interpretation, which needs manual drawing of building footprints. The second 

method is automatic or semi-automatic extraction, which requires advanced unsupervised 

or supervised methods for saving workload and time. 

Besides the above damage assessment method, GB/T 24335-2009 (2009) code, published 

by the General Administration of Quality Supervision (2009), designs another code for 

categorising damage to buildings into four levels, including slight/no damage slight, 

moderate, heavy, and collapse.  

U.S. 

Damage Assessment Operations Manual (Federal Emergency Management Agency, 2016) 

lists the building damage level assessment metrics for manufactured and conventionally 

built homes in Appendix E in Pages 113 and 114. This document classifies damage to 

buildings into four levels, including affected, minor, major, and destroyed. “Affected” 
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means that there is no damage affecting habitability, and only cosmetic damages. Minor 

damage represents that the damage does not affect the structural integrity of the residence. 

A major damaged building has sustained significant structural damage. “Destroyed” means 

that this building is a total loss. 

Japan 

Akkar et al. (2021) introduce the damage levels from the rapid inspection method of 

structure engineering aspects published by the Japan Building Disaster Prevention 

Association, including “none”, “minor”, “slight”, “moderate”, “severe”, and “collapse”. 

Classification of building damage from scholars 

Besides governments, there are also some codes and classification categories proposed by 

scholars. For instance, Nakano et al. (2004) proposed a definition of damage of reinforced 

concrete columns and walls into five levels, from visible, narrow, to huge cracks. Schweier 

and Markus (2006) proposed a detailed ten-level catalogue of damaged buildings with 

airborne scanning techniques. Some of the levels have more detailed sub-levels to describe 

different damage statuses. The classification is based on spatial geometry, such as the 

change of height, outlines, and volume. Besides this classification method, scholars from 

Japan also proposed other classification methods.  

It is important to note that building damage level codes also exist for other natural disasters, 

such as tsunamis. Early studies in Japan collected damage data from historical tsunamis and 

proposed threshold depths for collapse as damage criteria. For example, wooden houses and 
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reinforced concrete buildings may collapse if the tsunami inundation depth is 2 and 8 

meters, respectively. Further studies on building damage due to tsunamis were conducted 

after the 2004 Indian Ocean tsunami. The data were analysed for all buildings, categorised 

by structural material, number of stories, and location along the coast to capture and explain 

potential variations in damage predictions. The survey covered over 250,000 structures 

(Suppasri et al., 2013). Unlike damage levels after an earthquake, these studies defined 

damage levels with a “washed away” category in addition to minor, major, or collapsed 

levels. Therefore, it can be found that different natural disasters have distinct building 

damage assessment standards. Because of that, building damage level codes for other 

natural disasters are not considered in this thesis. 

Conclusion of worldwide codes 

Most of these category codes and standards are designed based on their own regions or 

countries, so the classification results are often different from different investigation groups 

for the same event. Some researchers also classify damage degree by building groups. 

Areas with natural distribution, such as building blocks and natural villages, are generally 

selected as the seismic damage unit. The degree of damage in unit depends on the damage 

degree of most buildings. 

2.4 2D image-based predisaster building extraction and post-disaster 

BDLC 

Building extraction from RS data is still not automated, and most building damage mapping 

is only based on visual interpretation, which is time-consuming and labour-intensive (Gerke 
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and Kerle, 2011). The large amount of data after disasters increases the difficulty and cost 

of data interpretation. DL is a possible solution. Therefore, this section states some well-

known DL models and their applications with four subsections from Section 2.4.1 to 

Section 2.4.4. Section 2.4.1 introduces the development of DLSS for 2D images in 

computer vision. Section 2.4.2 reviews current studies using DLSS methods for land cover 

classification with 2D optical images, whose classes include the building class. Section 

2.4.3 reviews the studies that only focus on pre-earthquake building footprint extraction 

from land cover objects using DLSS methods with 2D data. Section 2.4.4 introduces the 

DLSS methods that are designed for post-earthquake BDLC. 

2.4.1 Development of deep learning methods for 2D semantic segmentation 

Optical image segmentation has developed in remote sensing for several years, as shown in 

Figure 2-1. Initially, various methods focused on individual pixels, applying computer 

vision techniques. Different domains use specific methods, such as vegetation index 

methods for greenery-related research and principal component analysis for classifying 

various features. Later, in the 1900s, machine learning methods like artificial neural 

network (ANN), support vector machine (SVM), and extreme learning machine (ELM) 

gained widespread adoption. Additionally, geographic information system (GIS) integrated 

methods are also widely spread, such as spectral mixing analysis, fuzzy cluster analysis, 

and other multi-data fusion analysis methods. Afterwards, since the 2000s, object-level 

analysis methods have found significant application. Subsequently, As AI rapidly advanced, 

several AI-related methods were proposed in the 2010s. 
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Figure 2-1. Development of optical image segmentation in remote sensing field 

As a part developed from AI and machine learning, DL has been increasingly applied for 

image classification purposes recently, particularly when AlexNet was introduced in the 

literature (Krizhevsky et al., 2012). AlexNet improved image classification accuracy from 

70%+ of conventional computer vision methods to 80%+, which is a breakthrough in terms 

of accuracy. The dominance of AlexNet in the classification contest was acknowledged by 

the ImageNet Large Scale Visual Recognition Challenge 2012 (LSVRC 2012) as a well-

known competition in computer sciences, and thus, the application of DL for image 

classification in various contexts has been further increased. 

One of its groundbreaking contributions is that it was the first to use the graphics 

processing unit (GPU) to accelerate training speed. Second, it applies the Rectified Linear 

Unit (ReLU) activation function instead of conventional activation functions to increase 

accuracy. Third, local response normalisation (LRN) was proposed to improve 
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generalisability. One of the most critical tasks of DL is to improve the generalisability (or 

generalisation ability). Generalisability means the ability of DL models to react to new data. 

If a model has a higher generalisability, it means the accuracy of this model will be higher 

for new data. Fourth, its first two fully connected layers use the “dropout” method to 

decrease the possibility of overfitting. 

After that, another famous net, VGGNet, was proposed by the Visual Geometry Group of 

the University of Oxford (Simonyan and Zisserman, 2014). It was the winner of the 

LSVRC 2014 localisation task and the second place in the LSVRC 2014 classification task. 

Its highlight is that it applies two 3×3 kernels replacing one 5×5 kernel and three 3×3 

kernels replacing one 7×7 kernel. They have the same receptive field. This can reduce 

required parameters during computing. The receptive field is the size of the region on the 

input layer corresponding to one feature (cell) on the output feature map. 

The residual block was proposed in ResNet (He et al., 2016a). ResNet achieved the winner 

of image classification, localisation, and detection in the ILSVR Challenge 2015. It was 

also the first place of the object detection task and image segmentation task of the MS 

COCO Challenge 2015. ResNet-34 reduced top-1 error by 3.5% on ImageNet validation 

compared to its plain counterpart (He et al., 2016a). One of its significant contributions is 

the “residual block”. Another one is that it applies batch normalisation (BN) to accelerate 

the training instead of the dropout. 

The residual block was proposed for addressing two problems: 1) gradient vanishing 

problem and gradient exploding problem; and 2) degradation problem. Residual blocks are 
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skip-connection blocks to improve the accuracy of DL models and show good results based 

on the ResNet test. The output is the addition of an identity function and residual blocks. 

In recent years, the use of attention mechanisms for image classification and semantic 

segmentation has developed quickly. Examples of the attention mechanism in the literature 

are SENet (Hu et al., 2018) and Vision Transformer (Dosovitskiy et al., 2020). The 

attention mechanism was initially applied in the natural language processing field. It has 

been increasingly used for other applications such as image processing, since several 

computer vision researchers realised its advantages (Dosovitskiy et al., 2020). 

High-Resolution Network (HRNet) was proposed for human pose estimation initially (Sun 

et al., 2019a). Later, its authors applied HRNet for image classification, semantic 

segmentation, object detection, and facial landmark detection. Since it has been tested for 

both classification and segmentation, this research chooses this model. One great advantage 

of HRNet is that it maintains high-resolution representations in the network. Several 

conventional DL models decrease input sizes by losing information to decrease the amount 

of calculation, such as UNet (Ronneberger et al., 2015). Compared with those methods, 

HRNet can obtain features from the original high-resolution input images while keeping 

information. A higher-resolution image contains more features and information than a 

lower-resolution image. 

2.4.2 DLSS methods for 2D land cover classification 

Predisaster land cover object data collection and analysis have recently gotten more 

attention worldwide (Liu et al., 2022). With the rapid development of remote sensing 
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technologies, the resolution of no matter public or commercial satellite images has 

increased fast in recent years. These remote sensing images have opened several 

opportunities for new applications using DL techniques, such as land cover classification 

(or called land cover semantic segmentation). 

Researchers have made tremendous efforts to develop accurate, fast, and automatic land 

cover classification methods. Among these, DL is considered one of the most promising 

and evolving approaches. Several DL methods have been applied to land cover 

classification. For instance, Zhang et al. (2019a) proposed a land cover classification 

method for the task of classifying land cover semantics, such as buildings and grassland, 

incorporating multi-layer perceptron (MLP) and convolutional neural network (CNN). 

Helber et al. (2019) presented a patch-based land cover classification approach using DL 

with its own labelled geo-referenced dataset, EuroSAT. The target classes vary in different 

studies and some of them do not include the building class. However, the building class is 

the primary class of this study. As a consequence, the review of land cover classification 

literature was narrowed down to the literature focused on building footprint extraction, 

which is introduced in the subsequent subsection 2.4.3. 

2.4.3 DLSS methods for pre-earthquake building footprint extraction 

In the remote sensing field, with the increasing accuracy of land cover classification, some 

recent studies have focused on applying DL methods only to extract buildings from various 

land cover objects and ignore other objects using optical satellite images because only 

building information has been the target in their studies. For example, Liu et al. (2019) 
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developed a fully convolutional neural (FCN) method for building extraction on high-

resolution aerial imagery (HRAI). They conducted several experiments on two public 

datasets, the Inria Aerial Image Labelling Dataset and the WHU Aerial Building Dataset, to 

showcase the effectiveness of their proposed model in building footprint extraction. Four 

metrics (i.e., precision, recall, F1, and IoU) were employed for evaluation. Li et al. (2019) 

introduced a U-Net-based semantic segmentation method that explored the potential of 

integrating three public GIS map datasets (i.e., OpenStreetMap, Google Maps, and 

MapWorld) with WorldView-3 satellite datasets in four cities (Las Vegas, Paris, Shanghai, 

and Khartoum). The F1 score was used for performance evaluation. Wei et al. (2019) 

utilised an FCN method for building extraction using the WHU Aerial Building Dataset, 

assessing performance with IoU, recall, and precision metrics. Zhang et al. (2020) utilised 

GF-2 satellite images with a developed Mask R-CNN method. The average value of IOU 

served as an evaluation metric. Shao et al. (2020) introduced a novel network, the Building 

Residual Refine Network, using the Massachusetts Building dataset. The evaluation was 

based on IoU and F1. Wei et al. (2021) employed the U2-net on the WHU building dataset, 

an international open-source dataset. Evaluation metrics included IoU, recall, precision, and 

F1 score. 

In summary, although several methods proposed enhanced approaches for building 

extraction, they always used those four well-known accessible building datasets without 

other datasets. Therefore, it is necessary to develop more building datasets for research in 

this field. Those well-known datasets with some map databases are introduced in the 
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following paragraphs. Moreover, IoU and F1 are the first two most popular evaluation 

metrics for trained DL models and networks, according to the reviewed literature. 

2.4.4 DLSS methods for post-earthquake BDLC 

As mentioned in Section 2.3, classification levels of damaged buildings in the standards 

and codes vary from region to region. There is no global standard or code to unify all 

detailed damage levels. Therefore, there is no unified classification method for damage 

assessment. There are some typical building damage and impact assessment methods, such 

as self-reporting, fly-over, windshield surveys, door-to-door and site assessments, 

geospatial analysis and geographic information systems, and modelling. They are 

introduced on pages 69-73 of the Damage Assessment Operations Manual (Federal 

Emergency Management Agency, 2016). This thesis focuses on the classification methods 

that applied geospatial analysis and geographic information systems using remote sensing, 

as introduced in Chapter 1. Although other methods are feasible, they always require a 

large number of labours, which is hard to achieve, especially in countries where labour cost 

is high. Besides the academic field, various industry companies have proposed post-disaster 

building damage estimation methods using remote sensing. For instance, Cloudeo 

Company (2023) applied their own collected multispectral imagery for the January 2023 

Turkish earthquake and generated a heatmap of damaged buildings, with a case study 

conducted in Adiyaman City, Turkey. Therefore, BDLC with remote sensing will be a trend 

in both academia and industry. 
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DL techniques with remote sensing data provide solutions to avoid in-situ time-consuming 

observations. With the fast improvement of performance on all types of optical remote 

sensing sensors, several studies are increasingly focused on their applications for BDLC 

using remote sensing images with DL-based methods. For instance, Xie et al. (2016) 

applied a crowdsourcing approach to recognise and classify collapsed buildings rapidly 

after an earthquake based on remote sensing images with the case study of an earthquake in 

Yushu, China. Ji et al. (2018a) identified building damage with four levels according to 

EMS-98 using CNN and SqueezeNet with 2D post-disaster optical satellite images. 

Building footprints were manually labelled using ArcGIS 10.4. Four metrics have been 

adopted, including producer accuracy, user accuracy, overall accuracy (OA), and Kappa. 

Valentijn et al. (2020) applied a CNN-based method to test its performance for detecting 

damage to buildings after a natural disaster with the open-source xBD dataset. All these 

studies show that the DL method can be applied for remote sensing-based building damage 

estimation after the earthquake. 

While previous attempts have aimed to enhance the accuracy of BDLC, many have solely 

focused on applications. They overlooked the crucial aspect of developing DL algorithms 

or networks to suit the specific scenarios of damaged buildings following earthquakes. 
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2.5 3D Lidar-based predisaster building footprint extraction and post-

disaster BDLC studies 

2.5.1 Background of Lidar 

Despite Lidar being proposed in the 1960s, its widespread adoption for topographic 

applications using laser profiling and scanning systems only took off in the mid-1990s 

(Shan and Toth, 2018). Unlike most passive optical sensors applied in the remote sensing 

field, Lidar is an active remote sensing technique. A Lidar sensor emits laser pulses toward 

a target and measures the distance from the sensor to this target (Shan and Toth, 2018). 

Presently, various types of Lidar sensors are employed, such as terrestrial, airborne, and 

spaceborne laser scanners. Airborne Lidar, also referred to as airborne laser scanning, is a 

laser scanning system that uses a drone, aeroplane, or helicopter to collect laser data. The 

spaceborne Lidar system, or named satellite-based Lidar system, that is attached to a 

satellite to detect global surface 3D information. Terrestrial Lidar, also called topographic 

Lidar, collects 3D coordinates of targets, including numerous points on land. There has 

been an increasing spread of laser-related applications for the last 30 years. This can be 

seen in the incorporation of lasers into several surveying instruments, such as total stations. 

Lidar techniques have found application in various remote sensing domains. 

All types of Lidar sensors have their own benefits, but airborne and spaceborne sensors 

may be more suitable for large-scale case studies, which can provide an efficient means to 

rapidly implement 3D information mapping. For example, Yuan et al. (2018) conducted 
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research on wheat height estimation using Lidar technology. In another study, Zhang et al. 

(2022) applied Lidar for forest height estimation. Additionally, Zheng et al. (2021) utilised 

Lidar in conjunction with machine and DL analyses to detect fruits and flowers in 

strawberry farming. Furthermore, researchers have successfully integrated Lidar and 

camera information to develop a real-time road scene 3D semantic map with large-scale 

and high precision (Li et al., 2020a). This innovative approach holds promising potential 

for enhancing road scene understanding and navigation in real-world scenarios. 

Considering the focus of this study, airborne and spaceborne Lidar are applied for 

collecting data. 

Apart from the commercial or academic applications of Lidar for airborne laser scanning 

services, there have been notable contributions from U.S. government research agencies, 

particularly NASA, where intriguing Lidar systems have been designed and utilised 

primarily for scientific research pursuits. These endeavours have advanced the field, 

leading to a deeper understanding and improved applications of Lidar technology for a 

multitude of purposes. 

As introduced in Section 2.5.1, besides satellite images, Lidar technology is also widely 

used in the remote sensing field with its own advantages, such as height information. This 

section has three subsections to introduce Lidar applications for building extraction in both 

pre- and post-earthquake situations using DLSS methods. Section 2.5.2 reviews the studies 

of DLSS methods for 3D Lidar point clouds in the computer vision field. Section 2.5.3 

introduces current studies of pre-earthquake building footprint extraction using DLSS, and 

Section 2.5.4 states the existing studies for post-earthquake BDLC using DLSS. 
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2.5.2 Development of deep learning methods for 3D Lidar semantic segmentation 

Lidar semantic segmentation plays a pivotal role in various applications, including 3D 

modelling, building maintenance, and urban planning. To achieve accurate segmentation, 

the process involves extracting relevant features and global geometric structures from the 

point cloud data (Guo et al., 2020). Therefore, point cloud semantic segmentation is a 

complex task that requires ample data and computational resources. DL could be an 

appropriate approach. 

DL-based Lidar semantic segmentation methods are usually categorised into four types: 

projection-based, discretization-based, point-based, and hybrid methods (Guo et al., 2020). 

“Projection-based” means that these methods always project 3D data into 2D images. 

Discretization-based methods usually convert a 3D point cloud into a dense or sparse 

discrete representation such as lattices. Point-based methods directly work on each point in 

point clouds. Hybrid Methods learn and utilise multi-modal features from 3D scanning.  

Point-based segmentation works on those unordered point clouds directly. Point-based 

methods in this field were first introduced in PointNet in 2017 (Qi et al., 2017a). After 

PointNet, PointNet++ was proposed to improve the structure of PointNet to share more 

features between each point (Qi et al., 2017b). Then, other point-based methods were 

proposed, such as PointSIFT and PointWeb (Jiang et al., 2018, Zhao et al., 2019a). Within 

these six years, researchers are gradually widening applications of point-based DL methods 

from small-scale indoor to large-scale outdoor thanks to the increasing number of online 
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free large-scale outdoor datasets. However, related research for large-scale outdoor data is 

in its early stages. 

2.5.3 DLSS methods for building extraction with 3D Lidar point clouds 

Building extraction using the DLSS method with Lidar data has been discussed in several 

studies. For instance, as early as 2006, Verma et al. (2006) proposed a building detection 

method based on roof topology analysis. After that, Dos Santos et al. (2019) optimised 

parameter α of the alpha-shape algorithm for building roof extraction from Lidar point 

clouds. Zhao et al. (2019b) proposed a filter for improving the accuracy of distinction 

between buildings and tree canopies based on digital surface models (DSM) from Lidar 

point clouds and aerial images. The test area is the Vaihingen area of Germany. According 

to the evaluation methods utilised by Rutzinger et al. (2009), Zhao et al. (2019b) applied 

completeness, correctness, and quality as metrics, comparing their proposed method with 

seven other methods. However, the results show that some low buildings or low parts of 

buildings cannot be detected as buildings. Huang et al. (2019) developed FCN networks by 

fusing HRAI and Lidar data for building extraction. The ground truth of building footprints 

was extracted from OSM. Wierzbicki et al. (2021) investigated the application of the 

modified U-Net for segmenting high-resolution aerial orthoimages and Lidar data to extract 

building outlines automatically.  

It has been noticed that several studies are focusing on indoor 3D modelling of buildings. 

For instance, Chen (2018) applied airborne Lidar and Google Maps to provide information 

for increasing the accuracy of indoor 3D modelling from mobile and terrestrial point clouds. 
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However, indoor observation is not the focus of this study, so only research related to large-

scale building extraction from land is considered. 

In conclusion, while various DLSS methods have been introduced for building extraction 

from land cover objects using Lidar, detecting buildings with low heights remained 

challenging. Furthermore, the availability of building datasets derived from Lidar data is 

notably limited compared to those derived from 2D images. While several public 2D 

building datasets exist, there is a noticeable scarcity of Lidar datasets specifically designed 

for building extraction purposes. 

2.5.4 DLSS methods for post-earthquake BDLC with 3D Lidar point clouds 

There are several studies discussed about Lidar-based structural damage assessment in the 

remote sensing field. BDLC using remote sensing technologies can be mainly 

accomplished through three approaches, including employing multiple feature extraction 

methods, incorporating geometric and topological features of the buildings, or adopting DL 

techniques.  

Although the first two can provide detailed damage information, most of them require 

terrestrial and mobile laser scanners with in-situ observations. Those kinds of time-

consuming, unsafe, and labour-intensive methods may not be suitable for rapid response 

after natural hazards. For instance, Akhlaghi et al. (2021) presented a post-earthquake 

damage identification and performance assessment study of a single four-story building in 

Nepal from the structural engineering perspective, using ambient vibration and point cloud 

data. However, this is only suitable for a post-disaster investigation with no time limitation. 
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Rescue teams have no time to observe all damaged buildings one by one, so a speed 

automatic large-scale building damage level classification is necessary for rescue plans and 

strategies. With the fast development of AI, DL provided a possible solution to the above 

issue. Therefore, this study only focuses on the literature review of airborne and spaceborne 

Lidar applications. 

Most related studies for BDLC using remote sensing technologies applied DLSS methods. 

For instance, Yang et al. (2019) proposed an inversion method to detect building heights 

using vertical information from the Geoscience Laser Altimetry System waveform and 

auxiliary horizontal information of QuickBird optical images. Ma et al. (2020) proposed an 

improved Inception-V3 method with CNN that combined aerial images and block vector 

data for evaluating the damage degree of groups of buildings. The case study was the 2010 

Yushu Earthquake. Xiong et al. (2020) adopted a fine-tuned CNN-based VGGNet to study 

damage assessment of buildings after earthquakes using UAV-captured aerial images and 

GIS data containing building height information.  The case study was the damaged 

Beichuan town after the MS 8.0 Wenchuan earthquake in 2008 with a 66 multi-story 

buildings investigation. Although existing studies discussed building damage levels, most 

of them lack the details. However, most earthquake disaster responses require detailed 

multi-level building damage information. 
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2.6  Datasets 

2.6.1 2D building datasets and map databases 

2.6.1.1 2D building datasets 

All the following datasets for building footprint detection have a very high spatial 

resolution from aerial or satellite images. 

• WHU Building Dataset (Ji et al., 2018b) 

This dataset is an aerial and satellite imagery dataset. The aerial sub-dataset 

contains more than 220, 000 buildings with 0.075 m spatial resolution and covering 

an area of 450 km2 in Christchurch, New Zealand. The satellite imagery sub-dataset 

consists of two parts, containing 204 and 17,388 images, respectively. The images 

in the first part are collected from cities in different countries with various resources 

such as QuickBird, Worldview series, and IKONOS. The other part consists of 6 

neighbouring satellite images covering 550 km2 in East Asia with 2.7 m ground 

resolution. 

• SpaceNet series building datasets (Van Etten et al., 2018) 

SpaceNet series building datasets consist of Space 1 and Space 2 datasets. This 

series dataset was first provided in the DeepGlobe Satellite Challenge of the IEEE 

Conference on Computer Vision and Pattern Recognition 2018 (CVPR 2018). Some 

labelled files were not published in the challenge, and the prediction results could 

only be evaluated during the challenge. Thus, some studies only selected some parts 

of image scenes with labelled files as the dataset for their studies (Li et al., 2019). 
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SpaceNet 1 dataset contains 382,534 buildings, covering an area of 2,544 km2 of 

WorldView-2 imagery with 0.5 m spatial resolution in Rio de Janeiro, Brazil. 

SpaceNet 2 dataset includes 302,701 building footprints of Worldview-3 satellite 

imagery at 0.3 m spatial resolution across five cities. These cities are Rio de Janeiro, 

Las Vegas, Paris, Shanghai, and Khartoum. 

• INRIA Aerial Image Labelling Dataset (Liu et al., 2018) 

This dataset comprises orthographic aerial images in ten cities with green, red, and 

blue (RGB) bands worldwide. Each tile contains 5000×5000 pixels at a spatial 

resolution of 0.3 m, covering about 2.25 km2. 

• Massachusetts Buildings Dataset (Mnih, 2013) 

This dataset consists of 151 aerial images of the Boston area, Massachusetts, U.S. 

Each image has 1500×1500 pixels with 1 m spatial resolution. 

https://www.kaggle.com/datasets/balraj98/massachusetts-buildings-dataset 

2.6.1.2 Map databases 

• OpenStreetMap (Steve Coast, 2004) 

It is a free and open geographic database updated and maintained by volunteers 

since 2004. 

• Google Maps (Google, 2005) 

Google Maps is a web mapping platform and consumer application offered by 

Google. 

https://www.kaggle.com/datasets/balraj98/massachusetts-buildings-dataset
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• Map World (or “Tian Di Tu” or 天地图 ) (National Administration of 

Surveying, 2011) 

It is a comprehensive Chinese geographic information service website built by the 

National Administration of Surveying, Mapping and Geoinformation of China. 

2.6.2 Point cloud datasets for DLSS 

There are some published open-source point cloud datasets for DLSS. This section 

introduces some well-known ones. While these popular datasets include building-related 

information, most of their point clouds are not acquired through airborne or spaceborne 

remote sensing devices, making them less aligned with the focus of this study. Nonetheless, 

these datasets are included here for potential future research within the domain of DLSS. 

• KITTI dataset (Geiger et al., 2012) 

Karlsruhe Institute of Technology and Toyota Technological Institute (KITTI) dataset is 

a large-scale outdoor dataset applied in semantic segmentation (Geiger et al., 2012). It 

consists of traffic scenarios recorded with various sensor modalities, so it is mostly 

applied in the field of mobile robotics and autonomous driving. Despite its popularity, 

the dataset itself does not contain ground truth for DLSS. Several studies have manually 

labelled parts of the dataset to fit their necessities. 

• Semantic3D dataset (Hackel et al., 2017) 

Semantic3D is one of the most popular point cloud datasets for DLSS (Hackel et al., 

2017). It includes scanned outdoor scenes with over 4 billion labelled points with 
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various labelled classes collected by static terrestrial laser scanners. The building class 

is one of the labelled classes. This benchmark has greatly bridged the gap of the lack of 

large-scale labelled datasets. 

• Toronto-3D (Tan et al., 2020) 

Toronto-3D is a large-scale urban outdoor point cloud dataset acquired in Toronto, 

Canada, for DLSS. This dataset covers approximately 78.3 million points with eight 

labelled classes, including unclassified, road, road marking, natural, buildings, 

utility lines, cars, and fences. 

• SensatUrban (Hu et al., 2021) 

The SensatUrban dataset is an urban-scale photogrammetric point cloud dataset 

with nearly 3 billion labelled outdoor points. The dataset consists of large areas 

from two cities covering about 6 km2 of the landscape. In the dataset, each 3D point 

is annotated as one of the 13 semantic classes, such as ground, vegetation, and 

building. The publisher of this dataset also proposed a light-wise DLSS method 

called RandLA-Net (Hu et al., 2020), which will be introduced in the following 

subsection. 

2.7 Summary and the remaining gaps 

A literature review is presented in this chapter to support the statement of the status of DL 

technologies and their adoptions for earthquake-related building analysis, including pre-

earthquake building footprint extraction and post-earthquake BDLC. 
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Figure 2-2 summarises existing studies and illustrates the research gaps existing in them. It 

reflects how these gaps were found gradually. The following paragraphs state these gaps in 

detail. 

 

Figure 2-2. Research gaps in the reviewed literature 

There are four issues that should be pointed out. Firstly, only some DLSS models are 

designed for earthquake-related buildings that can be applied for model training and are in 
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developed in recent years, there is a lack of analyses of large-scale outdoor scenarios. 

Thirdly, although several detailed damage patterns and levels have been defined in the 

standards and codes worldwide, most cases in the real world only adopt two levels 
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Gap 1: There is little evidence of applying DLSS models for building-related 

classifications considering data sources related to earthquakes, no matter whether 2D 

satellite images or 3D Lidar point clouds. 

Governments BDLC
post disaster: four to

five detailed classes of
damage

Natural disaster
management

BDLC caused by the
disaster

Gap 3: Lack ofmulti-level building damage
classification from remote sensing data

Gap 1: Few suitable
earthquake-related
models for building

extraction
3D Lidar

2D satellite

Most current practice
in RS: two classes of

Collapse or intact
Deep learning

Classification Method

Other conventional
methods

AI-based method

Time-consuming and
labour insensitive

Semantic
segmentation

Gap 4: Few related public datasets

Gap 2: Lack of large-
scale scenarios



Chapter 2: Remote sensing and deep learning applications related to building damage level classification 

45 

Gap 2: Several well-known DL algorithms were proposed based on small or indoor case 

studies in both 2D and 3D applications. The large-scale scenarios were few discussed or 

tested. 

Gap 3: Most current post-earthquake BDLC studies lack detailed damage levels in the 

remote sensing field. This is because of the lack of rapid, detailed assessment methods. It is 

hard to provide all request parameters for those methods in a short time, and the parameters 

should be corrected several times. 

Gap 4: There is a lack of large-scale earthquake-related pre-event building footprint 

information and post-event multi-level building damage data. 

Considering the above gaps, efforts should be made to improve the detailed classification of 

post-earthquake building damages in the remote sensing field. It is necessary to develop 

current DL methods to provide a new approach to detecting building damages from remote 

sensing data semi-automatically or automatically. The following chapters take on this role. 
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Chapter 3  

Research design 

This chapter presents the methodological approach and research design steps adopted in 

this study to achieve research objectives. Section 3.1 introduces the research focus of this 

thesis. Section 3.3 has a description of the research methodology in the remote sensing field. 

Section 3.4 presents the justification for the research design, the workflow and the logic of 

the whole study, and the selection of particular methods. Finally, Section 3.5 summarises 

the research design and methodology applied in this study. 

3.1 Research focus 

Firstly, the focus of this study is earthquake-related damage assessment. Among natural 

disasters, major earthquakes can always lead to high casualties, so this study chooses 

earthquakes as the focus. As the damaged buildings after different natural disasters have 

various classification standards and damage statuses, studying building damage 

classifications for all natural disasters will be huge and long-term research beyond the 

scope of this thesis. Secondly, this study focuses on single-building damage assessment. 

Although some research articles analyse damage at the building cluster level, this study 

focuses only on the damage at each building level. The reason is to provide more accurate 

and higher resolution information for designing rescue and recovery plans after an 

earthquake.  
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Thirdly, the proposed DL-based semantic segmentation methods focus on large-scale 

outdoor scenarios. Considering this focus, datasets in this study are collected from either 

airborne or spaceborne remote sensing devices. It should be noted that 2D and 3D data have 

different formats, but this study only discusses 2D satellite optical images and 3D Lidar 

point clouds. 

Fourthly, to analyse a large number of buildings, urban areas are the main study extents in 

this thesis. This is because urban areas usually include more buildings and more 

sophistications of building shapes and arrangements than regional or rural areas. 

3.2 Research methodology of remote sensing 

The remote sensing method is suggested as either scientific, technological or a combination 

of both (Bhatta, 2013). The scientific method relies on observations. It encompasses a range 

of techniques for exploring phenomena, acquiring novel insights, or correcting and 

integrating existing knowledge. For example, examining the spectral reflectance 

characteristics of greenery reveals a conclusion that greenery exhibits the highest 

reflectance within the near-infrared band of the optical electromagnetic spectrum. The 

technological method is more related to applications but not to specific products or 

processes. It is aimed at developing tools, models, or procedures, as well as testing 

equipment and procedures, all geared towards providing solutions to specific technical 

problems. As the example provided by Bhatta (2013), developing a model for predicting 

forthcoming urban expansion is technological research. Considering the objectives, a 
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combination of both is adopted in this study. Details of methods are introduced in the 

following section. 

It should be mentioned that a widely applied classification of research is quantitative 

research and qualitative research. Since qualitative designed methods are always subjective, 

they are not suitable for this study. A quantitative design is adopted in this study to evaluate 

the accuracy and performance of the approaches proposed by this study. 

3.3 Research design and methodology 

This section offers an overview of the methods employed in this research. As discussed in 

Section 2.7, there are significant gaps in the research on evaluating and identifying 

appropriate applications of DL for BDLC. This thesis intends to fill those gaps by 

evaluating DL methods using different data sources. Semantic segmentation is applied for 

both extracting pre-earthquake building locations and classifying post-earthquake building 

damage levels. 

Achieving pre- and post-earthquake building information is the target of the study, 

including pre-earthquake building extraction and post-earthquake BDLC. Chapters 4-7 are 

the main chapters of experiments to achieve this target with four objectives in this study.  

The connections between them are shown in Table 3-1. Chapter 4 is designed for 

Objectives 1 and 4. Chapters 5 and 6 are designed to achieve Objectives 2 and 4. Chapter 7 

focuses on achieving Objectives 3 and 4. Since all these chapters have their own labelled 

datasets, all of them are related to Objective 4. 
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As mentioned in Section 1.4, the scope of this study is designed using 2D and 3D remote 

sensing data. Therefore, this study separates chapters according to the data sources they 

applied. The detailed workflow of this study is introduced as follows, as shown in Figure 

3-1. All of these chapters apply DLSS methods, but there are differences between them. As 

explained in Figure 3-1, Chapter 4 is designed to focus on 2D-related BDLC. It mainly 

consists of two sections: pre-earthquake building footprint extraction and post-earthquake 

BDLC. Chapter 5, Chapter 6, and Chapter 7 focus on 3D-related research. Chapter 5 and 

Chapter 6 discuss the pre-earthquake-related research in this study. Chapter 7 focuses on 

post-earthquake BDLC. Detailly, Chapter 5 discusses the influence of changing features on 

DL-based large-scale outdoor Lidar semantic segmentation. After that, Chapter 6 evaluates 

the performance of the proposed DL network from this study. The network was designed 

considering the results of Chapter 5. Based on Chapter 5 and Chapter 6, Chapter 7 proposed 

a DL-based BDLC method to detect buildings into four damage levels. 

Table 3-1. Mapping objectives to chapters 

          Objective 
Chapter 1 2 3 4 

4     
5     
6     
7     
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Figure 3-1. Research workflow of this study 

To introduce the details of the research design for each objective, Table 3-2 is listed below. 

It lists the data, methods, and corresponding chapters of each objective.   

Chapter 2:
Literature review

Chapter 3: Research
design

Chapter 4:
2D-based building

damage level
estimation

Chapter 6:
3D-based urban

semantic
segmentation

Chapter 7:
3D-based building

damage level
estimation

Chapter 8:
Conclusion

Chapter 1:
Introduction

Chapter 5:
3D-based test of

influence of feature
selection Pre-earthquake:

Objectives 2 & 4

2D-related BDLC 3D-related BDLC

Post-earthquake:
Objectives 3 & 4

Pre- and post-earthquake:
Objectives 1 & 4
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Table 3-2. The research design for each objective 

Objective Chapter Description Data Method 

1 4 

To propose a BDLC method 

considering both pre- and post-

earthquake periods using DL with 

large-scale optical satellite images. 

2D optical data: 

xBD dataset; 2010 Haiti Earthquake dataset. 

Propose a DL method 

for four-level BDLC 

with 2D data. 

  

2 5,6 

To offer a DL-based pre-earthquake 

building footprint extraction method 

with large-scale Lidar data tested in 

the case studies whose locations 

have the possibility of earthquakes. 

2D optical data: 

KOMPSAT-3 & 

Sentinel-2 satellite 

images 

3D Lidar point clouds:  

2021 Kapiti Coast, New Zealand; 

2022 Tasman, New Zealand; 2022 

Nelson, New Zealand; 

2016 Kumamoto (Pre-earthquake). 

Propose a DL method 

for land cover object 

semantic segmentation 

with Lidar and satellite 

data. 

3 7 

To provide a DL-based post-

earthquake BDLC method with 

large-scale Lidar data. 

2D optical data: 

KOMPSAT-3 

satellite images 

 

3D Lidar point clouds:  

2016 Kumamoto (Post-earthquake). 

Propose a DL method 

for four-level building 

damage classification 

with Lidar and satellite 

data. 

4 4,5,6,7 

To build 2D satellite and 3D Lidar 

in-house labelled datasets of pre-

earthquake building footprints and 

post-earthquake building multi-

level damage information. 

• Create a 2D 2010 Haiti Earthquake dataset with manually labelled four-class 

building damage levels. 

• Create 3D colourised Lidar building footprint datasets fusion with optical satellite 

RGB bands, including three locations in New Zealand (Kapiti Coast, Tasman, 

Nelson) and one in Japan (Kumamoto). 

• Create a 3D colourised Lidar building damage level dataset fusion with optical 

satellite RGB bands of the 2016 Kumamoto Earthquake. 
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The datasets utilised in this study include public and in-house labelled 2D optical images 

and Lidar point clouds. As shown in Table 3-2, besides the public xBD dataset, this study 

also collects optical images from KOMPSAT-3 (K3) and Sentinel-2 (S2) satellites. Only 

RGB bands are applied to all 2D images for colour information because other bands are not 

the focus of this study. Post-earthquake datasets are included in Chapters 4 and 7, and pre-

earthquake datasets are applied in all main chapters from Chapter 4 to Chapter 7. This is 

because post-earthquake BDLC requires pre-earthquake information, such as pre-

earthquake building footprints, but pre-earthquake building footprint extraction does not 

need post-earthquake information. This is also the reason that although this study focuses 

on post-earthquake multi-level BDLC, related pre-earthquake research also needs to be 

discussed. 

The 2010 Haiti Earthquake and the 2016 Kumamoto Earthquake are two key case study 

areas because both have several destroyed buildings in various degrees. Due to the lack of 

training data, datasets from other types of natural disasters are also collected for training, 

such as xBD. It should be noted that these datasets are only mainly utilised for increasing 

the number of inputs in the training stage. This might be helpful to improve the accuracy of 

those DL models and networks. 

Since DLSS techniques provide possible solutions for Objectives 1-3, all related chapters 

apply it for either pre-earthquake building extraction or post-disaster BDLC. Therefore, all 

these chapters should build many inputs for the training. The detailed designs of 

experiments of the main chapters are stated in the following corresponding chapters, 

respectively, including data collection and pre-processing methods, the architecture of the 
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designed DL model/network, deep learning model training and evaluation design, the 

design of evaluation metrics to test the trained model/network. 

3.4 Chapter summary 

This chapter provided the details of the research design of this study according to the 

objectives. The research workflow explains why this study designs Chapters 4-7. The order 

of these chapters is designed according to the objectives of this study and the data sources 

they apply, i.e., 2D or 3D datasets. In Chapters 4-7, each of them has one objective to 

achieve from Objectives 1 to 3. Moreover, they all have in-house labelled datasets to 

achieve Objective 4. 
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Chapter 4  

Building damage evaluation from satellite images 

with an attention-base deep learning method1 

4.1 Background and scope 

As one of the most common approaches after disasters, on-site damage investigation can 

provide detailed information, but it is time-consuming and laborious, with a high risk of 

working in the field (Tanjung et al., 2020). If building damage levels can be obtained using 

remote sensing techniques with minimal delay, rescue teams and governments can make 

post-event decisions with the least on-site observation. Therefore, a quick post-event 

building damage classification method is critical to post-disaster management. Remote 

sensing can help resolve this issue by obtaining building data remotely (Ji et al., 2018a). 

Since pre-earthquake information is also essential for post-damage assessment, this chapter 

 

1  The content presented in this chapter is partially adopted from the following publication: “Liu C, 

Sepasgozar S, Zhang Q, and Ge L*, 2022. A Novel Attention-Based Deep Learning Method for Post-Disaster 

Building Damage Classification. Expert Systems with Applications. 202, p.117268. DOI: 

10.1016/j.eswa.2022.117268”. It has been acknowledged and detailed in the “Inclusion of Publications 

Statement” for this thesis. 
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presents a post-earthquake BDLC approach using 2D remote sensing images taking into 

account not only post-event information but also pre-event building data. 

The fast development of DL in computer vision provides a pathway to offer quick 

classification (Yang et al., 2021, Su et al., 2020, Wheeler and Karimi, 2020). DL is widely 

applied in remote sensing and computer vision-related applications. It has the potential to 

overcome several limitations of conventional geoscience methods (Reichstein et al., 2019). 

Therefore, this chapter applied DL methods for segmenting building areas and categorising 

damage into four levels, no-, minor-, major-, and total damage.   

As mentioned in Chapter 2, there is a limited availability of 2D open-source image datasets 

for labelled post-disaster building damage levels. Another challenge is the scarcity of DLSS 

models designed specifically for detecting damaged buildings. Moreover, most studies have 

primarily focused on two-level classification, distinguishing between collapsed or intact 

structures. 

To address these issues, the current chapter aims to propose and assess a novel 2D DL for 

quickly classifying detailed post-event building damage levels. This approach utilises both 

publicly available and internally labelled datasets of damaged buildings. The model 

comprises two primary steps: pre-event building localisation and post-event damage 

classification. The initial step involves identifying building footprints using predisaster 

images, while the subsequent step categorises damage levels using post-event images based 

on the footprints determined in the first step. 
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This chapter employs two optical satellite image datasets: the publicly available xBD 

dataset and our internally labelled 2010 Haiti Earthquake dataset. Both datasets are 

annotated across four damage levels as mentioned above. The xBD dataset was published 

for 2019 Defense Innovation Unit Experimental (DIUx) xView2 Challenge of building 

damage classification (Gupta et al., 2019a). However, images after earthquakes are 

insufficient in the xBD dataset, though it contains several post-event images of different 

natural disasters such as tsunamis, bushfires, and tornados. Because of that, the second 

dataset, the 2010 Haiti Earthquake dataset, is added to the study. Building footprints were 

drawn and damage levels were labelled manually. Building damage levels in it are 

categorised based on the analysis in 2010 (UNITAR/UNOSAT/EC/JRC/WB, 2010). The 

number of its damage levels is the same as that in the xBD dataset. This study drew 

outlines of buildings and labelled damage levels manually. The detailed experiments are 

explained in the following paragraphs. 

Considering the advantages of the aforementioned DL models as discussed in Section 2.4.1, 

this chapter employs three advanced strategies, including residual blocks, Squeeze-and-

Excitation (SE) attention mechanism, and GPU training strategy (Krizhevsky et al., 2012, 

He et al., 2016a, Hu et al., 2018). ). The selection of HRNet is based on its ability to retain 

the high-resolution quality of input images, a crucial aspect for sensitive earthquake 

analyses. Given the two requisite analysis steps, namely, building footprint localisation and 

damage level classification, the present experimentation employs a dual HRNet to 

encompass both stages. 
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The literature presented in Chapter 2 shows that studies applying DL models in different 

contexts are rich. However, there are fewer resources and evidence evaluating different 

versions of the models using different functions or blocks applicable to earthquake data 

sources. A comprehensive set of comparative evaluations is imperative to fulfil the 

requirement of assessing the performance efficiency of these models. The following four 

aspects are crucial for assessing the accuracy of a model: the point at which a block is 

inserted into the architecture of a model (Hu et al., 2018), the model's accuracy with and 

without pre-trained weights (Liu et al., 2021), the flexibility to handle different input image 

sizes (Wang et al., 2020), and the efficiency of activation functions within the SE block.  

Firstly, it is recommended to consider the comparative evaluation of different insertion 

points for a block within a model for the purpose of evaluation. For instance, Hu et al. 

(2018) compared the accuracy of different DL structures for the image segmentation task 

by adding a block in different parts of the same backbone. Therefore, in this chapter, the SE 

block is inserted at various positions within the basic unit of HRNet as the initial 

comparative experiment, aiming to analyse the optimal location for its incorporation. 

Secondly, a crucial aspect that needs to be scrutinised for each model is its ability to 

function with or without pre-trained weights, aiming to evaluate the accuracy of outcomes 

within the context of earthquake building damages. For example, Koo et al. (2020)  

employed the ImageNet dataset, but they neither conducted any comparisons nor elucidated 

the rationale behind utilising pre-trained weights in their experimentation. 
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Thirdly, this chapter addresses the accuracy of the output concerning variations in the sizes 

of input images, mirroring the diversity found in real-life events. Limited published 

experiments have reported such comparisons due to the constraints of processing merged 

and substantial images on computers lacking high specifications and costly GPUs. This 

comparative analysis holds significance as it aims to ascertain whether smaller-sized 

images can yield outcomes of comparable accuracy to those generated from larger-sized 

images. 

The fourth item refers to the evaluation of different activation functions that can affect the 

optimisation of a model. Due to the availability of different activation functions and the gap 

of sources reporting the effect of each function in different contexts, it is required to 

examine any selected functions for earthquake building detection purposes. All in all, this 

chapter will bridge this gap by conducting a set of four comparisons, which will be 

discussed in the following subsections. 

4.2 Datasets of 2D building damage classification 

The dataset of this study contains pre-event non-damaged and post-event damaged building 

images. Building damage is classified into four levels, including no, minor, major, and total 

damage. All images in this dataset are high-resolution optical satellite images with RGB 

bands. They are collected from multiple types of natural disasters, including earthquakes, 

volcanic eruptions, hurricanes, floods, tsunamis, and wildfires. This dataset contains 8,664 

images in total, which are 4,332 image pairs. Each image pair has two images, namely, a 

pre-event image and a post-event image. This dataset is a mix of two datasets, the xBD 
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dataset, and the 2010 Haiti Earthquake dataset. 1,200 images (600 pairs) come from the 

Haiti earthquake, and 7,464 images (3,732 pairs) are chosen from the xBD dataset.  

The image number for training is 6,498, including 3,249 image pairs, which are 75% of the 

whole dataset. Among these training images, 900 images (450 pairs) are collected from the 

Haiti earthquake, and 5,598 images (2,799 pairs) are chosen from xBD dataset. Among 

them, 10% of training images are chosen for validation randomly. Test images are 25% of 

the whole dataset, including 300 Haiti earthquake images (150 pairs) and 1,866 xBD 

images (933 pairs). The details of xBD dataset and the Haiti earthquake dataset are stated in 

the following sections. 

4.2.1 XBD Data 

Online free xBD dataset was published in 2019 for the xView2 Challenge (Gupta et al., 

2019a). The dataset for training is important for DL methods. Because of the publication of 

the online free xBD satellite dataset for xView 2 Challenge in late 2019, the automatic 

processing of assessing post-event building damage attracts more attention (Gupta et al., 

2019b). Hence, this chapter chose the xView2 dataset for training. This study chose 5,598 

images from this dataset for training (2,799 pairs of pre- and post-event images) and 1,866 

images for testing (933 pairs of pre- and post-event images). The chosen images in this 

study cover several natural disaster events, including volcanic eruptions, hurricanes, 

earthquakes, floods, tsunamis, and wildfires. These images were collected from different 

satellites, including GeoEye-1, WorldView-2, WorldView-3_VNIR, and QuickBird-2 (Su 

et al., 2020). The chosen images do not contain any images from the 2010 Haiti Earthquake. 
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The size of each image is 1024×1024 pixels below a 0.8 m ground sample distance (GSD) 

mark. The damage level number is decided by experts invited by the committee that held 

the xView2 Challenge, which contains four levels mentioned at the beginning of Section 

4.2. 

4.2.2 2010 Haiti Earthquake data 

The 2010 Haiti damage building data were labelled in ArcMap manually at the University 

of New South Wales (UNSW). An Mw 7.0 earthquake happened in Haiti on 12 January 

2010, causing serious building damage (Ji et al., 2018a). All images were chosen from Port-

au-Prince, which is one of the seriously damaged provinces in Haiti. The size of each image 

is set as 1024×1024 pixels to have the same size as xBD imagery. Images have some 

overlapping areas with each other. These optical satellite images were downloaded from the 

Maxar/DigitalGlobe Open Data Program (Maxar, 2010). The GSD is 0.8 m. The damage 

level of each building is according to the damage report of this earthquake provided by  

UNITAR/UNOSAT/EC/JRC/WB (2010). This report also categorised building damage into 

four levels, which is the same number as the damage level number of xBD data. The 

building location shapefile is provided by the Operational Satellite Applications 

Programme (UNOSAT), Joint Research Centre (JRC), and World Bank (WB). The 

shapefile contains the location point of each building. A building may contain more than 

one point if it has more than one roof with different heights. These building damage 

assessment points are projected to the optical images, as shown in Figure 4-1. The area in 

red is the chosen area for labelling. Footprints were drawn and building damage levels were 

labelled according to these provided damage levels and location points information. 
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Figure 4-2 shows an example of the labelled buildings. The colours representing no, minor, 

major, and total damaged levels are white, yellow, orange, and red, respectively. It should 

be noticed that some buildings contain more than one location point. If these points of a 

building were assessed at different levels, the labels would separate a building into parts 

with different damage levels according to the assessment. 

 

Figure 4-1. The selected Haiti Earthquake dataset area (red area) 
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Figure 4-2. Example of labelled buildings with location points and labelled building 

damage levels 

4.2.3 Data pre-processing for 2D building damage classification 

The size of each image for training is cropped from 1024×1024 pixels to 256×256 pixels 

randomly. The choice of 256×256 is according to several reasons. First, several widely 

applied DL models are trained with the test of small input images smaller than 300 when 

these models are proposed initially. For instance, both SENet (Hu et al., 2018) and ResNet 

(He et al., 2016a) adopt 224×224 for training cropping. The original size of each image is 
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1024×1024, and 1024 can be evenly divisible by 256, not 224. Hence, this thesis selects 

256 instead of 224. The 256×256 size is enough to cover the identified target range, and the 

use of smaller input is conducive to reducing the number of parameters, reducing the risk of 

overfitting, and increasing the operation speed. 

Second, based on several attempts, the hardware of this study can afford the training with 

the input of 256×256 pixels for all five structure options. The detailed design will be 

introduced in Section 4.6. If the cropped input size is larger, the training time is very long, 

and the GPU memory is not enough. This is also why this study only uses the standard SE 

model other than SE-PRE, SE-POST, and SE-identity for the comparative experiment with 

different pixels. If 512×512 input size is applied in the other structure options, the GPU 

memory is not enough. 

This chapter applied data augmentation. To reduce the possibility of overfitting, data 

augmentation, including random horizontal and vertical flipping, random 90-degree 

rotation, and random scaling (between 0.8 and 1.2), are adopted. Effective data 

augmentation can not only increase the number of images in the training set but also enrich 

the diversity of samples. On the one hand, it can avoid the overfitting phenomenon. On the 

other hand, it can improve the performance of DL models based on prior experience. 
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4.3 2D Building Damage Segmentation method 

4.3.1 Workflow 

This chapter proposes a SE-based dual-HRNet model for building damage classification. 

There are three main stages in this chapter, including data pre-processing, model training, 

and model testing. Four comparative experiments are implemented in the test stage. The 

workflow is shown in Figure 4-3.  

 

Figure 4-3. Workflow of the proposed method 

4.3.2 Data pre-processing stage 

The first stage is data pre-processing. The input data are pre- and post-event images from 

disasters. These images are the xBD dataset and the 2010 Haiti Earthquake dataset. Each 

image is labelled with all building footprint coordinates and the building damage level of 

Original images Labels

Training model: Five structure options
SE-Standard; SE-PRE; SE-POST;

SE-Identity; No SE

Validating model

The optimal trained model

Trained optimal model
+

Test dataset image pairs:
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Data augmentation
• Random cropping
• Random horizontal and
• vertical flipping
• Random 90-degree rotation
• Random scaling

Training dataset image pairs: 3,249

Pre- and post-event images:
xBD data

+
2010 Haiti Earthquake

Training (and validating) stage:
Section 4.3 & 4.4

Testing stage:
Sections 4.5 & 4.6

• Comparison of SE-Standard, SE-PRE, SE-POST, SE-Identity, and No-SE

• Comparison of input sizes including 256 ×256 and 512×512

• Comparison of models with/without transfer learning

• Comparison of SE activation functions including Sigmoid and hard -sigmoid
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Section 4.5

1. Localization F1 (LF1)

2. Localization precision

3. Localization recall
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Section 4.2

Building
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Damage
classification

Two steps

Comparative studies: Section 4.6

+
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each building. All images are cropped, flipped, rotated, and scaled randomly for data 

augmentation. The detailed augmentation information of these two datasets is stated in 

Section 4.2. 

4.3.3 Training stage 

At the second stage, five structure options of the model are trained. They are SE-Standard, 

SE-PRE, SE-POST, SE-Identity, and No-SE. The training stage contains two steps, 

including localising buildings with pre-event images and classifying building damage into 

four levels with post-event images (representing no, minor, major, and total damage, 

respectively).  

The dataset for training is important for DL methods. The number of image pairs at this 

stage is 3,249 for training and validating the model. Each pair contains a pre-event image 

and a post-event image. The structure of the model applies the backbone model twice to 

connect these two steps, which is the dual-HRNet model. The cross-validation method is 

applied to find the optimal parameter configuration. The information on the model is stated 

in Section 4.4. To be specific, key blocks in the proposed model are shown in Section 4.4.1, 

and the detailed structure of the model is stated in Section 4.4.2. 

4.3.4 Testing stage 

At the third stage, the optimal model of each option from the training stage is tested with 

the test dataset based on seven metrics, including a combination F1 score, three metrics for 

building localisation (localisation F1, localisation precision, localisation recall), and three 

metrics for damage classification (damage F1, damage precision, and damage recall). The 
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optimal model is chosen from the model with the highest combination F1 score. The 

number of test dataset image pairs is 1,083. The results show the damage level of each 

building. The results of these seven metrics are recorded for the following comparative 

studies. The details of metrics are stated in Section 4.5.  

As shown in Figure 4-3, four types of comparison experiments are implemented in this 

study during the test stage. The first comparison is to find where the best is to place the SE 

channel attention (CA) block. Four models with different SE added places and one model 

without SE block are compared. Second, to judge the influence of cropped input size, a 

comparison of 256×256 and 512×512 is made. Third, models with and without transfer 

learning are trained to judge whether the pre-trained ImageNet image classification weights 

can improve the model performance or not. The last one is the comparison of two activation 

functions in the SE block, including Sigmoid and Hard-Sigmoid. Details of each 

experiment are stated in Section 4.6. 

4.4 Proposed model in this chapter 

This section introduces the proposed model. First, the structure of this proposed model is 

explained in Section 4.4.1. Second, the key blocks applied in the model are stated in 

Section 4.4.2. 

4.4.1 Structure of the proposed model 

The structure of the model proposed in this chapter is shown in Figure 4-4. A dual HRNet 

with added SE model is designed. The “dual HRNet” in this model means a parallel 
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structure with two HRNet. This chapter kept using “dual-HRNet” which is from fifth place 

in the xView 2 Challenge (Koo et al., 2020). This dual HRNet structure is used for the two 

steps in this model, including building localisation and damage classification, respectively, 

as shown in the blue and the orange rectangles of Figure 4-4. The first HRNet (shown in 

blue) gives the outputs of building locations. Only pre-event images are used in it. The 

second HRNet (shown in orange) accesses building damage levels. Building footprints in it 

are according to the locations from the results of the first HRNet model. Post-event images 

are exploited in the second HRNet with the building location results based on pre-event 

images. Hence, the results of this structure contain both building locations and damage 

levels. 

These two HRNet are fused by adding the output channels together of one stage at the 

beginning of the next stage. The main function of the convolution layer is to extract 

features, which can provide deeper features through multi-layer convolution. Therefore, 

this study keeps all output layers of the two HRNet for saving information. SE CA block is 

added at each basic residual block in the dual HRNet. The detailed structures of the four 

adding SE options are given in Section 4.6.1.  
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Figure 4-4. Structure of the proposed model 

The version of HRNet in this study is HRNetV2W32. The structure of HRNetV2 has been 

explained in Section 4.4.2. “W32” means that the numbers of convolutional layers in the 

four stages are 32, 64, 128, and 256, respectively. 

Pretrained ImageNet classification weights are added in this chapter. The training with pre-

trained weights is called transfer learning. Pretrained weights are often be used in DL to 

save training time and have good results (Kolar et al., 2018). These weights are the most 

suitable ones for a completed task which is similar to the task of this chapter. For instance, 

pretrained ImageNet classification weights suit the image classification task with ImageNet 

dataset. If one task is similar to that, these weights can be added during the training, and the 

results may be better than training from scratch. 
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The output size of a convolutional layer is shown in Equation 4-1 (Dumoulin and Visin, 

2016).  

𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜 =
𝑛𝑛𝑖𝑖𝑖𝑖 + 2𝑝𝑝 − 𝑘𝑘

𝑠𝑠
+ 1 4-1 

𝑛𝑛𝑖𝑖𝑖𝑖: number of input features. 𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜: number of output features. k: kernel size. p: padding 

size. s: stride size. 

Stochastic Gradient Descent (SGD) optimizer is applied with the base learning rate of 0.05. 

It is a hyper parameter to adjust the weights of the model, and how to use it is shown in 

Equation 4-2. The momentum is 0.9, and the weight decay is 0.0001. The training epochs 

are 500, and the trained models are recorded every 50 epochs. Training 500 epochs is 

according to the number of training epochs from other papers which also use the xBD 

dataset. For instance, Koo et al. (2020) trained 250 epochs, and Wheeler and Karimi (2020) 

trained 100 epochs. Hence, 500 epochs are enough, and this chapter checks the validation 

results during the training to avoid overfitting. Recording the model every 50 epochs is for 

observing the training details. The model was trained on one Nvidia 2080 Ti GPU server 

with 60G memory in the Linux system. Considering the condition of the hardware, the 

batch size per GPU is 4 for both training and testing. The training loss is the sum of 

localisation loss and damage classification loss by calculating Lovasz-softmax loss 

(Berman et al., 2018). 

𝑛𝑛𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡 =  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡— 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 × 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 4-2 
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4.4.2 Key blocks in the model 

Residual block 

There are two most applied structures of residual blocks in this chapter, as shown in Figure 

4-5, whose input sizes are the same as the output sizes. Structure A is the basic residual 

block, which was designed for ResNet with 18 or 34 layers initially (He et al., 2016a). 

Structure B is called the bottleneck residual block. It was designed for the network with 

more layers, including ResNet with 50/101/152 layers (He et al., 2016a). Bottleneck 

residual blocks are variants of basic residual blocks. These bottleneck blocks utilise 1×1 

convolutions to reduce the number of parameters and calculating times. The design of the 

bottleneck helps to increase the depth with fewer parameters of a DL model than basic 

residual blocks.  

There are also some other structures of residual blocks applied in this chapter that require 

their output sizes to be different from the input sizes. Down-sampling is added in the 

identity part to change the number of channels in these structures. The down-sample parts 

contain convolutional and BN layers. 
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Figure 4-5. Residual block structures. (a) Structure A: basic residual block; (b) Structure B: 

bottleneck residual block 

BN is widely applied before activation functions to speed up the training (Koo et al., 2020), 

so this chapter also applied BN. BN was proposed in 2015 (Ioffe and Szegedy, 2015). BN 

is a technique to normalise inputs to one layer in each batch. If it is added before activation 

functions, activation functions usually have better performance than those without BN. A 

model with BN does not need to set the bias in convolutional layers before BN, because 

bias is useless before BN. 

The calculation details of BN are shown in Equation 4-3. The output of BN is y. E[x] is the 

mean, and Var[x] is the variance. ɛ is the number to avoid the devisor being zero. γ and β 

are learnable parameter vectors of size C. γ is 1 and β is 0 by default. The input shape 

should be (N, C, H, W), which represents the batch size, channel number, height, and 
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weight, respectively. The performance of BN is better with larger batch sizes. With 

considering the hardware condition, this chapter chooses 4×4 as the batch size. 

𝑦𝑦 =
𝑥𝑥 − 𝐸𝐸[𝑥𝑥]

�𝑉𝑉𝑉𝑉𝑉𝑉[𝑥𝑥] + 𝜀𝜀
∗ 𝛾𝛾 + 𝛽𝛽 4-3 

In this chapter, a defined BN layer in the Torch library (Paszke et al., 2021) is added 

between convolutional layers and the ReLU activation function. ReLU is a piecewise linear 

function. Its output is positive if the input is positive. Otherwise, the output will be zero. 

Channel attention block 

The attention mechanism in computer vision draws lessons from the visual attention 

mechanism in the human visual system. The attention block used in this chapter, the SE 

block, was proposed in the SENet DL model (Hu et al., 2018). SENet won first place in the 

ILSVRC 2017 Classification Challenge. It mainly studies the correlation between channels 

and selects the attention for channels. Although it slightly increases the amount of 

calculation in computers, the effect is better shown in SENet. Figure 4-6 shows the 

structure of the SE block applied in this chapter. First, a H×W×C block is converted to a 

1×1×C block after global pooling. After that, with the fully connecting operation, ReLU 

activating, and another fully connecting operation, a 1×1×C block with attention channels 

is achieved. Then, this chapter chooses both Sigmoid and Hard-Sigmoid activation 

functions for training to compare the performance of each other. The details of these two 

functions and the comparative study will be introduced in Section 4.6. After that, the block 
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is scaled up to the original size. The hyper parameter r is 16 in this chapter according to the 

number in SENet. 

 

Figure 4-6. SE block in this chapter. H: Height; W: Width; C: Number of channels 

HRNet 

HRNet structure contains four stages. High-to-low resolution convolutions are connected in 

parallel in this structure. As shown in Figure 4-7, the light-yellow block, the original high-

resolution input with all image information, is kept from the beginning to the end of the 

structure. Gradually scaled-down images are added at the first layer of each stage except 

the first stage. To be specific, the sizes of the light-orange, light-red, and dark-red blocks 

decrease gradually with reduced resolution. 

This chapter adopts HRNetV2 (Sun et al., 2019b), which is the second version of HRNet. 

HRNetV2 adds all channels with different resolutions together at the end of the structure. 

HRNetV1, the first version, was designed for human pose estimation at the beginning, so it 

is not suitable for image classification and segmentation. In order to be more adaptive for 

image semantic segmentation, HRNetV2 was designed by concatenating the (upsampled) 

representations soon after HRNetV1. The structure of HRNetV2 is shown in Figure 4-7. 
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Figure 4-7. Structure of HRNetV2 (Sun et al., 2019b) 

 
4.5 Performance metrics 

This chapter attempts to test the model performance for each model using seven metrics, 

including a combination F1 score, three metrics for localisation, and three metrics for 

damage classification. The combination F1 score is the main metric to judge the 

performance of the model. This is because it contains both building localisation and 

damage classification results. The three metrics for building localisation are localisation F1 

(LF1) score, localisation precision, and localisation recall. The three metrics for damage 

classification are damage F1 (DF1) score, damage precision, and damage recall. Since this 

study recorded a model every 50 epochs ending at the 500th epoch as mentioned in Section 

4.4.1, each model has ten recorded test results with these seven metrics. 

The equations of the first three metrics, including F1 score, precision, and recall for 

localisation, are presented from Equations 4-4 to 4-6. True positive (TP) represents a 

building pixel that is segmented correctly. False positive (FP) means a non-building pixel 

segmented as building. True negative (TN) is a non-building pixel that is correctly 

segmented as non-building, and false negative (FN) is a building pixel segmented as non-

building wrongly. 
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𝐹𝐹1 =
2

𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−1 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−1
=

2𝑇𝑇𝑇𝑇
2𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹

 4-4 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 4-5 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 4-6 

The next three metrics, F1 score, precision, and recall for damage classification, are 

computed as the harmonic mean of those scores of the four damage levels, as shown from 

Equations 4-7 to 4-9, respectively. In these three equations, ɛ is 10-6 to avoid the 

denominator being 0 and i means the building damage level from one to four. 

𝐷𝐷𝐷𝐷1 =
4

∑ 1
𝐹𝐹1𝑖𝑖 + 𝜀𝜀

4
𝑖𝑖=1

 4-7 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
4

∑ 1
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 + 𝜀𝜀

4
𝑖𝑖=1

 4-8 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
4

∑ 1
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 + 𝜀𝜀

4
𝑖𝑖=1

 4-9 

The F1, precision and recall of each damage level from one to four use the same equations 

as the equations for building localisation step as shown from Equations 4-4 to 4-6. 

However, the meanings of TP, TN, FP, and FN for damage classification are different than 

their meanings for building localisation. TP means a pixel contained in this damage level is 

categorised by the model correctly. TN means one pixel that is not included in this damage 
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level is categorised correctly. FP means that a building pixel which is not contained in this 

damage level but wrongly categorised as this level, and FN represents one pixel in this level 

is wrongly categorised as another level by the model. 

The last metric, the combination F1 score, is applied according to the xView2 Challenge 

(Diux, 2019). The combination F1 score calculates a weighted average of LF1 and DF1, as 

shown in Equation 4-10. The numbers are chosen as 0.3 and 0.7 because xView2 Challenge 

applied these numbers. The percentage of LF1 or DF1 is designed by experts from that 

xView2 Challenge. Parts of images applied in this chapter are collected from xBD dataset 

published for xView2 Challenge as mentioned in Section 4.2.1. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐹𝐹1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 0.3 × 𝐿𝐿𝐿𝐿1 + 0.7 × 𝐷𝐷𝐷𝐷1 4-10 

4.6 Comparative experimentations at the test stage 

This section discusses a set of appropriate strategies to test the performance of models with 

different features in earthquake contexts. 

4.6.1 Experimentation of SE block integrations 

Four structure options with different SE added places in the model are compared with the 

original backbone model in this experiment. Since the final output size of the SE block is 

the same as its input size, it can be added anywhere in the model backbone without the need 

to change other layers. In this chapter, SE is added in the following four options in each 

residual block of HRNet shown from Figure 4-8 (a) to (d) for the comparative study. In 

other words, SE is added both in basic and bottleneck residual blocks in the codes. Figure 
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4-8 (e) is the initial block without SE block. The bottleneck residual block mentioned in 

Section 4.4.1 is chosen as the example to show the added places of the SE block shown in 

Figure 4-8. The first option shown in Figure 4-8 (a) is adding SE after residual blocks, and 

then the results are added with the identity function. The second option is adding SE before 

residual blocks shown in Figure 4-8 (b). The third one is adding SE after the addition of the 

identity function and residual blocks shown in Figure 4-8 (c). The last one is adding SE and 

residual blocks together, so the SE block takes the place of the identity part, as shown in 

Figure 4-8 (d). The input size of this comparative study is 256×256. 

 

Figure 4-8. The blocks with different options of inserting SE attention 

Although two papers (Li et al., 2020b, Li et al., 2020c) have also applied the SE attention 

mechanism, the targets of their papers are scene classification and human pose estimation, 

respectively. These applications are different from the applications in this chapter, and the 
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SE block added places are different. Another difference is that they added the SE block in 

only one place, while this chapter applies not only their methods but also others. Moreover, 

although no attention mechanism related codes can be found in the codes provided by (Li et 

al., 2020c) in GitHub (which is only HRNet codes), it added SE block parallel with residual 

block according to the figure in its paper. Its structure is shown in Figure 4-8 (d). SE-

HRNet added SE block before the summation, as shown in Figure 4-8 (b). Hence, their 

model structures are different from the model of this chapter even though some parts are 

similar. This chapter attempts more possible combination modes than them. 

4.6.2 Experimentation of other hyper parameters 

Besides the comparison of SE added places, three types of comparative experiments are 

implemented in this chapter. The first one is the input size. Cropped input images with both 

512×512 pixels and 256×256 pixels after data augmentation are trained for comparison of 

the model performance with different input sizes. As explained in Section 4.2.3, the choice 

of these input sizes is considering the hardware performance and previous experience. The 

“Standard SE” structure is chosen as the training model in this test experiment. 

The second comparison is the results between training with and without transfer learning. 

To be specific, one model is training with HRNetV2W32_ImageNet_pretrained weights, 

and the other one without transfer learning is training from scratch. Although training with 

pre-trained weights always has a better result than without a pre-trained model theoretically, 

it is still necessary to check the results. Therefore, this comparative experiment is 

implemented in this chapter. 
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The third one is comparing Sigmoid and Hard-Sigmoid activation functions in the SE block. 

Sigmoid is shown in Equation 4-11. Here “e” is Euler’s number. 

𝑆𝑆(𝑥𝑥) =
1

1 + 𝑒𝑒−𝑥𝑥
 4-11 

Hard-Sigmoid is the segment-wise linear approximation of Sigmoid, which is far less 

computationally expensive than Sigmoid both in software and specialised hardware 

implementations, as reported by Courbariaux et al. (2015). Equation 4-12 shows its formula. 

𝜎𝜎(𝑥𝑥) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �
𝑥𝑥 + 1

2
, 0,1� = max�0, min �1,

𝑥𝑥 + 1
2

�� 4-12 

 

4.7 Building damage results of the four comparative experiments 

The results of the four comparative experiments (refer Section 4.6) are presented in this 

section. As mentioned in Section 4.4.2, all results are obtained based on the experiments 

with the test dataset. The performance of each model is compared based on its optimal 

model among 10 recorded models in this chapter. 

The outputs of the test stage are presented as RGB images and evaluation scores. The RGB 

images contain the footprint of buildings and the damage level of each building. The 

evaluation scores are based on seven metrics as introduced in Section 4.5. 

In each comparative experiment, the combination F1 score is the main metric to judge the 

performance of each model since it considers both building location and damage 
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classification results. This chapter not only computes the combination F1 score of each 

option but also visualises the scores as line charts of ten intermediate epochs from 50 to 500 

that show the score of the training progress for each experiment. Moreover, F1 scores, 

precisions, and recalls for localisation and classification of the optimal model during 

training are also shown as line charts in this section. The details of all measures for each 

epoch are all recorded in supplementary documents for reliability checks and reference. 

Four comparisons are stated one by one as follows. 

4.7.1 Comparison of SE block integrations 

This section presents the outcome of the damage level classification using five structure 

options (refer to Section 4.6.1) as shown in the purple part of the workflow of Figure 4-3 in 

Section 4.3.1. In this section, the RGB image results are analysed first and shown in Figure 

9. Then, the results of all the seven metrics are analysed, and the summary is presented in 

tables or as line charts.  A sample of the pre-event image is shown in  Figure 4-9 (a), which 

includes buildings and vast green vegetation. Figure 9 (b) shows what areas have been 

destroyed due to the disaster by applying the algorithm to the testing sample. Figure 4-9 (c) 

to (g) are visualised results of the five options (refer to Figure 4-8 in Section 4.6.1). To 

validate the performance of the results of each option with the ground truth, Figures 9 (c) to 

(g) are compared with Figure 4-9 (h). As mentioned in Section 4.2, white, yellow, orange, 

and red colours in these images represent no, minor, major, and total damage levels, 

respectively. Grey means no data.  

Figure 4-9 (c) to (g) show that all the five options can segment buildings from a small 

256×256 image, which is hard to be judged by human eyes. Standard SE, SE-PRE, and No-
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SE perform well for identifying both building locations and damage classifications among 

the five options. These three options can detect building footprints and classify damage into 

four levels. However, SE-POST and SE-Identity models are not desirable for both building 

localisation and building damage classification, as shown in Figure 4-9 (e) and (f). The 

models with these two options only detected rough locations of buildings, while the other 

three show more detailed location information. Besides, SE-POST did not detect any 

damages in this example. SE-Identity only detected two damage levels, including no 

damage and total damage. Hence, Standard SE, SE-PRE, and No-SE perform much better 

than SE-POST and SE-Identity. 

  
(a) Pre-event image (b) Post-event image 

   
(c) Standard SE (d) SE-PRE (e) SE-POST 
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(f) SE-Identity (g) No-SE (h) Damage ground truth 

Figure 4-9. Sample result: “hurricane-matthew_00000010” in xBD dataset 

In addition to the above qualitative analyses of image results, the results of the chosen 

metrics give a quantitative analysis. Combination F1 scores are analysed first. Combination 

F1 scores of the five structure options are listed in Table 4-1. Since the model was recorded 

every 50 epochs, ten models were saved for each option. Only the optimal model among 

these ten in each structure option was used for comparison. Detailly, the model with the 

highest combination F1 score of each option during the test was chosen for the comparison 

with other options’ models. The epoch number listed in Table 4-1 is the epoch of the 

optimal model during the training. Scores of all ten recorded models for each option are 

listed in Table 4-2. Combination F1 scores of the four models with SE are from 12.84% to 

62.06%, as shown in Table 4-1. Two options, standard SE and SE-PRE, perform better than 

the No-SE option (the original residual block without SE). SE-PRE has the highest 

combination F1 score with 62.06%, which is 49.22% higher than the lowest SE-Identity 

with 12.84%. Hence, it could be stated that SE-PRE performs best of these five options. 

SE-PRE offers the best result, which is 5.41% higher than the result of the standard SE 

model. This may be because SE-PRE gives the CA before the convolution. The scores also 
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show that the performances of SE-POST and SE-Identity are not as good as expected 

because their F1 scores are lower than those of No-SE. 

Table 4-1. Combination F1 scores of all five options 

Structure option Standard 
SE SE-PRE SE-Post SE-Identity Original No-

SE 
Combination F1 

Score 56.65% 62.06% 16.49% 12.84% 53.93% 

Epoch 500 500 350 400 500 

 

Table 4-2. Results of evaluating the robustness of models 

Epoch Transfer 
Learning Score 

Localisation Damage classification 

LF1 Precision Recall DF1 Precision Recall 

50 

Standard SE 13.73% 45.78% 31.78% 81.80% 0.00% 0.00% 0.00% 

SE-PRE 12.13% 40.42% 26.94% 80.93% 0.00% 0.00% 0.00% 

SE-Post 7.00E-07 0.00% 0.00% 0.00% 1.00E-06 1.00E-06 1.00E-06 

SE-Identity 7.00E-07 0.00% 0.00% 0.00% 1.00E-06 1.00E-06 1.00E-06 

No-SE 0.15% 0.51% 31.24% 0.26% 1.33E-06 1.33E-06 1.33E-06 

100 

Standard SE 18.01% 60.05% 47.82% 80.66% 0.00% 0.00% 0.00% 

SE-PRE 22.77% 75.91% 76.81% 75.03% 0.00% 0.00% 0.00% 

SE-Post 13.33% 44.45% 34.83% 61.41% 1.33E-06 1.33E-06 1.33E-06 

SE-Identity 7.00E-07 0.00% 0.00% 0.00% 1.00E-06 1.00E-06 1.00E-06 

No-SE 11.61% 38.68% 24.83% 87.47% 4.00E-06 4.00E-06 4.00E-06 

150 

Standard SE 21.52% 71.72% 74.41% 69.21% 0.00% 0.00% 0.00% 

SE-PRE 24.36% 75.01% 78.17% 72.08% 2.66% 19.89% 1.42% 

SE-Post 12.89% 42.98% 30.30% 73.91% 1.33E-06 1.33E-06 1.33E-06 
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SE-Identity 10.30% 34.35% 21.46% 85.94% 1.33E-06 1.33E-06 1.33E-06 

No-SE 21.54% 60.82% 49.24% 79.53% 4.70% 21.87% 2.64% 

200 

Standard SE 20.42% 61.18% 50.03% 78.75% 2.95% 20.38% 1.59% 

SE-PRE 23.59% 78.64% 82.88% 74.82% 0.00% 0.00% 0.00% 

SE-Post 14.11% 47.03% 35.33% 70.31% 1.33E-06 1.33E-06 1.33E-06 

SE-Identity 7.00E-07 0.00% 0.00% 0.00% 1.00E-06 1.00E-06 1.00E-06 

No-SE 19.61% 60.98% 76.70% 50.61% 1.88% 20.75% 0.99% 

250 

Standard SE 31.87% 73.03% 81.99% 65.83% 14.23% 29.95% 9.33% 

SE-PRE 37.82% 76.41% 84.78% 69.53% 21.28% 50.95% 13.45% 

SE-Post 1.25E-06 1.48E-06 1.25% 7.42E-
07 1.15E-06 1.33E-06 1.10E-06 

SE-Identity 7.00E-07 0.00% 0.00% 0.00% 1.00E-06 1.00E-06 1.00E-06 

No-SE 23.90% 72.37% 79.17% 66.65% 3.13% 27.71% 1.66% 

300 

Standard SE 39.67% 77.79% 77.12% 78.48% 23.33% 41.17% 16.28% 

SE-PRE 58.86% 79.00% 82.42% 75.86% 50.23% 57.05% 44.87% 

SE-Post 15.72% 52.41% 39.89% 76.38% 1.33E-06 1.33E-06 1.33E-06 

SE-Identity 10.28% 34.26% 27.62% 45.12% 2.00E-06 2.00E-06 2.00E-06 

No-SE 29.92% 73.86% 70.73% 77.29% 11.09% 30.54% 6.78% 

350 

Standard SE 42.65% 78.44% 74.56% 82.74% 27.31% 33.63% 22.99% 

SE-PRE 56.17% 80.44% 78.21% 82.80% 45.77% 51.26% 41.34% 

SE-Post 16.49% 54.98% 46.25% 67.76% 1.33E-06 1.33E-06 1.33E-06 

SE-Identity 11.95% 39.83% 32.47% 51.49% 2.00E-06 2.00E-06 2.00E-06 

No-SE 39.46% 74.89% 79.07% 71.13% 24.27% 38.22% 17.79% 

400 
Standard SE 48.03% 80.09% 79.16% 81.03% 34.29% 38.90% 30.65% 

SE-PRE 59.24% 77.53% 82.85% 72.86% 51.41% 54.59% 48.57% 
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SE-Post 9.19% 30.62% 64.65% 20.06% 1.33E-06 1.33E-06 1.33E-06 

SE-Identity 12.84% 42.79% 32.97% 60.91% 2.00E-06 2.00E-06 2.00E-06 

No-SE 47.93% 78.03% 79.92% 76.23% 35.03% 41.04% 30.55% 

450 

Standard SE 52.86% 80.44% 76.40% 84.94% 41.04% 41.00% 41.08% 

SE-PRE 61.92% 81.63% 81.53% 81.73% 53.47% 57.17% 50.22% 

SE-Post 10.07% 33.56% 64.43% 22.68% 1.33E-06 1.33E-06 1.33E-06 

SE-Identity 11.78% 39.27% 29.66% 58.09% 2.00E-06 2.00E-06 2.00E-06 

No-SE 51.04% 79.51% 80.10% 78.94% 38.83% 44.32% 34.55% 

500 

Standard SE 56.65% 80.79% 77.32% 84.57% 46.31% 43.41% 49.63% 

SE-PRE 62.06% 82.07% 82.39% 81.77% 53.48% 56.42% 50.84% 

SE-Post 15.29% 50.96% 53.10% 48.99% 1.33E-06 1.33E-06 1.33E-06 

SE-Identity 12.46% 41.54% 34.89% 51.32% 2.00E-06 2.00E-06 2.00E-06 

No-SE 53.93% 79.08% 81.41% 76.88% 43.16% 50.67% 37.58% 

Figure 4-10 shows the combination F1 scores of the whole 500 epochs. It can be shown that 

standard SE and SE-PRE models have better results than No-SE results from the beginning 

to the end. Therefore, the addition of the SE block with these two options can help to 

improve the model performance. However, the scores of SE-POST and SE-Identity models 

are much lower than those of No-SE. 
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Figure 4-10. Combination F1 scores of all five options at every 50 epochs. 

After the analysis of combination F1 scores, the results of other metrics are analysed. 

Figure 4-11 presents the results of all the other six metrics of these five options to compare 

their performances. Compared with the results of all these six metrics at the damage 

classification step, the results at the building localisation step have higher values no matter 

which model is used. Moreover, F1s, precisions, and recalls of SE-POST and SE-Identity 

models are nearly zero at the damage classification step. This reflects that these two models 

cannot be used for damage classification. Performances of these two models are also not 

good in the building localisation step. The performance of the SE-Identity model is the 

worst among all models according to these results shown in Figure 4-11 (a) to (f). 

Figure 4-11 (a) shows that both standard SE and SE-PRE can achieve stable F1 scores from 

the 300th epoch. Their performances are better than No-SE for building localisation. The 

results of SE-POST and SE-Identity are much lower than No-SE. Hence, only standard SE 

and SE-PRE models can positively influence the model performance of building 

localisation. Localisation precision results are shown in Figure 4-11 (b). Similar to LF1, the 

values of localisation precision of SE-Identity are nearly zero from the first to around the 
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250th epoch. Localisation recalls of standard SE and SE-PRE do not increase much during 

the training, as shown in Figure 4-11 (c). Figure 4-11 (d) to (f) also show that standard SE 

and SE-PRE perform much better than SE-POST and SE-Identity. 

  
(a) LF1 (b) Localisation precision 

  
(c) Localisation recall (d) DF1 

  
(e) Damage precision (f) Damage recall 

Figure 4-11. F1s, precisions and recalls of all five options 

Possible reasons for undesirable results of SE-POST and SE-Identity are discussed in this 

paragraph. The reason that SE-POST has bad results probably is that the SE block does not 

have the benefit or even has a bad influence on the model if it is added after ReLU. The 
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reason for the SE-Identity model might be that the Identity block does not need CA. 

Therefore, the results show that the added attention block can help improve the accuracy of 

the model, but it depends on the place of the attention block. 

4.7.2 Comparison of input size after data augmentation 

In this section, the results of the standard SE model applied on two input samples of 

512×512, and 256×256 sizes are presented. The method of this comparative experiment is 

stated in the first paragraph of Section 4.6.2. First, this section analyses the output 

visualisation image results. Second, the detailed results of seven metrics are analysed to 

have a comparison of model performances with different input sizes. 

Figure 4-12 shows an example of visualisation results compared with the ground truth. The 

ground truth in Figure 4-12 (c) is the same as that in Figure 4-9 (h). The results show that 

the standard SE model can detect building footprints and building damage levels using both 

input samples with different sizes. While the RGB images are useful to show the level of 

damages in an efficient way, quantitative performance analyses are also carried out to 

compare the size effect on the performance of the model, and the quantitative analyses are 

discussed as follows. 
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(a) 512×512 (b) 256×256 (c) Ground truth 

Figure 4-12. Image example with different input sizes. 

Table 4-3 shows the combination F1 score results. Similar to Table 4-1, the epoch listed in 

Table 4-3 is the epoch of the optimal model during the training. The highest F1 score with 

512×512 pixels is 70.17% at the 400th epoch. The highest F1 score with 256×256 pixels is 

56.65% at the 500th epoch. F1 with 512×512 pixels is higher by 13% than that with 

256×256 pixels. Hereafter, this chapter will use “512” and “256” to represent the two 

models with input sizes of 512×512 pixels and 256×256 pixels for brevity, respectively. 

The detailed results are shown in Table 4-4. 

Table 4-3. Combination F1 score of each input size after data augmentation 

Input size 512×512 256×256 

Combination F1 Score 70.17% 56.65% 

Epoch 400 500 

Table 4-4. Standard SE block results with different input sizes 

Epoch Pixel Score 
Localisation Damage classification 

LF1 Precision Recall DF1 Precision Recall 
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50 
512×512 37.77% 49.94% 34.70% 89.07% 32.56% 37.53% 28.75% 

256×256 13.73% 45.78% 31.78% 81.80% 0.00% 0.00% 0.00% 

100 
512×512 41.57% 75.23% 70.95% 80.07% 27.15% 46.31% 19.20% 

256×256 18.01% 60.05% 47.82% 80.66% 0.00% 0.00% 0.00% 

150 
512×512 45.67% 80.15% 76.65% 84.00% 30.90% 39.00% 25.58% 

256×256 21.52% 71.72% 74.41% 69.21% 0.00% 0.00% 0.00% 

200 
512×512 49.77% 81.16% 80.81% 81.50% 36.31% 30.19% 45.56% 

256×256 20.42% 61.18% 50.03% 78.75% 2.95% 20.38% 1.59% 

250 
512×512 64.73% 82.77% 83.73% 81.84% 56.99% 61.21% 53.32% 

256×256 31.87% 73.03% 81.99% 65.83% 14.23% 29.95% 9.33% 

300 
512×512 56.61% 82.79% 83.29% 82.29% 45.39% 49.23% 42.10% 

256×256 39.67% 77.79% 77.12% 78.48% 23.33% 41.17% 16.28% 

350 
512×512 68.28% 84.08% 81.76% 86.53% 61.51% 62.06% 60.98% 

256×256 42.65% 78.44% 74.56% 82.74% 27.31% 33.63% 22.99% 

400 
512×512 65.45% 84.57% 82.26% 87.02% 57.25% 58.43% 56.12% 

256×256 48.03% 80.09% 79.16% 81.03% 34.29% 38.90% 30.65% 

450 
512×512 70.17% 84.90% 82.89% 87.01% 63.86% 65.27% 62.50% 

256×256 52.86% 80.44% 76.40% 84.94% 41.04% 41.00% 41.08% 

500 
512×512 67.87% 85.10% 83.96% 86.28% 60.48% 60.61% 60.36% 

256×256 56.65% 80.79% 77.32% 84.57% 46.31% 43.41% 49.63% 

Figure 4-13 shows the trend of combination F1s, DF1s, and LF1s. It is obvious that the 

“512” results are higher than the “256” results in all epochs with all three types of F1s. All 

LF1 lines are placed higher than DF lines, so it can be stated that this model shows better 

performance for building localisation than building damage classification disregarding the 

size of images.  
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Figure 4-13. Combination F1 scores, LF1s, and DF1s with two different input sizes 

Figure 4-14 shows the results of all the other metrics, including F1s, precisions, and recalls 

in both localisation and damage steps. Figure 4-14 (a) to (c) are localisation results, and (d) 

to (f) are results of building damage. All these six results show the “512” model has better 

performance than the “256” model, because all “512” results are higher than “256” results 

at every recorded epoch. It should be noted that all six “512” lines turn flat, or the 

fluctuation has decreased since the 350th epoch. The “256” lines do not have this 

phenomenon. The following paragraphs will analyse localisation results first and then 

results on the damage. 

All “256” lines have more fluctuated than “512” lines in the localisation step as shown in 

Figure 4-14 (a). LF1s are analysed first. The highest “512” LF1 is 85.10% at the 500th 

epoch. LF1s from 350th to 500th are similar, which are 84.08%, 84.57%, 84.90% and 

85.10%. The highest “256” LF1 is 80.79% at the 500th epoch. Similar to “512” LF1, the 

change in the results from 350th to 500th is less than that in previous epochs (78.44%, 

80.09%, 80.44%, 80.79%). There is no decrease of LF1 for both “512” and “256” results. 
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The second metric is localisation precision. As shown in Figure 4-14 (b), the line charts of 

both “512” and “256” localisation precision results have fluctuated. The highest “512” 

result is 83.96% at the 500th epoch, and the highest “256” result is 81.99% at the 250th 

epoch. 

The result of the last metric for localisation is shown in Figure 4-14 (c). The two 

localisation recall lines fluctuated more than LF1 and localisation precision lines. The 

highest “512” recall is 87.02% at the 400th epoch, and the highest “256” recall is 84.94% at 

the 450th epoch. 

In the second step, namely, the damage classification step, all the “256” lines of the three 

metrics are less fluctuated than the “512” lines. The trend of the DF1 line chart is similar to 

that of the combination F1 line chart in both “512” and “256” results. This is because the 

DF1 has a higher proportion than LF1 in Equation 4-10, which are 70% and 30%, 

respectively. The highest “512” DF1 is 63.86% at the 450th epoch, and the highest “256” 

DF1 is 46.31% at the 500th epoch. There is no decrease in the “256” results, while “512” 

results show the model performance is increasing in a fluctuation. 

As for the damage precision results, “256” line increases more slowly than the “512” line, 

which is 0 from 0 to 150 epochs. The trend of “512” damage precision is similar to the 

trend of “512” DF1, especially from the 200th epoch. The highest “512” damage precision 

is 65.27% at the 450th epoch, and the highest “256” damage precision is 43.41% at the 500th 

epoch. 
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The trends of two damage recall lines in Figure 4-14 (f) are very similar to the trends of two 

DF1 lines in Figure 4-14 (d). The highest “512” recall is 62.5% at the 450th epoch, and the 

highest “256” recall is 49.63% at the 500th epoch. 

   

(a) LF1 (b) Localisation precision (c) Localisation recall 

   

(d) DF1 (e) Damage precision (f) Damage recall 

Figure 4-14. F1s, precisions and recalls with different input sizes 

The model of 512×512 pixels at the 450th epoch could be said to be the best model among 

all 512×512 pixels, because its value is the highest for five out of the seven results. The 

best localisation model of 512×512 pixels could be said between 450 to 500 epochs since 

their values are quite close to each other. The optimal damage classification model of 

512×512 pixels is the model training with 450 epochs among all recorded models because 

its performances are the best with all damage classification metrics, including DF1, damage 

precision, and damage recall. As for the models of 256×256 pixels, the model at the 500th 
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epoch is the best both in the localisation and damage classification since it performs best 

with all the metrics. Moreover, the results show that localisation results are higher than 

damage classification results with all metrics.  

4.7.3 Comparison of transfer learning and non-transfer learning 

This section compares the results of transfer learning and non-transfer learning models with 

512×512 pixels. The method of this experiment is introduced in the second paragraph of 

Section 4.6.2. Combination F1 score results are discussed first, as shown in Table 4-5. The 

highest F1 score with transfer learning is 69.85% at the 400th epoch, and that with non-

transfer learning is 70.17% at the 450th epoch. The detailed information is listed in Table 

4-6. Figure 4-15 (a) shows the combination F1 scores of these models. The results reflect 

that the transfer learning model does not have obvious advantages over the non-transfer 

learning model. In Figure 4-15 (b), “Non” represents the trained model without transfer 

learning. “TransL” means that the model is trained with transfer learning. Figure 4-15 (b) 

shows that these two models have similar performance for building localisation. The model 

with transfer learning has better performance at the initial stage, but their performances turn 

similar gradually. That is, the highest score without transfer learning is even higher than 

that with transfer learning.  

 

Table 4-5. Combination F1 scores with and without transfer learning 

Model Transfer learning Non-transfer learning 

Combination F1 Score 69.85% 70.17% 
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Epoch 400 450 

Table 4-6. Standard SE block results with transfer and non-transfer learning 

Epoch Transfer 
learning Score 

Localisation Damage classification 

LF1 Precision Recall DF1 Precision Recall 

50 
Yes 39.78% 74.97% 85.59% 66.70% 24.70% 34.59% 19.21% 

No 37.77% 49.94% 34.70% 89.07% 32.56% 37.53% 28.75% 

100 
Yes 53.27% 80.01% 84.53% 75.95% 41.81% 43.68% 40.09% 

No 41.57% 75.23% 70.95% 80.07% 27.15% 46.31% 19.20% 

150 
Yes 43.50% 81.06% 84.78% 77.65% 27.40% 43.57% 19.98% 

No 45.67% 80.15% 76.65% 84.00% 30.90% 39.00% 25.58% 

200 
Yes 58.99% 83.46% 81.90% 85.09% 48.50% 53.36% 44.45% 

No 49.77% 81.16% 80.81% 81.50% 36.31% 30.19% 45.56% 

250 
Yes 65.52% 83.81% 84.51% 83.12% 57.68% 60.89% 54.79% 

No 64.73% 82.77% 83.73% 81.84% 56.99% 61.21% 53.32% 

300 
Yes 65.58% 83.66% 89.02% 78.90% 57.84% 58.62% 57.08% 

No 56.61% 82.79% 83.29% 82.29% 45.39% 49.23% 42.10% 

350 
Yes 56.04% 84.73% 86.62% 82.93% 43.75% 46.23% 41.53% 

No 68.28% 84.08% 81.76% 86.53% 61.51% 62.06% 60.98% 

400 
Yes 69.85% 85.01% 86.65% 83.43% 63.36% 67.96% 59.34% 

No 65.45% 84.57% 82.26% 87.02% 57.25% 58.43% 56.12% 

450 
Yes 69.11% 85.10% 86.71% 83.54% 62.25% 64.49% 60.16% 

No 70.17% 84.90% 82.89% 87.01% 63.86% 65.27% 62.50% 

500 
Yes 69.26% 85.47% 86.90% 84.10% 62.31% 64.34% 60.40% 

No 67.87% 85.10% 83.96% 86.28% 60.48% 60.61% 60.36% 
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(a) Combination F1 Score (b) Combination F1 scores, LF1s, and DF1s 

Figure 4-15. F1 scores of transfer and non-transfer learning models 

Figure 4-16 shows the detailed results at both localisation and classification steps. Figure 

4-16 (a) to (c) display building localisation results. Figure 4-16 (a) shows the LF1s of these 

two methods. If the number of training epochs is less than 300, the benefit of the pre-

trained model is obvious, but after 300 epochs, the LF1s difference is less than 1% in each 

recorded epoch. The highest LF1 with transfer learning is 85.47%, which is 0.37% higher 

than the highest LF1 without transfer learning (85.10%) as shown in Table 4-6. Figure 4-16 

(b) and (c) show the localisation precisions and recalls, respectively. The trends of these 

results are similar to the trend of Figure 4-16 (a), whose difference is very large at the 

beginning, but the difference decreases quickly. All the results of these three metrics show 

that 350 training epochs may be enough no matter whether the model is with transfer 

learning or not. This is because the results improve slowly after 350 epochs. 

Figure 4-16 (d) to (f) show damage classification results. The trends of these results are 

different from the trends in the building localisation step. The initial values of the three 

metrics are not much different, and the results of the non-transfer learning model are even 
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better than those of the transfer learning model at the 50th epoch. The highest DF1, 

precision, and recall with transfer learning are 63.36% at the 400th epoch, 67.96% at the 

400th epoch, and 60.40% at the 450th epoch. The highest DF1, precision, and recall without 

transfer learning are 63.86%, 65.27%, and 62.50%, respectively, all at the 450th epoch. 

Based on the interpretation of all the results of these seven metrics, the transfer learning 

model with the pre-trained model is not much better than the non-transfer learning model. 

One benefit is that it can achieve higher precision than the non-transfer learning model at 

the beginning for only building localisation, which is faster, but the non-transfer learning 

model can also achieve this high precision after around 100 epochs. The transfer learning 

model does not show many advantages in damage classification. 

The possible reason for that is listed as follows. First, the chosen pre-trained model is for 

image classification. That is why the pre-trained model has better performance of building 

localisation than damage classification. This pre-trained model may not be the best choice 

for damage classification. Second, the pre-trained model is trained with the ImageNet 

dataset. This dataset does not contain enough damaged buildings in the images. Hence, the 

pre-trained model does not show enough good performance as anticipated. 

Although several papers adopt this pre-trained model based on experience (Koo et al., 

2020), they do not compare its results with the non-transfer learning model. Before the 

testing, the hypothesis in this study was that its performance was better, but the test shows 

that this is not the case. 
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(a) Localisation F1 (LF1) (b) Localisation precision (c) Localisation recall 

   

(d) Damage F1 (DF1) (e) Damage precision (f) Damage recall 

Figure 4-16. F1s, precisions and recalls of transfer and non-transfer learning models 

4.7.4 Comparison of Sigmoid and Hard-Sigmoid activation functions 

As the fourth comparative experiment of the testing stage in the workflow, this section 

compares the performance of models with different activation functions placed in the SE 

block, as mentioned in the third paragraph of Section 4.6.2. The results of the seven metrics 

are analysed one by one. 

The combination F1 score results are compared first with the optimal model of each 

situation. As shown in Table 4-7, the optimal model with the Sigmoid function is recorded 

at the 450th epoch with the highest F1 score of 70.17%. The F1 score of the optimal model 

with Hard-Sigmoid is 69.66%, which is at the 500th epoch. Table 4-8 shows the detailed 

results with different functions. Hence, the performances of models with Sigmoid and 



Chapter 4: Building damage evaluation from satellite images with an attention-base deep learning method 

99 

Hard-Sigmoid functions are similar, as shown in Figure 4-17 (a). The performance of the 

Sigmoid model with Sigmoid is 0.51% higher than the Hard-Sigmoid model. Figure 4-17 (b) 

shows that building localisation results are much better than damage classification results 

no matter which activation function is used. 

Table 4-7. Combination F1 scores with Sigmoid and Hard-Sigmoid activation functions 

Activation function Sigmoid Hard-Sigmoid 

F1 Score 70.17% 69.66% 

Epoch 450 500 

Table 4-8. Standard SE block results with different activation functions 

Epoch Activation 
function Score 

Localisation Damage classification 

LF1 Precision Recall DF1 Precision Recall 

50 
Sigmoid 37.77% 49.94% 34.70% 89.07% 32.56% 37.53% 28.75% 

Hard-sigmoid 32.27% 61.81% 65.85% 58.23% 19.62% 36.20% 13.46% 

100 
Sigmoid 41.57% 75.23% 70.95% 80.07% 27.15% 46.31% 19.20% 

Hard-sigmoid 39.81% 77.05% 84.37% 70.90% 23.85% 45.14% 16.20% 

150 
Sigmoid 45.67% 80.15% 76.65% 84.00% 30.90% 39.00% 25.58% 

Hard-sigmoid 32.87% 80.61% 81.04% 80.19% 12.41% 25.85% 8.17% 

200 
Sigmoid 49.77% 81.16% 80.81% 81.50% 36.31% 30.19% 45.56% 

Hard-sigmoid 47.30% 81.95% 83.22% 80.73% 32.45% 44.43% 25.56% 

250 
Sigmoid 64.73% 82.77% 83.73% 81.84% 56.99% 61.21% 53.32% 

Hard-sigmoid 42.07% 82.87% 81.16% 84.66% 24.58% 52.99% 16.00% 

300 
Sigmoid 56.61% 82.79% 83.29% 82.29% 45.39% 49.23% 42.10% 

Hard-sigmoid 63.56% 82.72% 81.90% 83.57% 55.35% 57.85% 53.06% 

350 
Sigmoid 68.28% 84.08% 81.76% 86.53% 61.51% 62.06% 60.98% 

Hard-sigmoid 58.67% 82.15% 82.29% 82.01% 48.61% 51.09% 46.35% 
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400 
Sigmoid 65.45% 84.57% 82.26% 87.02% 57.25% 58.43% 56.12% 

Hard-sigmoid 69.33% 84.05% 81.86% 86.36% 63.03% 65.52% 60.72% 

450 
Sigmoid 70.17% 84.90% 82.89% 87.01% 63.86% 65.27% 62.50% 

Hard-sigmoid 62.97% 83.49% 83.69% 83.28% 54.18% 59.24% 49.91% 

500 
Sigmoid 67.87% 85.10% 83.96% 86.28% 60.48% 60.61% 60.36% 

Hard-sigmoid 69.66% 84.04% 83.61% 84.49% 63.50% 68.87% 58.90% 

 

  
(a) Combination F1 Score (b) Combination F1 scores, LF1s, and DF1s 

Figure 4-17. F1 scores of models with different SE block activation functions 

Figure 4-18 shows all results at the localisation and classification steps. The highest LF1 

with Sigmoid function is 85.10% at the 500th epoch, and the highest LF1 with Hard-

Sigmoid function is 84.05% at the 400th epoch, as shown in Table 4-8. Figure 4-18 (a) 

shows that the Sigmoid model performs better than Hard-Sigmoid model from the 300th 

epoch. The results of another metric, localisation precision, are shown in Figure 4-18 (b). 

Its highest is 83.96% at the 500th epoch with Sigmoid and 83.69% at the 450th epoch with 

Hard-Sigmoid. Figure 4-18 (a) and (b) show that the trends of the two lines are similar. 

Despite the fact that the performance of the Hard-Sigmoid model is better at the beginning 

epochs, the performance of the Sigmoid model increases quicker and better than that of the 
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Hard-Sigmoid model at last. Figure 4-18 (d) shows the localisation recall results. The 

highest recalls are 87.02% with Sigmoid and 86.36% with Hard-Sigmoid, both at the 400th 

epoch. The recall of the Sigmoid model is 0.66% higher than that of the Hard-Sigmoid 

model. 

Figure 4-18 (d) to (f) show the results at the damage classification step. The highest DF1 is 

63.86% at the 450th epoch with Sigmoid, which is 0.36% higher than that with Hard-

Sigmoid (63.50% at the 500th epoch). The highest damage precisions are 65.27% at the 

450th epoch with Sigmoid and 68.87% at the 500th epoch with Hard-Sigmoid shown as 

Figure 4-18 (e). The highest damage recalls are 62.50% at the 450th epoch with Sigmoid 

and 60.72% at the 400th epoch with Hard-Sigmoid. Therefore, the damage classification 

results show that the performances of these two models are similar. 

Based on the analysis, the Hard-Sigmoid model only has better results based on the damage 

recall metric, and the other five results show that the performance of the Sigmoid model is 

better. Therefore, it can be concluded that the model with Sigmoid performs slightly better 

than the model with Hard-Sigmoid. 

   

(a) Localisation F1 (LF1) (b) Localisation precision (c) Localisation recall 
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(d) Damage F1 (DF1) (e) Damage precision (f) Damage recall 

Figure 4-18. F1s, precisions and recalls with different SE block activation functions 

4.8 Discussion of 2D building damage classification results 

Four types of experiments have been conducted for different comparison tasks. The first 

experiment tested the performance of five model options, including four modified models 

(SE, SE-PRE, SE-POST, SE-Identity) and one original model. In the second experiment, 

two models were tested for the performance comparison of different training input sizes. 

The next experiment was implemented for the comparison of models with and without 

transfer learning. The last experiment was implemented for comparison of different 

activation functions in the SE block. The results of these four experiments are discussed as 

follows. 

First, the outcome of the experiment with five options (refer to Section 4.7.1) shows that 

the SE-PRE model has the best performance across all metrics except localisation recall 

among all these five models. One possible reason is that SE-PRE gives CA at the very 

beginning. Hence, the model could judge which feature needs more attention during the 

training and which feature is less important. The worst two models are SE-Post and SE-
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Identity because they perform worst among all metrics, and their performances are much 

worse than the performances of the other two modified models and the original No-SE 

model. Therefore, although several papers state that a model would perform better after 

adding CA (Li et al., 2020b, Li et al., 2020c), the finding from this study is that different 

added places of SE in the original basic block have different effects on the model 

performances of building damage classification, sometimes improves the accuracy and 

sometimes decrease the accuracy. 

In the second experiment, the results show that the standard SE model (Figure 4-8 (a)) with 

the input resolution of 512×512 by random cropping during the training can give better 

performance than that with 256×256. This might be because a 512×512 image contains 

more features than a 256×256 image. Hence, more information can be retained during the 

training with 512×512 size. Similarly, higher resolution images could have better results for 

models because they contain more features and information than lower resolution images. 

However, the larger size 512×512 spends more time and memory for training, so which 

size to be adopted depends on the time and hardware constraints of a task.  

In the third comparison, the results of the models with and without transfer learning are 

compared. The model with transfer learning of pre-trained ImageNet weights does not 

perform better than model training from scratch. This may be because the pre-trained 

weights are not very suitable for this study since ImageNet does not contain damaged 

building labels. Moreover, the pre-trained weight is only used for image classification, 

whose task is easier for this study, including both image segmentation and classification. 
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Fourth, the difference in the performance of Sigmoid and Hard-Sigmoid is not obvious. 

Although the training time of the model with Hard-Sigmoid should be shorter than that 

with Sigmoid in theory, the time used in this experiment is similar. 

The model performs better for building localisation than damage classification. The 

technical reason might be that the building localisation step is easier than damage 

classification. It only needs to segment two classes, buildings, and non-buildings, and the 

difference of features between these two classes are obvious such as outlines or colours. 

However, the feature difference of each damage level is small and complex between minor, 

major, and total damage. Moreover, the roof shapes of some totally damaged buildings did 

not change or break after disasters, especially after earthquakes. Hence, it increases the 

difficulty for models to assess the damage levels of buildings. 

While the main target of this chapter is building damage classification, the observation 

shows that the SE-PRE also offers a high accuracy (82.07% of LF1 score) for building 

localisation or building footprint segmentation. Offering acceptable outcomes for both 

building damage classification and localisation will increase the practical implication of the 

SE-PRE model to guide disaster managers and practitioners for emergency actions by 

finding the most damaged buildings and their locations simultaneously.  

This chapter contributes to the body of literature by addressing the challenging task of 

building damage classification utilising the novel approach of SE-PRE. Compared to the 

previous work, the present chapter shows an improvement in the classification tasks by 

classifying into not only collapse or not, but also four damage levels and providing a new 
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modified model. Several current papers just apply models to the building damage 

classification without modification of the structures of models. For example, Yang et al. 

(2021) categorised the damages by keeping the original structures of CNN. 

4.9 Conclusion 

The aim of this chapter was to provide a quick DL method for post-disaster multi-level 

BDLC with optical satellite images. This has been achieved by improving the performance 

of the DL method with SE added dual HRNet model and applying it to building damage 

classification with a total of 8,664 images from xBD and our newly created datasets. Four 

novel options of models with adding SE CA to different places of basic residual blocks in 

HRNet have been used to compare the original model without SE. These four are called 

standard SE, SE-PRE, SE-Post and SE-Identity. Four types of experiments applying seven 

metrics (refer to Section 4.5) were implemented on different model modifications to 

measure the effect on the model performance. 

The results show that the DL model proposed in this chapter can classify building damage 

levels, which are hard or impossible to be achieved by human eyes. Four options of SE 

block added models are tested, and results show that SE-PRE has the best performance. A 

larger input size can have better results but use much more computing time. Transfer 

learning with a pre-trained ImageNet dataset does not have advantages because the dataset 

does not contain several damaged building images. The block with Sigmoid function has 

slightly better performance than that with Hard-Sigmoid. However, this chapter only 
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compared the proposed models with the backbone. The comparisons with relevant state-of-

the-art models are suggested to be tested in further research. 

This chapter created a building damage level dataset based on the official damage 

assessment document, but some limitations exist in it. One limitation is that the time 

duration between pre- and post-event images is large. Some post-event images were taken 

several months after the event happened. The imaging angle and the brightness are different 

between these two images. This limitation would not affect the comparison outcome of the 

experiment but cannot be avoided because this is very tough for remote sensing technology 

to take two images with the exact same air, sunlight, and imaging angle conditions on two 

different days. In the future, scholars can replicate the suggested method on new datasets 

with the development of remote sensing to avoid this limitation. Second, some pre- and 

post-event images contain a large area of clouds covering buildings, so the model will 

wrongly learn the white cloud area as buildings based on the ground truth map. Hence, 

future work would focus on reducing the limitations of data. 
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Chapter 5  

Feature selection on the accuracy of deep learning-

based large-scale Lidar semantic segmentation2 

5.1 Background and scope 

This chapter is the prepare work of Chapter 6 to focus on predisaster building segmentation. 

Lidar is a valuable technique for gathering and retaining 3D information. With the 

emergence of helicopters and drones capable of capturing 3D data through Lidar, the 

availability of extensive outdoor airborne Lidar data has rapidly expanded. Lidar can offer a 

broader range of land cover information compared to traditional 2D optical satellite image 

segmentation methods. Consequently, utilising urban land cover data from Lidar is 

recommended for applications such as urban planning, disaster data collection, and various 

earth observation purposes. 

 

2  The content presented in this chapter is partially adopted from the following work which has been 

accepted for publication: “Liu C, Zhang Q, Shirowzhan S, Bai T, Sheng Z, Wu Y, Kuang J, Ge L*, 2023. The 

Influence of Changing Features of Point Clouds on the Accuracy of Deep Learning-based Large-scale 

Outdoor Lidar Semantic Segmentation, In 2023 IEEE International Geoscience and Remote Sensing 

Symposium (IGARSS), Pasadena, U.S., pp. 4443-4446”. It has been acknowledged and detailed in the 

“Inclusion of Publications Statement” for this thesis. 
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The studies in 3D semantic segmentation have experienced rapid development with the 

increasing accessibility of Lidar data in the last ten years. DL always provides a more 

efficient and accurate method than conventional computer vision methods. For instance, 

RandLa-Net is an effective and lightweight network for urban-scale Lidar data (Hu et al., 

2020). However, 3D semantic segmentation is still a challenging task in the computer 

vision field, and the accuracy of these DL methods still needs improvement. Several feature 

setting selections of DL algorithms has not been tested to check they can increase semantic 

segmentation accuracy. Moreover, most DL methods were proposed without considering 

the case studies of the areas that potentially happen earthquakes. To resolve those problems, 

this chapter aims to test the influence of feature selections of DL networks on the accuracy 

of DL-based pre-earthquake large-scale Lidar semantic segmentation, which is Objective 2. 

Two feature selections warrant exploration concerning their possible impact on the 

accuracy of DL networks, including surface normal information and the down-sampling 

layer configuration. Surface normal information is a crucial aspect widely utilised in the 3D 

visualisation field to enhance the fidelity of objects depicted in computers. A surface 

normal refers to a vector perpendicular to the surface of an object or a specific point on that 

surface. It furnishes insights into the orientation and direction of the surface at each point. 

Alongside surface normals, the design of random sampling layers emerges as an intriguing 

subject of exploration. Distinct down-sampling layer configurations can yield varying 

features assimilated by trained DL networks. Consequently, exploring their potential for 

augmenting accuracy holds significance. 
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In pursuit of the aim and objectives in this chapter, as mentioned in Chapter 3, a series of 

experiments have been conducted to assess the impact of incorporating surface normal 

information and altering the number of random sample layers on segmentation accuracy. It 

should be mentioned that this chapter serves as the preparatory groundwork for Chapter 6. 

Therefore, the design of the research methods in this chapter considers not only its own 

objectives but also those outlined in Chapter 6. The following sections gradually introduce 

the data collection (Section 5.2), designed methods (Section 5.3), results and discussions 

(Section 5.4), and conclusion (Section 5.5) of the work presented in this chapter. 

5.2 Data collection and pre-processing 

Lidar can be categorised into different types according to data collection methods, such as 

terrestrial, airborne, and spaceborne Lidar. This chapter chose airborne Lidar data because 

the focus of this whole study is to scan large-scale outdoor urban land cover objects, as 

mentioned in Section 1.4.  

OpenTopography provides several freely available open-source pre- or post-disaster Lidar 

point cloud datasets. These datasets include several types of disasters, such as earthquakes, 

floods, bushfires, hurricanes, and cyclones (Asia Air Survey Co., 2018, Opentopography, 

2022). Therefore, this chapter chose the datasets published by OpenTopography. 

As this chapter serves as a precursor to the next chapter, and the subsequent chapter 

requires colour information, the inclusion of colour information in this chapter is crucial. 

However, many of the Lidar datasets provided by OpenTopography lack colour information. 

Consequently, colour information must be manually integrated into the data as part of the 
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data preparation process. This results in an in-house labelled dataset, which is Objective 4. 

The following paragraphs introduce how the colour information is added. 

The original Lidar point cloud dataset was collected from Kapiti Coast, New Zealand by 

OpenTopography, which includes labelled land cover objects. The labels in the Lidar data 

utilised in this chapter included the ground, low vegetation, medium vegetation, high 

vegetation, and buildings. This location was chosen because New Zealand happened a very 

serious earthquake in Christchurch in 2011. Moreover, this location contains several 

possible natural disasters besides earthquakes (Kapiti Coast District Council, 2022). The 

collection dates were from 13/03/2021 to 15/03/2021. The original dataset covers the entire 

coast with an area of 292.63 km2. 26 parts were clipped from the dataset because they 

contain both buildings and vegetation, as shown in Figure 5-1 (Opentopography, 2022). 

The training, validation, and testing stages consist of 21, 3, and 2 point clouds, respectively. 

The colour information was introduced to the dataset using S2 images. Given that the 

original Lidar data lacked colour information, an S2 image with a 10m cell size, captured 

on 24/07/2021, was fused with the Lidar data through the utilisation of FME software (Safe 

Software, 2022). The incorporation of colours was deemed necessary as it often leads to 

improved accuracy in predictions when employed in DL networks, aligning with the 

preparatory work for Chapter 6. The choice of the S2 data acquisition date was made to 

closely match the date of the Lidar data collection. Moreover, a comprehensive 

examination of the S2 image was carried out to ensure minimal presence of clouds or 

smoke on that specific date. Since the coordinate systems of S2 imagery and Lidar data are 

different, the coordinate system of S2 imagery, UTM84-60S, was reproject to that of Lidar 
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point clouds. The detailed information on Lidar and satellite data are listed in Table 5-1. 

After the data pre-processing step, a colourised Lidar point cloud dataset with five labelled 

classes was created.  

 

Figure 5-1. Kapiti Coast Lidar data location 

 

Table 5-1. Detailed information of data applied in Chapter 5 

Data 3D Lidar point clouds 2D satellite imagery 

Collection 
date 13/03/2021 to 15/03/2021 24/07/2021 
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Publisher OpenTopography European Space Agency: 
Sentinel 2 

Labelled 
class 

Ground, low vegetation, medium vegetation, 
high vegetation, buildings None 

Coordinate 
system 

Horizontal: NZTM2000 NZGD2000 
Meters [EPSG: 2193] 

Vertical: NZVD2016 [EPSG: 7839] 
UTM84-60S 

Colour 
information None Colours from red, green, and blue 

bands 

 

5.3 Method for the comparative experiment 

This chapter presents the design of a comparative experiment involving eight feature 

selections to assess the impact of random down-sampling layers and surface normal 

information on pre-earthquake large-scale outdoor Lidar semantic segmentation, 

particularly focused on building footprint extraction. The choice of RandLA-Net as the 

backbone stems from its status as one of the pioneering point-based Lidar semantic 

segmentation networks developed for handling extensive datasets. Therefore, the 

comparative experiment involves the manipulation of two variables. 

The first variable pertains to configuring random down-sampling layers within the network. 

Taking inspiration from a devised experiment whose backbone is also RandLA-Net (Huang, 

2022), the first four selections were designed, including [4442], [4444], [44442], and 
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[444422]. Number 2 or 4 represents the random down-sampling ratio at each layer. In other 

words, ½ or ¼ points are saved at each layer after down-sampling points from its previous 

layer. The number of digits in each selection is the number of layers. For instance, [4442] 

and [44442] indicate that there are four and five layers, respectively. The layer 

configurations of [4444] and [44442] were chosen based on the original RandLA-Net 

backbone paper, which utilised these structures in their experimental setups. According to 

these two configurations, the other two, [4442] and [444422], were designed in this study.  

The second variable is a Boolean value signifies whether to include surface normal 

information or not. The normals were calculated automatically by in-built algorithms in 

Python during the data processing stage. The detailed steps of calculating surface normals 

will be presented in Section 6.4.1. Considering the abovementioned random sampling layer 

variable, therefore, eight feature selections were designed in total, including [4442], [4444], 

[44442], [444422], [4442] + normals, [4444] + normals, [44442] + normals, and [444422] 

+ normal. 

Mean IoU (mIoU) was chosen as the main metric for validating and testing those networks 

in this chapter. This is because it is a widely applied metric in the DLSS field. IoU is 

always used to evaluate DL networks by estimating how well a predicted segmentation 

matches the ground truth. Moreover, the original DL backbone also applied IoU for the 

evaluation in its published open-source codes (Hu et al., 2020). The training epoch was 100, 

and the epoch with the highest mIoU during the validation stage was chosen and the trained 

network at that epoch was saved for the test. The meaning of mIoU is the average of the 

IoUs of all tested classes. equations are as follows (Huang, 2022): 
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𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =  
∑ 𝐼𝐼𝐼𝐼𝐼𝐼𝑘𝑘𝑖𝑖
𝑘𝑘=1

𝑖𝑖
 5-1 

𝐼𝐼𝐼𝐼𝐼𝐼 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹
 5-2 

where k is the kth class and i is the total number of labelled classes. 

The IoU equation means the area of overlap between the predicted segmentation and the 

ground truth divided by the area of union between the predicted segmentation and the 

ground truth. A higher IoU reflects a better predicted segmentation. TP, FN, and FP are true 

positive, false negative, and false positive, respectively. The definitions of TP, FN, and FP 

remain consistent with the explanations provided in Section 4.5. 

5.4 Results and discussion 

The experiments were implemented with one Nvidia RTX 2080Ti GPU card. As mentioned 

in Section 5.3, two of these 26 point clouds were chosen for the test. They were the 3rd and 

the 26th colourised point clouds, as shown in Figure 5-2. The points in them were 3,738,726 

and 7,816,274, respectively. 

  

(a) The 3rd point cloud (b) The 26th point cloud 

Figure 5-2. Colourised Lidar data for testing the designed networks 
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The visualisation results of those two tested point clouds are shown in Figure 5-3 and 

Figure 5-4. Different colours represent different labelled classes. Only buildings can be 

visually recognized from these results directly. Additionally, visual interpretation alone 

does not provide a comprehensive analysis of the differences between each result. 

Therefore, conducting a quantitative analysis based on IoU is essential. 

 

Figure 5-3. Results of the 3rd point cloud 

[4442] [4444] [44442] [444422]
(a) Results without adding surface normal information

Ground truth

(b) Results adding surface normal information
[4442] [4444] [44442] [444422]

Ground
Low vegetation
Medium vegetation
High vegetation
Buildings
Water
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Figure 5-4. Results of the 26th point cloud 

The mIoU of the two tested point clouds are listed in Table 5-2. '+ normals' means that the 

surface normal information has been calculated and added in the data pre-processing stage 

in that network. The mIoUs in the test results are the average IoU of five classes, including 

ground, low vegetation, medium vegetation, high vegetation, and buildings. 

As shown in Table 5-2, the networks with '[4444]' and '[4444] + normals' structures have 

the highest mIoUs for the 3rd and 26th point clouds, respectively. The results also reflect that 

'[4444] + normals' network always has a high mIoU for each tested point cloud. It is an 

interesting finding that the networks adding surface normal information always have a 

higher mIoUs than the networks without it. The possible reason is that the network learned 

more features from adding surface normal information. 

 

[4442] [4444] [44442] [444422]
(a) Results without adding surface normal information

Ground truth

(b) Results adding surface normal information
[4442] [4444] [44442] [444422]

Ground
Low vegetation
Medium vegetation
High vegetation
Buildings
Water
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Table 5-2. Mean IoU of all tested point clouds 

Selection Designed layer structure 
mIoU 

3rd point cloud 26th point cloud 

1 [4442] 68.96% 67.80% 

2 [4444] 72.37% 69.80% 

3 [44442] 62.52% 63.66% 

4 [444422] 67.94% 65.63% 

5 [4442] + normals 70.93% 70.91% 

6 [4444] + normals 72.35% 71.02% 

7 [44442] + normals 70.26% 68.78% 

8 [444422] + normals 68.57% 67.22% 

 

The highest mIoU of both point clouds in Table 5-2 are both higher than 70%. All IoUs 

range between 62.52% and 72.37%. In order to explain the reason for this range, IoUs of all 

classes of the two tested point clouds are listed in Table 5-3 and Table 5-4. IoUs of three 

types of vegetation have been combined to be shown as a mIoU of them in these two tables. 

IoU of the building class is the highest and IoU of the ground class is the lowest no matter 

in which network. IoU of vegetation ranges from 66.98% to 76.88%, which is near the 

mIoU of all classes. It can be concluded that those designed networks are most suitable for 

building segmentation. 

Table 5-3. IoU of all classes of 3rd point cloud 

Selection Designed layer structure Ground Vegetation Buildings 

1 [4442] 32.88% 73.21% 92.29% 
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2 [4444] 42.63% 74.56% 95.55% 

3 [44442]  1.37% 74.80% 86.84% 

4 [444422] 39.18% 68.17% 95.99% 

5 [4442] + normals 35.11% 74.59% 95.76% 

6 [4444] + normals 39.47% 75.75% 95.01% 

7 [44442] + normals 34.50% 74.09% 94.55% 

8 [444422] +normals 41.67% 68.61% 95.32% 

Table 5-4. IoU of all classes of 26th point cloud 

Selection Designed layer structure Ground Vegetation Buildings 

1 [4442] 27.33% 73.38% 91.55% 

2 [4444] 31.69% 76.95% 92.56% 

3 [44442] 27.95% 74.76% 91.68% 

4 [444422] 35.64% 66.98% 91.58% 

5 [4442] + normals 30.97% 76.88% 92.97% 

6 [4444] + normals 37.20% 73.03% 92.73% 

7 [44442] + normals 26.14% 68.04% 88.06% 

8 [444422] +normals 35.69% 69.36% 92.36% 

 

The detailed results of the three vegetation classes are listed in Table 5-5 for the 3rd point 

cloud and Table 5-6 for the 26th point cloud. Similar to the results shown in Table 5-2, the 

selections including the '[4444]' layer configuration always performed better results than 

other selections. Detailly, '[4444] + normals' performed best among all designed selections 

for the test of the 3rd point cloud. '[4444]' performed outstanding results than the rest of the 

selections for the 26th point cloud. 
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Table 5-5. Detailed results of the three vegetation classes in the 3rd point cloud 

Selection [4442] [4444] [44442] [444422] [4442] + 
normals 

[4444] + 
normals 

[44442] + 
normals 

[444422] 
+normals 

Low 
vegetation 

TP 774799 672045 1002111 738720 783470 686330 763643 622577 

FN 253665 356419 26353 289744 244994 342134 264821 405887 

FP 426896 270654 733806 335096 389997 314421 377692 273415 

IoU 53.24% 51.73% 56.86% 54.18% 55.23% 51.11% 54.31% 47.82% 

Medium 
vegetation 

TP 778993 841360 791805 853989 839397 815517 858775 830808 

FN 112433 50066 99621 37437 52029 75909 32651 60618 

FP 71173 86736 95798 180762 101418 49905 124594 140742 

IoU 80.93% 86.01% 80.21% 79.65% 84.54% 86.63% 84.52% 80.49% 

High 
vegetation 

TP 495281 487907 511340 390791 476795 515173 468958 440389 

FN 56592 63966 40533 161082 75078 36700 82915 111484 

FP 27564 15838 33689 913 15734 23693 10262 16184 

IoU 85.48% 85.94% 87.32% 70.69% 84.00% 89.51% 83.42% 77.53% 

Mean IoU 73.21% 74.56% 74.80% 68.17% 74.59% 75.75% 74.09% 68.61% 
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Table 5-6. Detailed results of the three vegetation classes in the 26th point cloud 

Selection [4442] [4444] [44442] [444422] [4442] + 
normals 

[4444] + 
normals 

[44442] + 
normals 

[444422] 
+normals 

Low 
vegetation 

TP 4232093 4051103 4242372 3814868 4153723 3794905 3100359 3932447 

FN 657599 838589 647320 1074824 735969 1094787 1789333 957245 

FP 1539597 1330859 1501529 1138790 1385659 1067600 1270126 1175222 

IoU 65.83% 65.12% 66.38% 63.28% 66.19% 63.70% 50.33% 64.84% 

Medium 
vegetation 

TP 232557 258324 264187 249026 262487 260775 250942 254893 

FN 74469 48702 42839 58000 44539 46251 56084 52133 

FP 13471 12690 24525 32264 17647 23696 21787 28416 

IoU 72.56% 80.80% 79.68% 73.40% 80.85% 78.85% 76.32% 75.99% 

High 
vegetation 

TP 52990 55668 50743 41562 54126 49660 52013 43486 

FN 11681 9003 13928 23109 10545 15011 12658 21185 

FP 145 882 202 5 80 215 2480 1 

IoU 81.75% 84.92% 78.22% 64.26% 83.59% 76.53% 77.46% 67.24% 

Mean IoU 73.38% 76.95% 74.76% 66.98% 76.88% 73.03% 68.04% 69.36% 
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5.5 Conclusion 

To improve LOLSS using DL networks, this chapter aimed to analyse the possible benefits 

of adding surface normal information and changing layer structures of the random down-

sampling stage. Eight feature selections were designed for the experiment and a manually 

labelled dataset was created. The results show that the network can always have acceptable 

predicted segmentation with a mIoU value over 70% that adds surface normal information 

with four random down-sampling layers whose sampling ratios are 4, 4, 4, and 4 of those 

layers. This structure is always higher by at least 1% than other combination selections. 

Moreover, all the designed networks are most suitable for building segmentation among all 

labelled classes. This may be attributed to the fact that the features of the building class are 

more prominent and readily learned by DL networks compared to other classes, namely 

ground and vegetation. The findings in Table 5-2 also show that the second structure is the 

best for ground segmentation and the sixth is the best for vegetation segmentation. This 

chapter is beneficial for building extraction from Lidar data in applications such as urban 

planning or predisaster 3D land cover information storage. 

There are some suggestions for future studies. Firstly, additional datasets are suggested to 

be incorporated. The point clouds chosen from different places can be used to test the 

generalisability of the proposed DL networks in future. Secondly, other features can be 

added or revised in the structure of a DL network to exploit their potential benefits of 

improving segmentation accuracy. Since this chapter is the preparatory work for Chapter 6, 
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[4444] was chosen as the down-sampling layer configuration for the next Chapter 

according to the findings of this chapter. 
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Chapter 6  

Large-scale predisaster colourised Lidar semantic 

segmentation3 

6.1 Background and scope 

The frequency of destructive natural disasters is on the rise due to the increasing occurrence 

of extreme weather events attributed to climate change. Natural disaster management has 

gained significant global attention recently (Liu et al., 2022). To avoid the disastrous and 

chaotic aftermath, pre-emptive measures are valuable before the impact of a disaster. 

Predisaster information storage allows post-disaster decision-makers to strategize rescue 

routes and determine suitable locations for temporary housing, thereby enabling swift 

disaster response.  

 

3 The content presented in this chapter is partially adopted from the following published paper: “Liu C, Ge 

L*, Xiang W, Du Z, and Zhang Q, 2023. Channel Attention and Normal-based Local Feature Aggregation 

Network (CNLNet): A Deep Learning Method for Predisaster Large-scale Outdoor Lidar Semantic 

Segmentation. IEEE Transactions on Geoscience and Remote Sensing. 62, pp. 1-12. DOI: 

10.1109/TGRS.2023.3339475.” It has been acknowledged and detailed in the “Inclusion of Publications 

Statement” for this thesis. 
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As a component of predisaster information storage, the retention of predisaster urban land 

cover visualisation data is invaluable for disaster analysis reconnaissance (He et al., 2016b). 

These data should be stored and periodically updated to expedite post-disaster analysis and 

management processes. However, conventional in-situ data collection methods have several 

issues, including being labour-intensive, time-consuming, costly, and potentially dangerous. 

Remote sensing technology offers a swift and efficient alternative for urban land cover 

visualisation data collection due to its capacity to acquire extensive data on a large scale 

with relative ease. 

Lidar has recently gained significant attention in remote sensing because of its 3D 

information and higher vertical accuracy with better penetration than conventional 

photogrammetry. Compared with conventional in-situ urban data collection methods, Lidar 

usually spends less time, which helps operators save time and labour costs (Zhang et al., 

2022). Due to the rapid development of DL, there has been a burgeoning interest in its 

application to remote sensing-based Lidar semantic segmentation in recent years (Guo et al., 

2020). Therefore, a DL-based Lidar semantic segmentation could solve rapid predisaster 

land cover visualisation data collection and storage. 

Unlike 2D imagery, Lidar point cloud data belong to non-Euclidean geometry data. 

Therefore, semantic segmentation methods for 3D data cannot simply be decreased to 2D 

segmentation. Reducing the dimensionality from 3D to 2D inevitably results in the loss of 

information. To design DL methods suitable for 3D semantic segmentation while retaining 

the inherent 3D data, the development of point-based networks began in 2017. 
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In 2017, PointNet directly took points as its input, which was the first point-based network. 

It learns features with a shared MLP (Qi et al., 2017a). Nevertheless, the local structures 

and the mutual interactions between features cannot be extracted by a shared MLP in 

PointNet (Qi et al., 2017a). To learn richer local geometry in point clouds and capture a 

broader context for each point, several methods have been introduced to develop PointNet, 

such as neighbouring feature pooling. In particular, PointNet++ was proposed soon after 

the generation of PointNet to categorise points hierarchically and progressively learn from 

larger local regions. It achieved better results than PointNet according to the conducted 

experiments (Qi et al., 2017b). Following PointNet++, Jiang et al. (Jiang et al., 2018) 

introduced a PointSIFT module to stack and encode the point information from eight spatial 

orientations using a three-stage ordered convolution process.  

Given the rapid advancements in point-based DL methods for 3D semantic segmentation, 

certain scholars have commenced discourse on the topic of large-scale outdoor Lidar 

semantic segmentation (LOLSS). For instance, RandLA-Net was proposed for LOLSS as a 

lightweight network for saving processing time (Hu et al., 2020). It applies random point 

down-sampling to attain a high level of efficiency in memory and computation. A local 

feature aggregation unit was further proposed to capture and retain geometric features. 

However, there is still a lack of enough studies for large-scale scenarios in the computer 

vision field. Most advanced networks are still only designed for small or indoor scenes. 

Moreover, there is still a lack of full development of semantic segmentation methods for 

the predisaster land cover information storage purpose. In detail, several possible methods 

have not been fully discussed for disaster-related research, and DL networks have not been 
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extensively trained to account for the potential occurrence of natural disasters in the 

selected datasets' locations. Therefore, there is a lack of efficient and accurate Lidar 

semantic segmentation methods that can classify predisaster large-scale land cover 

classification. 

In order to solve these problems, this chapter aims to provide a DL LOLSS network by 

creating a dataset tailored to the targeted task to store the 3D information of predisaster 

large-scale outdoor land cover objects.  

6.2 Data and study extents 

This study chose four own labelled places and one public dataset to test the proposed 

network. The own labelled places include Kapiti Coast, Tasman, Nelson, New Zealand, and 

Kumamoto, Japan. These four places were chosen because they are both tectonically active 

urban areas near the sea. They are difficult sites for in-situ observations and contain several 

potential natural hazards (Kapiti Coast District Council, 2022). Moreover, three of them 

have already caused serious natural disasters. Continuous heavy rain caused severe 

landslips and flooding in Tasman and Nelson in August 2022 (Nelson Government, 2023), 

and a severe earthquake occurred on 16/04/2016 in Kumamoto, Japan (Yamada et al., 

2017). This study chose the data whose collection dates were near the floods and before the 

earthquake.  

The original labelled classes from these own labelled datasets are listed in Table 6-1. All 

unlabelled point clouds were ignored during experiments. The original Lidar point clouds 

of these places do not include colour information, so this study needs to add corresponding 
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colours to Lidar data in the pre-processing step. The colour information of RGB bands from 

optical images is a viable choice for finishing this task. Therefore, this study collected 

optical images from the same places of the Lidar datasets to fuse 3D Lidar and 2D images. 

The detailed pre-processing steps for each place are introduced in Section 6.3. 

Lidar data and optical images with RGB bands of these four places are shown in Table 6-2. 

S2 images of all places were collected. KOMPSAT-3 (K3) images for the 2016 Kumamoto 

pre-earthquake Lidar data were also collected to test the influence of image resolution on 

the performance of the proposed network (refer to Section 6.4.5). Since the Lidar data of 

the datasets were collected by different organizations, their parameters are different. 

Considering this, the Kapiti Coast, Tasman, and Nelson datasets were applied for both DL 

training (and validation) and testing stages, while the Kumamoto dataset was only utilized 

in the testing stage to test the generation capability of the networks trained with the other 

datasets. 

Semantic3D is a large-scale open-source dataset. It was chosen to compare the accuracy of 

the proposed method and other well-known DL networks for Lidar semantic segmentation. 

Section 6.2.1 introduces detailed information on the three datasets from New Zealand. 

Section 6.2.2 introduces the Kumamoto dataset collected before the 2016 Kumamoto 

Earthquake. Section 6.2.3 introduces the Semantic3D that is applied in this study. 

Table 6-1. Original labelled classes of the data 

Lidar dataset Number of labelled 
classes Labelled classes 
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Kapiti Coast Tasman, 
Nelson 5 Ground, low vegetation, medium vegetation, 

high vegetation, buildings 

Kumamoto (pre-
earthquake) 4 Ground, low vegetation, medium vegetation, 

high vegetation 

Table 6-2. Data information 

Location Potential disaster 

Point cloud Optical image 

Data Point 
density 

Acquired 
date Satellite SR, 

m/pxl 
Acquired 

date 

Kapiti 
Coast 

Earthquakes, storms, 
floods, landslides Lidar 27.95 

pts/m2 
13/03 to 

15/03/2021 S2 10 24/07/2021 

Tasman 
Floods Lidar 15.05 

pts/m2 
23/082022 to 
06/09/2022 S2 10 15/09/2022 

Nelson 
Kumamoto 

pre-
earthquake 

Earthquakes, storms, 
floods, landslides Lidar 2.94 

pts/m2 15/04/2016 
K3 0.5 15/04/2016 

S2 10 03/03/2016 

 

6.2.1 Kapiti Coast, Tasman, Nelson in New Zealand  

49 selected patches of point cloud data from New Zealand were selected in this study, as 

shown in Figure 6-1. 26, 7, and 16 are from Kapiti Coast, Tasman, and Nelson, respectively. 

The number of Lidar data was chosen because of considering the number of Semantic 3D 

data (Hackel et al., 2017) applied in RandLA-Net (Hu et al., 2020) since this study is 

developed from RandLA-Net. The training, validation, and testing data are shown in 

indicolite green, olivine yellow, and sugilite sky colours in Figure 6-1. The dataset contains 

five classes labelled by experts from the data provider, as shown in Table 6-1, including 

ground, low vegetation, medium vegetation, high vegetation, and buildings 
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(Opentopography, 2022, Opentopography, 2023). All these labels are kept in this study as 

the information of all these classes is necessary for recovery plans. 

This study chose S2 images for colour fusion because it is free and easy to access. After 

checking all S2 data with the date near the dates of Lidar collection, the dates of S2 images 

were chosen, as shown in Table 6-2. The images of other dates either contain several clouds 

or are in the dark. 

 

Figure 6-1. Locations of datasets in New Zealand; (a) Kapiti Coast; (b) Tasman; (c) Nelson 

6.2.2 Kumamoto pre-earthquake dataset 

A mainshock of the 7.0 MW Kumamoto earthquake struck on 16/04/2016. Four types of 

pre-earthquake data in Kumamoto were utilized in this study, as shown in Figure 6-2, 

(a)

(b)

(c)
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including a Lidar point cloud (Figure 6-2 (a)), a building outline shapefile (Figure 6-2 (b)), 

an optical image from K3 satellite (Figure 6-2 (c)), and an optical image from S2 satellite 

(Figure 6-2 (d)). The colour from blue to red shown in Figure 6-2 (a) represents the 

increase in elevation. 

  
Figure 6-2. Data applied for the fusion of optical images and Lidar point cloud data in the 

Kumamoto pre-earthquake dataset 

The original labelled classes in the Lidar point clouds were ground, low vegetation, 

medium vegetation, and high vegetation. The building class is an integral part of predisaster 

information collection, but the original Lidar dataset did not have this class, so the building 

footprint information was added to the Kumamoto dataset during the pre-processing, which 

(a) Point cloud (b) Building outlines

(c) K3 image shown in RGB bands (d) S2 image shown in RGB bands
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will be introduced in Section 6.3.2. Optical images from two satellites with different 

resolutions to test if the image spatial resolution will influence the accuracy of the proposed 

network. K3 is 0.5m per pixel (/pxl), and S2 is 10m/pxl.  

Detailly, Figure 6-2 (c) is a K3 Ortho-ready Correction L1O image in PSG 32652 projected 

coordinate system. Its resolution is 0.5m/pxl. The L1O mode removes errors caused by the 

satellite’s posture or position and matches the geographic coordinate system. Figure 6-2 (d) 

is an S2 image in UTM84-52N projected coordinate system. Only the S2 Level-1C (L1C) 

image is chosen because of its acquisition date. This study, therefore, converted the L1C 

product to its corresponding L2A product with SNAP software. This conversion included a 

scene classification and an atmospheric correction applied to L1C orthoimage products. 

6.2.3 Semantic3D dataset 

Semantic3D dataset is one of the most popular open-source point cloud datasets for DLSS. 

Eight labelled classes from this dataset were chosen in this study, including natural terrain, 

high vegetation, low vegetation, buildings, hard scape, scanning artifacts, and cars. Four 

point clouds were selected for the network test according to the design of the RandLA-Net 

backbone. 

6.3 3D data pre-processing: Data fusion of Lidar data with satellite RGB 

data 

The main task of this step was to incorporate colour information into Lidar data. Although 

the Lidar coordinate systems varied among different datasets, this study disregarded these 
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differences during training. However, it is essential to ensure that the coordinate systems of 

satellite images and Lidar data within the same dataset are consistent. Therefore, all other 

data, regardless of whether they were in projected or geographic coordinate systems, were 

transformed to match the coordinate system of the Lidar data. 

6.3.1 Pre-processing of the three datasets in New Zealand 

Some pre-processing steps were applied before training the DL network, as shown in 

Figure 6-3. Since the original Lidar point data do not have colours, this study fused 2D 

optical images and 3D point clouds to obtain the colour point cloud using Feature 

Manipulation Engine (Safe Software, 2022). First, the point clouds were loaded. Second, 

the colour optical data were reprojected from UTM84-60S to the same coordinate system as 

the Lidar. Thus, the colour was added to the top points in each point cloud according to the 

coordinate system. The optical image was collected from S2, and only RGB bands were 

applied in this study. Then, the point cloud and the RGB image were fused to obtain the 

colourised point cloud. 



Chapter 6: Large-scale predisaster colourised Lidar semantic segmentation 

133 

 

Figure 6-3. Workflow of Kapiti Coast data fusion with adding RGB information 

6.3.2 Pre-processing of Kumamoto pre-earthquake data 

The original non-colour Lidar dataset contains only four classes without the building class. 

Since information about the building class and colours is essential for this study, both 

colour bands and building outlines were fused into Lidar point clouds in Feature 

Manipulation Engine, as illustrated in Figure 6-4. 

The first fusion is adding building outlines in Lidar. The originally downloaded coordinate 

system for building outline polygons is the LL-WGS 1984_0 geographic coordinate system. 

It was reprojected to JGD2K-02 projected coordinate system (the coordinate system of the 

Lidar data), and then point clouds in building outlines were classified as ‘building’. 
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The second fusion is adding colour. K3 and S2 images were reprojected to the JGD2K-02 

coordinate system to match the system of Lidar. Then, the reprojected RGB bands from 

clipped optical images were fused with Lidar. The fusion results were the reprojected 

colourised Lidar point cloud dataset with the five classes. 

 

Figure 6-4. Workflow of Kumamoto pre-earthquake data fusion with adding the building 

class and RGB information 

Source 1:
Building
polygon

Source 2:
Point cloud

Reprojection

Fusion 1:
Adding the building class

information

Source 3:
RGB optical

data

Reprojection

Fusion 2:
Adding RGB color

Re-projected
colorized

point cloud

Four classes: Ground, low
vegetation, medium

vegetation, high vegetation

Five classes:
Buildings, ground,

low vegetation,
medium vegetation,

high vegetation

Start

End

Start/End

Process

Data details

Flow lines

Input/Output



Chapter 6: Large-scale predisaster colourised Lidar semantic segmentation 

135 

6.4 Methodology of the channel attention and normal-based local feature 

aggregation network (CNLNet) 

This study proposed a DL method called CNLNet for LOLSS. The main improvements 

include adding normal information and the CA mechanism in the backbone.  

CNLNet adds these two possible helpful approaches in the backbone to increase the 

accuracy of LOLSS. Surface normal information is important in several point cloud 

applications. The attention mechanism is widely confirmed effective in 2D or small-scale 

3D DL networks. However, they are not always applied in large-scale predisaster scenarios. 

Therefore, this study added these two to enhance the backbone and developed a module in 

it. 

6.4.1 Surface normal information addition and data preparation 

This section introduces how to calculate the surface normal during data preparation. The 

collected, revised coloured Lidar data (refer to Section 6.3) required further processing for 

data preparation before the training stage. 

Surface normal information is one of the essential properties of a geometric surface, and it 

finds applications in various research areas. For instance, in computer graphics, light 

rendering depends on normal information to generate shadings and other visual effects to 

look more realistic. Therefore, this chapter evaluates the impact of surface normal 

information on enhancing the accuracy of semantically segmenting large-scale point clouds. 

The process of adding normal information involves four main steps: data format 
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transformation, voxel grid down-sampling, computation of normal estimation, and data 

storage, as depicted in Figure 6-5. Voxel grid down-sampling is necessary because using 

the original massive point cloud data as inputs in the computer is impractical. 

 

Figure 6-5. Workflow of data preparation with adding surface information 

In the first step, in order to have the same data format for all point clouds, the clouds with 

the ‘.las’ format were transferred to the ‘.ply’ format. This is because the proposed network 

was designed for processing point clouds in the ‘.ply’ version. The values of each colour 

band in the ‘.las’ format were divided by 255 before transferring to the ‘.ply’ clouds. To 

calculate the normal on a point, the local surface must be estimated to represent itself and 

its neighbours. Hence, the coordinate values of each point were necessary. Since colour 

information was also needed in this study, both the coordinate values and RGB colour 

information were stored for the next step.  
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In the second step, voxel grid down-sampling was applied to all points. The volume of the 

originally collected point cloud data is exceptionally large in most situations. Thus, the 

volume is always reduced by down-sampling without affecting the characteristics of a point 

cloud. This operation can help to save processing time and avoid out-of-memory during 

training networks. The grid size was 0.5 m in this study. 

Thirdly, surface normal information was calculated. To add surface normal information, 

this study applied Open3D, an open-source Python library, to generate normals. This is 

because Open3D has already encapsulated the function. The built-in function 

‘estimate_normals’ finds K -nearest neighbour points within a radius and calculates the 

principal axis of the adjacent points using covariance analysis (Open3D). The function 

chooses a point and its K -nearest neighbours (i.e., 1 + K points in total) to estimate a plane 

using the least square method and then makes a vertical line of the plane through that point, 

which is its normal vector. Specifically, the problem of estimating the surface normal of a 

point is simplified as an analysis of eigenvectors and eigenvalues of the covariance matrix 

calculated from the nearest neighbour of the point. In this study, the search radius was 0.1m, 

and the maximum nearest neighbour was 30 using KDTree search for neighbourhood 

search, which are default numbers in Open3D. Choosing default numbers because these 

parameters are not the focus of this study. 

The normal orientation problem of surface normal calculation should be noted. Two normal 

candidates with opposite directions are produced from the covariance analysis algorithm. 

Without knowing the global structure of geometry, both can be correct, which could cause 

problems. Therefore, Open3D tried to orient the normal to align with the original normal if 
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it existed. Otherwise, Open3D made a random guess. Then, normal values were added to 

point cloud data. 

In the fourth step, three types of outputs were stored, as shown in the black rectangle of 

Figure 6-5. Detailly, after producing the point cloud data from the third step, KDTree files 

and projection files are also generated and stored for each point cloud. Each KDTree file 

was named ‘XX_KDTree.pkl’. KDTree files have the information of the nearest N points 

around each down-sampled point. Projection files have stored the number of the down-

sampled points with the shortest distance from each original point. The original points are 

the points before the second step—downsampling. These numbers were stored in files 

named ‘XX_proj.pkl’. Projection files are necessary because point clouds need to be 

restored to the original size after semantic segmentation for the down-sampled ones in the 

proposed network. The restoration needs these numbers for nearest neighbour interpolation. 

Following the above steps, the final outputs include colourised point cloud data in the ‘.ply’ 

format, KDTree files, and projection files. The information in point clouds contains the 

RGB bands, three values of coordinate systems, and three values of the corresponding 

normals. 

6.4.2 The architecture of the proposed network 

The architecture of the proposed CNLNet is shown in Figure 6-6. It is a conventional 

encoder and decoder architecture with skip connections. The inputs contain three types of 

files, including point clouds, KDTrees, and projected numbers of point clouds. The 

architecture has four encoding and decoding layers. As shown in those four encoding layers, 
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only a quarter of the point features are retained with the increased feature dimension after 

each layer for down-sampling. Random point sampling is applied for high efficiency of 

memory and computation, as its computational complexity is only O(1). After that, the 

point features are up-sampled gradually through a nearest-neighbour interpolation in the 

four decoding layers (Hu et al., 2020). The final output is obtained through shared fully 

connected layers. The final output is the predicted class of each point. To be noticed, this 

study adds contents in red rectangles, including normal information and CA in the local 

feature aggregation (LFA) module. The details of the backbone including LFA and CA are 

introduced as follows. 

 

Figure 6-6. The architecture of the proposed with the amalgamation of the surface normal 

information and CA 

Datasets in New Zealand were applied for training, validation, and testing with the number 

of point clouds 38, 6, and 5, respectively. Kumamoto data were only applied for the tests, 

because this area is too small to separate it into three parts for training, validation, and 

testing. 
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6.4.3 RandLA-Net backbone 

The backbone of the proposed network is RandLA-Net, that is, ‘random sampling and an 

effective local feature aggregator network’ (Hu et al., 2020). Although several networks 

showed promising results for small point cloud semantic segmentation, most cannot 

directly scale up to large scenarios. This is because of their high memory and 

computational costs. The benefit of RandLA-Net is that it was designed for large-scale 

point cloud semantic segmentation with less memory and computation, which is suitable 

for predisaster tasks. Therefore, this study chose it as the backbone.  

RandLA-Net is a lightweight point-wise MLP network. Point-based DL methods for 

semantic segmentation can be roughly divided into pointwise MLP, point convolution, 

RNN-based, and graph-based methods (Guo et al., 2020). MLP is a supplement of a feed-

forward neural network, including the input layer, the output layer, and the hidden layers. A 

sample structure is shown in Figure 6-7 to explain the relationships between these three 

layers.  

 

Figure 6-7. Sample structure of MLP 
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RandLA-Net designed a local feature aggregation (LFA) module with shared MLP 

preserving local geometric structures and other useful local features, as shown in Figure 6-8. 

The LFA module has two key units: Local spatial encoding (LocSE) and attentive pooling 

(AP). Their details are shown in Figure 6-9. The LocSE unit is applied for local geometric 

structures, and the attentive pooling unit is applied for saving those useful local features. In 

the LocSE unit, the K -nearest neighbours algorithm (KNN) is utilized to find neighbour 

points based on the point-wise Euclidean distances. K represents the number of neighbour 

points. K is 16 in this study. After finding the neighbour points, MLP is applied to encode 

the relative point positions between every centre point and its neighbouring points. Hence, 

the local geometric structures are encoded for every centre point to augment neighbouring 

point features by LocSE. After that, the attentive pooling unit is applied to aggregate the 

neighbouring point features. This unit applied shared MLP followed by SoftMax function 

to learn a unique attention score for every feature. Then, the features are weighted and 

summed. RandLA-Net stacks multiple LocSE and AP units with a skip connection as a 

dilated residual block. In order to avoid overfitting during the training stage and keep 

computation efficiency, only two sets of LocSE and AP are stacked (Hu et al., 2020). 

 

Figure 6-8. The architecture of the LFA module 
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Figure 6-9. Structure details of the CA added to the modified LocSE and AP 

6.4.4 Channel attention in CNLNet 

CA was added to the proposed network to examine its effect on the final output. Adapting 

the previous work of a multi-branch network (Geng et al., 2021), CA applied this study that 

deduces the channel number to 1 and then recovers back to the original number. With this 

operation, the relevance between each channel and key information in channels can be 

more obvious and easier for the computer to learn. The benefit of this attention mechanism 

is that it can usually help to achieve significant improvement in accuracy in terms of 2D 

semantic segmentation (Hu et al., 2018). Moreover, since the accuracy needs to increase 

and LFA does not contain CA, this study applied CA in 3D semantic segmentation to test 

its effects. 

Normals

Coordinates

Neighbor
index

Color

Finding
neighbouring points ConvolutionB × N×16 × 131

1 The dimension should be B × N × 16 × 10 for Networks 3 and 4, because no surface
normal information in them.

B × N × 16 × 𝑔𝑔
2

B × N × 16 × 𝑔𝑔
2

B × N × 16 × d

Channel
attention B × N × 16 × 𝑔𝑔

2

+

1st Attentive
pooling (AP)

Point Feature
Augmentation

Convolution B × N × 16 × 𝑔𝑔
2

B × N × 1 × 𝑔𝑔
2

B × N × 16 × 𝑔𝑔
2

Convolution

+

B × N × 16 × d

2nd Attentive
pooling (AP)

B × N × 1 × d

1st Local spatial encoding (LocSE)

2nd Local spatial encoding (LocSE)

B: batch size
N: number of points
d: output dimension

Channel
attention



Chapter 6: Large-scale predisaster colourised Lidar semantic segmentation 

143 

The novel proposed network consists of LFA and CA with surface normals. CA is added 

into the LocSE unit of the LFA module as shown in red rectangles of Figure 6-9. The 

details are explained in Figure 6-10. K and d represent the number of neighbour points, and 

the feature dimension, respectively. First, the matrix is transposed from (K, d) to (d, K). 

Then, the transposed is multiplied by the original matrix. The dimension of the 

multiplication result is squeezed to 1 by max pooling and restored to d by copying and 

subtracting an activation function. The multiplication of the original matrix and the restored 

one is operated after that. Last, the attentive result is the sum. 

 

Figure 6-10. Details of CA 

6.4.5 Ablation studies on four in-house labelled datasets 

The design of an ablation study with five evaluation metrics for detecting the impact of 

information and CA on segmentation is introduced in this section. 

Four networks were tested in the ablation study, as shown in Table 6-3. They were 

designed to demonstrate the benefit of adding surface normal information or CA in the 

backbone. The backbone added both normal information and the CA block is Network 1. 

The backbone with only normal information or CA was designed as Networks 2 and 3. The 

(K,d) (d,K)

*

(d,d) (d,1) (d,d)

*

(K,d) (K,d)

+

K: number of neighbor points
d: feature dimension



Chapter 6: Large-scale predisaster colourised Lidar semantic segmentation 

144 

original RandLA-Net backbone network was tested at last, which is Network 4. Each point 

in data is represented by its coordinates, normal, and colour information in Networks 1 and 

2. It is represented by the coordinates and colours in Networks 3 and 4. 

Five evaluation metrics were chosen. These five metrics were calculated for testing the 

segmentation performance of each network, including TP, FN, FP, IoU, and semantic 

segmentation accuracy (SSA). The summation of TP, TN, FN, and FP is the whole number 

of points in one point cloud. TP represents a point whose tested label is the same as its true 

label. TN in each class indicates the points that both its tested and true labels do not belong 

to that class. In the results of a class, FN refers to the point that its tested label does not 

belong to this class, but its true label does. On the other hand, FP in results of a particular 

class means the tested result is in this class but its true label does not. 

The IoU shown in Equation 5-2 is a mathematical way to choose the best network by 

checking the degree of similarity of the output produced by the proposed networks with the 

ground truth. A higher IoU value, a better performance of the chosen network. After 

observing initial results, this study predominately discussed IoU rather than the other four 

metrics (i.e., TP, FN, TP, SSA). It is noted that the IoU applied in this chapter is the same 

as the IoU in Chapter 5. One reason is that IoU contains TP, FN, and FP. Discussing IoU 

would be more helpful for data analysis than only analysing a single TP, FN, or FP. 

Another reason is that several relevant papers utilised IoU as the metric. 

SSA shown in Equation 6-1 was not considered as the main metric mainly because a high 

SSA cannot reflect a good result in this study. The number of each point cloud is huge. If 
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TP, FN, and FP were all very low in one class, TN would be very high in this class. This 

situation thus cannot demonstrate that the results are ideal, although SSA was nearly 1. 

Therefore, SSA can only be considered as a reference metric. 

Mean IoU (mIoU) was also calculated for multi-class-based semantic segmentation. The 

mIoU represents the average between the IoU of all segmented classes over all the images 

of each tested point cloud. All networks were trained ten times, and the network that had 

the highest mIoU value for validation data was chosen to be applied to the test data. It 

shows the correctly segmented area over all the areas that the network segmented. 

Table 6-3. Designed networks of ablation study 

Network 1 
(CNLNet) Network 2 Network 3 Network 4 

Backbone + Normals + 
CA Backbone + Normals Backnoe + CA Backbone 

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹
 6-1 

Besides ablation studies of the proposed network, this study tested the influence of 2D 

image resolution on segmentation results. The Kumamoto pre-earthquake dataset was 

applied for this test. This was because this dataset has two optical images with different 

resolutions. 



Chapter 6: Large-scale predisaster colourised Lidar semantic segmentation 

146 

6.4.6 Comparison on public dataset Semantic3D 

To detect the performance of the proposed network, these four networks were trained and 

tested on the public dataset Semantic3D (Hackel et al., 2017). Only coordinates and RGB 

information with eight labelled classes from the dataset were used to train and test different 

methods. Some well-known and state-of-the-art networks were also tested for comparison, 

including PointNet (Qi et al., 2017a), PointNet++ (Qi et al., 2017b), and ShellNet (Zhang et 

al., 2019b). The tested point clouds were chosen according to the selected test datasets 

provided by (Hu et al., 2020), which include four point clouds. 

6.5 Results 

This section presents the semantic segmentation results of the ablation studies, which 

contain results of the four networks using five metrics with the test data.  

As mentioned above, this study set four datasets as test data. Five classes were tested, 

including buildings, ground, low vegetation, medium vegetation, and high vegetation. 

Visualisation results and quantitative results are stated in this section. Five point clouds 

were tested. The first two tested point clouds are from Kapiti Coast. The third is from the 

Tasman dataset, and the last two are in the Nelson dataset. These two datasets' visualisation 

results and quantitative results are stated in this section. 

6.5.1 Hardware and environment 

In this study, one Nvidia RTX 2080Ti GPU card, CUDA 11.3, Python 3.6, and TensorFlow 

1.15 were applied. Since TensorFlow versions 1 and 2 have huge differences, it would be 

more convenient to use TensorFlow version 1 to fit its version in the original RandLA-Net 
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backbone. Usually, CUDA 11.0 or higher only support TensorFlow 2.X version, according 

to its official document (Tensorflow, 2022). It means TensorFlow 1.X version usually can 

only run with CPU but not GPU if CUDA is 11.0 version or higher in a computer. Hence, 

this chapter added some commands during the environment configuration step to enable 

CUDA 11.3 to the run TensorFlow 1.15 GPU version. “Batch size during training” is 2, and 

“Number of steps per epoch” is 1,000. It took 8 hours to run in the GPU version with 100 

epochs. 

6.5.2 Results of 2021 New Zealand datasets 

Five patches of point clouds were chosen as the test data from the three New Zealand 

datasets. Their visualisation results are shown in  Figure 6-11. Red, blue, dark green, bright 

green, and orange represent buildings, ground, low, medium, and high vegetation, 

respectively. Based on the visual observation, compared with the ground truths of the point 

clouds, most buildings were recognized correctly, but most medium and high vegetation 

points were mistakenly recognized as ground and low vegetation points. 
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Figure 6-11. Visualisation results of ablation study for Kapiti Coast, Tasman, and Nelson 

datasets 

Results for each class with the five metrics are shown in Table 6-4. The first class is the 

bare-ground class. The proposed Network 1 performed best for the ground segmentation 

according to IoU results. Networks 2 and 3 are nearly the same as the backbone. 

The following three classes are the three vegetation classes, including low, medium, and 

high. Medium vegetation segmentation results performed best among these three classes in 

all networks according to their IoUs. In all low vegetation results, Network 4 performed 

best among the four networks with the highest IoUs. The highest IoUs of medium and high 

N
et

w
or

k 
1:

C
N

LN
et

N
et

w
or

k 
3

N
et

w
or

k 
2

N
et

w
or

k 
4:

Ba
ck

bo
ne

G
ro

un
d 

tru
th

1 2 3 4 5

C
ol

or
ize

d
po

in
t c

lo
ud

Ground

Low vegetation

Medium vegetation

High vegetation

Buildings



Chapter 6: Large-scale predisaster colourised Lidar semantic segmentation 

149 

vegetation results were also the results of Network 1. IoUs of low vegetation are always the 

lowest among the three vegetation classes. 

The fifth class is the building class. Network 1 always performs best among all networks, 

but Networks 2 and 3 do not show any significant advantage over the backbone of Network 

4. IoUs of the tested point clouds from the Kapiti Coast dataset in CNLNet are very high, 

which are 0.95 and 0.92, respectively. They are the top two highest among all tested point 

clouds with the top two highest TP values. A probable reason for this is that the number of 

point clouds belonging to the building class in the Kapiti Coast dataset accounts for a 

significant proportion of the total number of building points. 
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Table 6-4. Results of New Zealand datasets 
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After comparing the performance of each network for every class, the result differences 

between the five classes should also be mentioned. Compared with the other classes, the 

building class always has the highest IoU among the five classes in the results of each 

network, which most are higher than 0.90 in some test results. It is convinced that the 

RandLA-Net backbone is suitable for building detection. Segmentation of ground and low 

vegetation performed worst in results according to IoUs. The likely reason is data 

imbalance. The numbers of Lidar points in these classes are lower than those of others. 

6.5.3 Results of 2016 Kumamoto pre-earthquake data 

The 2016 Kumamoto pre-earthquake point cloud dataset with both high and low resolutions 

of optical satellite images was tested. The number of total points in this point cloud is 

1,438,042. As mentioned in Table 6-2, the resolution of the high-resolution image is 

0.5m/pxl, and that of the low-resolution image is 10m/pxl. Figure 6-12 shows their 

visualisation results. Five classes were segmented. Red, blue, light green, bright green, and 

orange represent buildings, ground, low vegetation, medium vegetation, and high 

vegetation, respectively. It can be easily found that most high vegetation points were 

mistakenly segmented as other classes, such as low and medium vegetation. 
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Figure 6-12. Visualisation results of ablation study for 2016 Kumamoto pre-earthquake 

dataset 

Quantitative results of the 2016 Kumamoto pre-earthquake data are shown in Table 6-5. 

The results of the five classes are listed in it. 

Table 6-5. Results of 2016 Kumamoto pre-earthquake dataset 

Class Metric 

Networks 

Network 1 CNLNet: 
Backbone + Normals + CA 

Network 2: 
Backbone + Normals 

Network 3: 
Backbone + CA 

Network 4: 
Backbone 

RGB image 
resolution (m/pxl) 0.5 10 0.5 10 0.5 10 0.5 10 

Ground 

TP 1 1 1 1 1 1 1 1 

FN 740 740 740 740 740 740 740 740 

FP 526,767 526,499 496,807 496,530 446,119 445,199 440,101 441,066 

IoU 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

SSA 0.63 0.63 0.65 0.65 0.69 0.69 0.69 0.69 

Low 
Vegetation TP 0 0 0 0 0 0 0 0 
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FN 7 7 7 7 7 7 7 7 

FP 319,168 319,951 356,297 356,347 377,855 378,374 383,788 383,946 

IoU 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

SSA 0.78 0.78 0.75 0.75 0.74 0.74 0.73 0.73 

Medium 
Vegetation 

TP 3,924 3,830 3,732 3,702 3,935 3,962 4,133 4,083 

FN 51,581 51,675 51,773 51,803 51,570 51,543 51,372 51,422 

FP 269,520 268,099 260,032 259,495 237,357 237,781 248,369 247,419 

IoU 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

SSA 0.78 0.78 0.78 0.78 0.80 0.80 0.79 0.79 

High 
Vegetation 

TP 10,836 10,686 13,183 12,673 11,603 11,725 8,588 8,513 

FN 988,345 988,495 985,998 986,508 987,578 987,456 990,593 990,668 

FP 5,317 5,167 6,262 6,288 5,385 5,445 5,107 4,733 

IoU 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

SSA 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 

Building 

TP 194,893 195,114 185,324 185,713 221,889 221,844 214,358 214,034 

FN 134,076 133,855 143,645 143,256 107,080 107,125 114,611 114,935 

FP 106,641 107,774 114,300 115,356 131,326 131,207 127,371 128,054 

IoU 0.45 0.45 0.42 0.42 0.48 0.48 0.47 0.47 

SSA 0.83 0.83 0.82 0.82 0.83 0.83 0.83 0.83 

 

The first test class is the ground class. All networks performed not so well for this class no 

matter with high or low resolution. The number of FP points is too high, no matter which 
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network. The second class is the low vegetation class. Similar to segmentation results for 

the ground class, IoUs were nearly zero for all networks. Thousands of points were detected 

as low vegetation wrongly. In other words, the FP values of these two classes are high. 

Moreover, nearly no TP points have been detected, as shown in the results of the ground 

and the low vegetation classes. The first probable reason is that the information difference 

of segmentation labels between the training data and these test data is large, which are from 

different datasets. The second possible reason is that the points from those two classes are 

too few to be detected in these test data. 

The next two classes are medium and high vegetation. Although their IoUs were also nearly 

zero, the number of their TP points was much higher than those of ground and low 

vegetation. Besides IoUs, SSA results for medium vegetation were higher than those for 

high vegetation, while the numbers of FP points in medium vegetation results were higher 

than those in high vegetation for all these three networks. 

The last class is the building class. The highest IoUs were the building class results among 

all five detected classes in all networks. This might be because the number of points 

labelled as buildings is high in the training dataset. According to IoUs, Network 3 

performed the best, which shows its generalisability for building segmentation is the best of 

these networks. 

Among all segmented classes, the generalisabilities of all tested networks in the ablation 

study are not ideal except for the building class. There are some possible reasons. Although 

the two datasets both have these five labelled classes and colours, the labelled information 

of the classes in the 2016 Kumamoto pre-earthquake dataset is much different from those of 
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the New Zealand datasets. As mentioned in Section 6.4, only New Zealand datasets are 

applied for training due to the small area of 2016 Kumamoto pre-earthquake data. 

6.5.4 Results of Semantic3D 

The results are listed in Table 6-6. Network 3 has the highest mIoU of the tested eight 

classes. Networks 1-4 all achieve acceptable results compared with the other networks. 

However, Network 1 performed slightly worse than Networks 2 and 3 after adding both 

normal information and CA in the backbone, though it performed best in some class results. 

The probable reason is that Network 1 was overfitted. Overfitting might exist if the network 

is too complicated. In total, the results demonstrate that both surface normal information 

and channel attention have helped with large-scale outdoor point cloud semantic 

segmentation based on the RandLA-Net backbone. Each of them can improve mIoU by 1% 

to 2% than the backbone. This might be due to its overly complicated structure. The 

network's performance with adding both CA and surface information (Network 1) is not as 

good as the network with only adding one. 

Table 6-6. Results of different methods on Semantic3D 

Network mIoU 

Network 1: Backbone + Normals + CA 0.67 

Network 2: Backbone + Normals 0.68 

Network 3: Backbone + CA 0.70 

Network 4: Backbone 0.67 

ShellNet (Zhang et al., 2019b) 0.63 

PointNet++ (Qi et al., 2017b) 0.42 

PointNet (Qi et al., 2017a) 0.41 
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6.6 Discussion of 3D semantic segmentation 

This study designed ablation studies to demonstrate the benefits of adding surface normal 

information and channel attention mechanism in LOLSS for predisaster information 

classification and storage. 

IoUs of the building class were always the highest in the results in all own labelled datasets 

among all tested networks. This reflects that these networks are all suitable for segmenting 

buildings. Besides that, in the test of the Kumamoto dataset, the building segmentation 

IoUs were significantly higher than the results of other classes. The training and validation 

steps did not contain Kumamoto data. Hence, the generalisability of the trained network for 

building segmentation is the highest. Moreover, the results for the Kumamoto point clouds 

with different resolutions of optical satellite images were very similar. It can be concluded 

that the optical satellite image resolutions may have little influence on the performance of 

the proposed model. 

In addition to the analysis of the IoU of each class, the overall IoU of all classes should be 

discussed. As mentioned in Section 6.4.5, the mIoU of each network was calculated to 

analyse its performance considering the results of all classes. The mIoU results for all 

classes in the five tested point clouds are shown in Table 6-7. It should be noted that mIoUs 

of Kumamoto data are not discussed because IoU values of the other four classes are nearly 

zero except the IoU of the building class due to the poor generalisabilities of these four 

classes. Table 6-7 shows that mIoU values of Network 1 are always the highest in these 

networks for all tested point clouds. Moreover, the mIoUs of Network 2 are higher than 
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those of Network 3, so it shows that adding normal information might be more helpful than 

CA to semantic segmentation. 

Table 6-7. Mean IoU of the New Zealand test datasets 

No. 

mIoU 
Network 1: 
Backbone + 

Normals + CA 

Network 2: 
Backbone + 

Normals 

Network 3: 
Backbone + CA 

Network 4: 
Backbone 

1 0.68 0.65 0.62 0.57 

2 0.62 0.55 0.54 0.53 

3 0.66 0.64 0.64 0.64 

4 0.64 0.61 0.61 0.61 

Other metrics also demonstrated that the designed network is suitable for segmenting 

buildings from the background. The TPs of the building class in Table 6-4 and Table 6-5 

are very high. The SSA of the building class in Table 6-4 is nearly 1, and its SSA in Table 

6-5 is the highest among SSAs of all classes. The results for Semnatic3D also demonstrated 

that the designed network is suitable for predisaster land cover object segmentation from 

the background. 

Based on the abovementioned discussion, it can be concluded that surface normal 

information and channel attention can improve segmentation accuracy. The proposed 

CNLNet can improve mIoU by 1% to 11% compared to the backbone in different scenarios. 

Besides that, in contrast to the RandLA-Net backbone and other well-known networks, 

each of these two types of feature information (Networks 2 and 3) can help to improve the 
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accuracy of semantic segmentation. The network with only adding surface information 

(Network 2) is more effective between these two types of networks. 

6.7 Conclusion 

In this study, a network named CNLNet was proposed to enhance the precision of DL-

based LOLSS for predisaster land cover information segmentation and preservation. 

Surface normals and CA were added to this network. A labelled large-scale land cover 

Lidar dataset was first created in this study considering potential natural disaster 

occurrences in selected datasets' places, including Kapiti Coast, Tasman, and Nelson in 

New Zealand and Kumamoto in Japan. Optical satellite images were integrated as inputs. 

Compared with the state-of-the-art RandLA-Net backbone and other renowned networks, 

the findings demonstrate the benefits of surface normal information and CA applied to 

LOLSS. Normal information can provide more feature information, and CA can emphasize 

key information in channels, so they can improve the accuracy of segmentation results. 

Furthermore, the proposed network exhibits the strongest generalisability for the building 

class. Interestingly, the network that incorporated either surface normals or CA alone 

slightly outperformed the one incorporating both during the test on the open-source 

Semantic3D dataset. The likely reason is that overfitting might occur if a network is too 

complex. With the potential to save labour and mitigate in-situ risks, the practical 

implication of this method lies in its applicability for urban land cover segmentation from 

3D Lidar point clouds, particularly for building segmentation. The outcomes can be utilized 

for predisaster urban visualisation data information storage and update, thereby expediting 

post-disaster emergency response efforts. Further research is suggested to find an approach 
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to improve the segmentation accuracy of separating classes other than buildings, such as 

low, medium, and high vegetation. The setting of the direction of surface normals could 

also be discussed in future studies. 



Chapter 7: Large-scale post-earthquake building damage level classification using colourised Lidar data 

161 

Chapter 7  

Large-scale post-earthquake building damage level 

classification using colourised Lidar data4 

7.1 Chapter introduction 

Extreme natural disasters can have devastating consequences, resulting in significant loss of 

life and widespread destruction. For instance, as a severe earthquake that caused the most 

significant number of deaths in the last 15 years, the 2010 Haiti Earthquake resulted in an 

official death toll of about 230,000. Nearly half of all structures collapsed or were severely 

damaged in the epicentral area in this Haiti earthquake, including more than 300,000 homes 

(Desroches et al., 2011). 

In the post-earthquake stage, the primary objective is to rescue individuals and safeguard 

properties. To save lives, rapid post-earthquake emergency response is necessary. The 

initial step of post-earthquake emergency response invariably involves the collection and 

analysis of disaster information. However, it is often hard for rescue teams to decide where 

 

4 The content presented in this chapter is partially adopted from the following submitted paper: “Rapid 

Large-scale Building Damage Level Classification after Earthquakes using Deep Learning with Lidar and 

Satellite Optical Data.” It has been acknowledged and detailed in the “Inclusion of Publications Statement” 

for this thesis. 
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to begin the rescue operation first due to the dearth of prompt building damage information 

immediately following an earthquake. The lack of this information is caused by the 

difficulty of rapidly judging the levels of building damage due to the differences in 

structure and lack of rapid methods. Moreover, the search and rescue resources of the 

stricken areas are usually not sufficient in the first several hours. Most BDLC methods 

request in-situ observations, which are time-consuming, labour-intensive, and sometimes 

dangerous. Those detailed in-situ classifications are not suitable for rapid disaster rescue 

planning. Consequently, the need arises for a fast, reliable, and efficient approach to 

classify building damage levels, aimed at rapidly identifying the most critical areas 

requiring rescue efforts and facilitating a prompt post-earthquake disaster response. 

To address these limitations, remote sensing was applied recently to assess building 

damage levels with the integration of multifarious advanced techniques for a rapid response. 

In the beginning, most remote sensing studies utilized elevation difference and texture 

difference to classify damage levels based on change detection. Recently, DL methods have 

been gradually applied to detect post-disaster information. Moreover, with the fast 

development of Lidar, Lidar data are widely applied in the disaster response field for 

providing building height information. Therefore, DL methods using Lidar data could be a 

rapid approach to quick BDLC. However, the limited availability of publicly available post-

earthquake Lidar datasets is still an issue for training DL networks. This chapter aims to 

reveal the potential and limitations of Lidar-based DL approaches for BDLC by developing 

a DL network with an in-house labelled dataset. A disaster response system is also 
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proposed according to the information of detailed building damage levels obtained from the 

proposed method. 

7.2 Assessing building damage with deep learning and remote sensing 

In recent years, remote sensing has increasingly played a crucial role in BDLC, particularly 

in post-disaster scenarios such as earthquakes. DL-based automatic methods for post-

earthquake BDLC can always be categorised into three types, including image-based 

techniques, Lidar-based techniques, and data fusion methods. Initially, owing to the high 

spatial resolution of available optical images, studies were interested in image-based 

techniques for post-event damage estimation. For instance, Kalantar et al. (2020) assessed 

the adaption of CNN for building damage detection based on pre- and post-earthquake 

orthophoto images. They categorised damage into four levels, including background, no 

damage, minor damage, and debris. Zhan et al. (2022) proposed a modified Mask R-CNN 

model to estimate building damage levels from high-resolution post-disaster aerial images. 

The case study is Mashiki Town, Kumamoto Prefecture, after the 2016 Kumamoto 

Earthquake. Wang et al. (2023) proposed a CNN-based seismic building damage level 

classification method. The experiment data were HRAIs collected in Beichuan town, 

Sichuan, after the 2008 Wenchuan Earthquake. Damaged buildings were categorised into 

three levels including destroyed, severely damaged, and others. These applications show 

that advancements in DL showed promising results in classifying building damage levels 

using optical images. However, most image-based methods utilised only one resolution 

input, and their information may not find slight building damages (Cotrufo et al., 2018), so 

multi-source data methods are suggested to be introduced to improve the accuracy.  
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With the fast development of AI, recent studies proposed various AI methods and 

architectures to assess building damages using Lidar point cloud data. For instance, 

Khodaverdi et al. (2019) developed building damage detection using Lidar for height 

information and high-resolution satellite images (HRSI) by comparing the difference 

between pre- and post-earthquake with the supervised KNN. An area in Port-au-Prince after 

the 2010 7.0 MW Haiti Earthquake was tested. Three levels were categorised, including 

surely damaged, probably damaged, and undamaged. Eslamizade et al. (2021) proposed an 

SVM-based method to generate the building damage map using both pre- and post-

earthquake HRSI and Lidar data. The case study is also the 2010 Haiti Earthquake. 

Damaged buildings were categorised into four levels, including low damage, moderate 

damage, heavy damage, and destructed. While these 3D point cloud-based methods have 

made significant advancements, they mainly focused on machine learning methods. As far 

as we know from a thorough examination of recent literature, there appears to be a scarcity 

of studies focusing on applying DL for post-earthquake BDLC using Lidar point clouds 

(Xiu et al., 2020). Moreover, related recent studies still always chose the same earthquake 

that happened more than ten years ago as the case study, which is the 2010 Haiti 

Earthquake. 

Considering the above knowledge gaps, this study aims to reveal the performance of the 

DL network applied in BDLC with Lidar data. A DL method is developed, and in-house 

labelled datasets are created for a case study where the earthquake happened later, other 

than the 2010 Haiti Earthquake, which is an earthquake that happened in Kumamoto, Japan, 
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in 2016. The building damage is categorised into four levels, from no damage to story 

failure. 

7.3 Data and pre-processing 

The mainshock of a 7.0 MW earthquake happened in Kumamoto, Japan, on 16/04/2016 

(Asia Air Survey Co., 2018). This earthquake was chosen as the study area in this study. 

There were five types of sources applied in this study to build one colourised point cloud 

dataset, including pre-earthquake building footprint vector shapefiles, pre- and post-

earthquake HRSI, post-earthquake Lidar point clouds, and post-earthquake building 

damage level geo-location files. The data collection dates are listed in Table 7-1. The 

available data closest to the date before the earthquake occurrence was chosen as the 

predisaster data for the building footprint shapefile and HRSI. After the pre-processing, 

building damage areas were extracted from both post-earthquake data and the pre-

earthquake building footprint vector map. 

Table 7-1. Data collection date of each source 

Source Data collection date 

Pre-earthquake building footprint shapefile 01/04/2016 

Pre-earthquake HRSI 15/04/2016 

Post-earthquake building damage level 08/09/2016 (No detailed collection date, only 
published date) 

Post-earthquake point clouds 23/04/2016 

Post-earthquake HRSI 20/04/2016 
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The workflow of adding these different types of information into the post-earthquake point 

cloud data is shown in Figure 7-1. Source 1 includes published pre-earthquake building 

footprint shapefiles from the Geospatial Information Authority of Japan (GSI). The shapes 

of the building footprints that they provided are slightly different. Because of that, firstly, 

this research labelled the pre-earthquake non-damage-level building footprints of the 

selected area according to Source 1 with reference to the building outlines in Source 2 - 

pre-earthquake HRSI. The image of Source 2 is shown in Figure 7-2 (a), which was 

collected from KOMPSAT-3 (K3) on 15/04/2016. 

Secondly, the coordinate system of the building footprints was reprojected to the same 

system as Source 2 – post-earthquake non-damage-level point clouds. Thus, the building 

footprint information was added to the point clouds as a labelled class. 

Thirdly, post-earthquake building damage level information was added to those non-

damage-level building footprints according to Source 3 – building damage level 

information shown in Table 7-2 provided by Yamada et al. (2017). Yamada et al. (2017) 

provided detailed wooden building damage levels from in-situ observations and aerial 

photo analysis. They classified the building damage into four levels, including D0 

(no/minor damage), D1-D3 (partially collapsed), D4 (totally collapsed), and D5 (story 

failure). The total number of buildings is 1,041. Descriptions of damage levels and the 

number of buildings on each level are listed in Table 7-2. The labelled building footprints 

with damage levels were achieved after this step, as shown in Figure 7-3. 
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Figure 7-1. Workflow of data fusion for pre-processing 
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(a) Pre-earthquake optical image 

 
(b) Post-earthquake optical image 

Figure 7-2. Pre- and post-earthquake K3 images 
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Table 7-2. Number of buildings in each damage level 

Damage level D0 D1-D3 D4 D5 

Description No/minor 
damage 

Partially 
collapsed 

Totally 
collapsed Story failure 

Number of buildings 371 231 158 281 

 

 

Figure 7-3. Building damage level based on in-situ observation for the 2016 Kumamoto 

Earthquake 

Fourthly, the labelled building footprints shown in Figure 7-1 were fused into Source 4 - 

post-earthquake non-damage-level point clouds. The result of the fusion was the post-

earthquake point clouds with building damage levels. Source 3 was clipped from the post-

earthquake airborne Lidar point cloud dataset published by Asia Air Survey Co. (2018) for 

this earthquake with a point density of 4.47 points/m2. The selected area is shown in Figure 
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7-4. This original dataset only contains labels of ground and three types of vegetation 

(low/medium/high) without any colour information.  

In order to fuse colour information with the Lidar data, post-earthquake HRSI (Source 5) 

was applied. This post-earthquake HRSI was collected from K3 on 20/04/2016, with only 

RGB bands utilized in this research, as shown in Figure 7-2 (b). Before the fusion, it is 

necessary to reproject the coordinate system of Source 5 to the same system of the point 

clouds achieved from the fourth step, which is the fifth step. 

After the reprojection, colours with RGB bands from the reprojected post-earthquake HRSI 

were fused with the post-earthquake point clouds processed from the fourth step, which was 

the sixth step. 

The final data pre-processing result was a colourised post-earthquake point cloud dataset 

labelled four building damage levels. It should be noted that only the labels of the building 

class were kept in this study, because other classes labelled in the original point clouds 

were not the research target. 
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Figure 7-4. Post-earthquake point cloud 

7.4 Methods 

7.4.1 Architecture of the deep learning network 

The backbone DL network in this study was RandLA-Net (Hu et al., 2020). While various 

DL networks have been published, most of them were designed for small or indoor 

scenarios. RandLA-Net, on the other hand, was explicitly proposed for extensive outdoor 

Lidar semantic segmentation. Therefore, it was adopted as the backbone due to the study's 

focus on large-scale outdoor scenarios. The details of the architecture of RandLA-Net are 

provided in its original publication paper (Hu et al., 2020), so the introduction of RandLA-

Net is omitted in this study.  
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This study revised RandLA-Net by adding surface normal vectors. Surface properties have 

been applied in numerous studies for building damage assessment, such as vertical zenith 

information, planarity, surface normals, and the angles between surface normals. For 

instance, Axel and Van Aardt (2017) applied normal vectors and curvature of post-disaster 

Lidar points for assessing building damage. As a result, this chapter added surface normal 

information as an input. The developed architecture formulated for this purpose is 

illustrated in Figure 7-5. 

There are four types of information selected as inputs, as shown in the left bottom of Figure 

7-5, including colour information, coordinates of points, normal vectors of points, and 

labelled building damage levels. The surface normal vectors were calculated by the 

encapsulated ‘estimate_normals’ function in Open3D, an open-source Python library. This 

function in this chapter was set to find 30 nearest neighbour points of a point within a 0.1 m 

radius and to estimate a plane using the least square method with these points. After that, a 

vertical line of the plane went through that point, which is its normal vector. 

The details of these inputs were subsequently stored, as depicted in the light green sections 

of Figure 7-5. This encompasses the information from point clouds, KDTree files 

containing the index of neighbouring points for each point, and projection files for the up-

sampling step in the architecture. This light green information was retained as a part of the 

original RandLA-Net architecture. After that, these inputs underwent down-sampling and 

up-sampling processes, culminating in the production of four building damage levels as the 

final outputs. Consequently, the output of this network consists of building footprints with 

four damage levels, as shown in Figure 7-5. 
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Figure 7-5. The architecture of the deep learning network applied in Chapter 7 

7.4.2 Experiment information 

Considering the total number of buildings, 200 and 100 buildings were randomly chosen 

for DL network validation and testing, respectively. Ten point cloud samples of tested 

buildings are shown in Figure 7-6. Data augmentation was applied, such as rotation and 

random scaling of each input during training with GeForce RTX 2080 Ti GPU. The 

maximum epoch during training is 50. Surface normal information was added according to 

the experiment results from the experiments implemented by Liu (2023). IoU of each level 

was calculated for each test building. The level with the highest IoU was recognized as the 

tested level of this building. 
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Figure 7-6. Damage levels of 10 sample tested point clouds 

The IoU of each building damage level is the result of the number of TP points divided by 

the number of TP, FP, and FN points in that level. The meanings of each damage level are 

shown in Table 7-3. For example, In the context of the evaluation, TP indicates that a point 

was categorised as damage level D0, and its true level is also D0. 

Table 7-3. TP, TN FP, and FN of each point in the test dataset 

                                                Ground 
Result                                               
truth 

True False 

True TP FP 

False FN TN 

After getting the classification outputs according to the IoU of each building, the accuracy 

of each level was calculated, which is the result of the truly categorised number divided by 

the total number of that class. The mean accuracies of all levels are calculated considering 

D0 D0 D0 D0 D1-D3

D1-D3 D5 D4 D5 D5

Test 1 Test 2 Test 3 Test 4 Test 5

Test 6 Test 7 Test 8 Test 9 Test 10

241 277 208 446 1075

153 1047 407 1375 307

Damage level
Number of points

Damage level
Number of points

D0

D1-D3

D4
D5
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the weight of each level. The results of the proposed method and the original RandLA-Net 

backbone. 

7.5 Results and discussion 

7.5.1 Results for the proposed method 

As mentioned in Section 7.4.2, 100 samples were randomly selected and tested. The 

locations of the randomly chosen point clouds are shown in Figure 7-7. The classification 

results are listed in Table 7-4. Different than TP of each point shown in Table 7-3 for 

calculating IoUs, the TP value in Table 7-4 represents that the classification result of each 

building sample is the same as its ground truth level. The classification result of each 

building was decided by the highest IoU result among all damage level results. For instance, 

if the D0 level had the highest IoU of a tested building, the building would be labelled as 

D0. If its ground truth is also D0, this building would be considered as TP in Table 7-3. 

As introduced in Section 7.4.2, accuracy was applied for the evaluation, which is the result 

of the TP of each class divided by the total number of buildings at that damage level. It can 

be found that the accuracies of D0 and D5 are much higher than D1-D3 and D4 in Table 

7-4. The two levels in the middle, i.e., D0-D3 and D4, were hard to detect. Partial points of 

one building in those levels were detected correctly in those two levels, but most points 

were categorised as D0 or D5. Therefore, the classification results of them were incorrect. 

A possible reason for this could be the feature difference between the middle two levels 

was not as obvious as the other two. Even the visual interpretation method finds it difficult 

to distinguish D1-D3 and D4 between these point clouds building damage levels. The 
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number of points in each test building is listed in Table 7-5 with its ground truth label and 

the classification result. 

 

Figure 7-7. The locations of 100 tested buildings 

Table 7-4. Building damage level classification results 

Damage level D0 D1-D3 D4 D5 Mean 

Ground truth 41 23 15 21 / 

TP of the proposed model 31 5 2 13 / 

Accuracy of the proposed model 0.76 0.22 0.13 0.62 0.51 

Accuracy of RandLA-Net 0.75 0.19 0.11 0.61 0.50 
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Table 7-5. Details of tested building information 

no. Point 
number True label Tested no. Point 

number True label Tested 

1 388 6 9 51 661 7 9 

2 590 6 9 52 122 7 6 

3 795 6 9 53 485 7 6 

4 701 6 9 54 302 7 6 

5 341 6 9 55 160 7 6 

6 241 6 6 56 153 7 6 

7 269 6 6 57 358 7 6 

8 155 6 6 58 378 7 9 

9 151 6 9 59 382 7 9 

10 294 6 9 60 331 7 9 

11 866 6 6 61 1107 7 9 

12 418 6 6 62 210 7 6 

13 484 6 6 63 241 7 6 

14 96 6 6 64 25 7 6 

15 206 6 6 65 2114 9 6 

16 277 6 6 66 1047 9 9 

17 1018 6 9 67 601 8 9 

18 368 6 9 68 77 8 6 

19 209 6 9 69 659 8 9 

20 759 6 9 70 614 8 9 

21 248 6 9 71 759 8 6 

22 712 6 6 72 649 8 9 

23 687 6 6 73 554 8 9 

24 237 6 6 74 337 8 6 

25 233 6 6 75 255 8 9 

26 208 6 6 76 409 8 9 

27 278 6 6 77 568 8 9 

28 667 6 6 78 350 8 9 



Chapter 7: Large-scale post-earthquake building damage level classification using colourised Lidar data 

178 

29 171 6 9 79 487 8 6 

30 193 6 6 80 272 8 6 

31 251 6 6 81 124 9 9 

32 429 6 6 82 88 8 6 

33 91 6 6 83 2224 9 6 

34 76 6 6 84 780 9 6 

35 236 6 6 85 1019 9 9 

36 446 6 9 86 1375 9 6 

37 792 6 6 87 1357 9 6 

38 625 6 6 88 1496 9 9 

39 443 6 6 89 810 9 6 

40 585 6 6 90 693 9 9 

41 530 6 6 91 287 9 9 

42 1600 7 9 92 896 9 9 

43 408 7 9 93 536 9 6 

44 255 7 9 94 581 9 9 

45 512 7 9 95 662 9 9 

46 1075 7 9 96 307 9 6 

47 390 7 9 97 391 9 6 

48 329 7 9 98 331 9 6 

49 227 7 9 99 481 9 9 

50 668 7 9 100 299 9 6 
 

The results of the proposed method and the RandLA-Net backbone are also listed in Table 

7-4. The result of the proposed model is slightly higher than those of the backbone of all 

damage levels. A possible reason is that the proposed method can provide more features 

than the backbone, which is the surface normal vectors. 
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7.5.2 Building damage assessment framework 

After disaster information analysis, earthquake disaster emergency management is a huge 

and complex system that has been widely studied in academia. Scholars from different 

disciplines have different divisions of emergency management stages. One of the most 

representative is the four-stage crisis model proposed by Fink (1986), including prodromal, 

acute, chronic, and resolution stages. Pearson and Mitroff (1993) divided crisis 

management into five stages, namely “signal detection”, “probing and prevention”, 

“damage containment”, “recovery”, and “learning”. 

Post-earthquake emergency rescue and reconstruction belong to the earthquake disaster 

emergency management category. In 1970, the United States first put forward the idea of 

dividing post-earthquake emergency rescue stages. The Federal Emergency Management 

Agency of the US designed an Incident Command System (ICS) including five functional 

areas, Planning, Command, Operations, Logistics, and Administration/Finance. Then, other 

countries also propose their post-earthquake emergency ways. 

Fortunately, remote sensing techniques can help with the emergency response. According 

to the building damage level results from this chapter, a framework is proposed for rapid 

building damage assessment, as shown in Figure 7-8. This framework introduces the 

building-up stages of an AI-based building damage assessment system using multi-source 

data. Firstly, multiple types of pre- and post-disaster sources are collected. Secondly, these 

data can be fused, providing information from different aspects, and be applied in AI-based 

models, such as CNLNet, to extract ground objects. Building damage levels can also be 
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detected. The building damage level classification method proposed in this chapter is in the 

“data processing” stage in this framework. Next, some applications can be realised by these 

results, including but not limited to disaster information intelligent recognition, multi-

source data matching, number of buildings in each damage level, and damage level 

visualisation. All these applications can help to provide an emergency response system for 

decision-makers and rescue team members as the last stage. 

Lidar

Post-disaster 
HRSI

Ground object 
recognition and 

extraction 

Image fusion and 
integration

Building damage 
level classification

Multi-source data 
matching based on 

feature

Disaster information 
intelligent recognition

Counting building 
number of each level 

Multi source 
based 

emergency 
response 
system

Data collection Data processing Disaster application System

Pre-disaster 
building footprint Damage level 

visulization

Network proposed in this paper  

Figure 7-8. The framework of building damage assessment 

7.6 Conclusion 

This study developed an automated DL-based method for classifying post-earthquake 

building damage into four levels. The case study is the 2016 Kumamoto Earthquake with a 

created in-house labelled dataset using both post-earthquake Lidar and HRSI data. The 

building footprints were extracted from pre-earthquake vector shapefiles. The findings 
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reflect that the first and last levels, which are no/minor damage and story failure, have 

better classification results than the other two. One benefit of this method is applying multi-

source data, including Lidar point clouds and HRSI, which provides more information than 

only one single type of input. The integration of both height and spectral information can 

improve the accuracy of the BDLC results. The study underscores the efficiency of satellite 

and Lidar data in building damage assessment and emphasises the significance of remote 

sensing technology. Therefore, multi-source remote sensing-based building damage 

classification is very promising.  

Another noteworthy advantage of the workflow design for data preparation in this study is 

the incorporation of pre-earthquake building footprint vectors to ascertain the precise 

location of each building. Additionally, in order to identify damaged buildings, surface 

normal information was calculated and included as an input in the RandLA-Net backbone. 

The resulting network demonstrates better outcomes compared to the backbone, as evident 

from the accuracy achieved at each damage level. 

Based on the outcomes of the proposed method, a building damage assessment framework 

was introduced, designed to support post-earthquake emergency response systems. This 

framework facilitates the identification of buildings significantly affected by earthquakes, 

thus facilitating the prioritisation of rescue and recovery endeavours by furnishing 

comprehensive data on the extent of the damage. Equipped with this information, 

governmental institutions, insurance companies, and other organisations can make 

informed decisions regarding resource allocation and providing optimal assistance to 

affected communities. One limitation of this study is its reliance on a single case study 
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presented in this study. Future research could extend the analysis to include multiple cases 

and explore the potential of using the developed network with transfer learning for 

conducting experiments. 
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Chapter 8  

Discussion and conclusion 

8.1 Overview 

After a catastrophic earthquake, a high number of damaged buildings always leads to a high 

number of casualties. Rapid post-earthquake classification of building damage levels is an 

important part of rescuing human beings because the damage level information is one of the 

key factors in determining the allocation of rescue personnel and resources. 

Considering the rapid development of DLSS in the remote sensing field, the aim of this 

study was proposed in Chapter 1 as “to propose novel DL models to classify building 

damage into four levels with large-scale in-house labelled datasets considering both pre- 

and post-earthquake periods”. Four specific objectives were proposed according to the aim. 

To achieve the objectives, this study adopted quantitative techniques for analysing and 

evaluating the results of trained DL methods. In the proposed DL methods of this study for 

extracting building footprints, which can be applied for pre-earthquake analysis, the 

possibility of earthquakes was considered when choosing the locations of case studies. The 

proposed post-earthquake BDLC method was tested with the happened earthquake. 
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The main chapters of this study, which are Chapters 4, 5, 6, and 7, are designed to achieve 

these four objectives. The key findings reported in these four main chapters are summarised 

in the four subsections of Section 8.2 as follows. 

8.2 Key findings 

8.2.1 DL-based large-scale BDLC method with 2D satellite images 

To fulfil the first objective of this study, an initial exploratory study was undertaken. 

Chapter 4 explores the possible advantages of 2D optical satellite images for BDLC by 

proposing a novel DLSS method. The findings illustrate that four-level BDLC performs 

well based on the proposed DL-based method using pre-earthquake building footprint 

location information and post-earthquake HRSI. Those categorised building damage levels 

were hard or impossible to achieve by human eyes. The findings also suggest that the 

proposed DL-based method with adding SE CA block can achieve higher results than the 

original HRNet backbone. A larger input size can have better results but use much more 

computing time. Transfer learning with the pre-trained ImageNet dataset does not have 

advantages because the dataset does not contain several damaged building images. The 

block with Sigmoid function has slightly better performance than that with Hard-Sigmoid. 

Therefore, this chapter successfully provides a quick DL-based method for post-earthquake 

BDLC with optical satellite images to achieve Objective 1. 



Chapter 8: Discussion and conclusion 

185 

8.2.2 DL-based pre-earthquake building footprint extraction with 3D Lidar data 

To fulfil the second objective of this study, a DLSS network for pre-earthquake building 

footprint extraction using 3D Lidar point clouds was proposed and tested. Chapter 5 

implemented the preparation experiments to test the influences of features on the accuracy 

of DL-based building footprint extraction approaches. Chapter 6 designed the architecture 

of the proposed DLSS network according to the results of Chapter 5. 

The findings from Chapters 5 and 6 show that the proposed method can be applied for pre-

earthquake building footprint extraction. The findings also suggest that the proposed 

method with adding surface normal information and CA mechanism has higher accuracy 

than the original RandLA-Net backbone for classifying the building class with improving 

mIoU around 1% to 2%. Moreover, adding either surface normal or CA can achieve better 

results than the backbone. Therefore, the findings reveal that either surface normal or CA 

can help to improve accuracy for building footprint extraction. Since the proposed method 

can not only extract the building class but also vegetation, it is also illustrated that the 

proposed method performs better for building footprint extraction than vegetation 

classification. The generalisability of the proposed network for the building class is the best. 

8.2.3 DL-based post-earthquake BDLC with 3D Lidar data 

The experiments for achieving the third objective were implemented in Chapter 7. Building 

damages with four levels were detected by the proposed DL-based method using Lidar data. 

The proposed method added surface information to the network and was compared with the 

original RandLA-Net backbone. The findings show that the proposed BDLC method 
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outperforms the original RandLA-Net backbone, underscoring the advantage of 

incorporating surface normal information. The findings also show promising outcomes, 

particularly in accurately categorising no/minor damage and story failure levels. 

Consequently, this chapter not only demonstrates the practical utility of DL networks in 

assessing building damage after disasters under realistic operational conditions but also 

emphasises the significance of the proposed method and framework in bolstering public 

safety and guiding decision-making during the critical phases of post-earthquake recovery 

and reconstruction. 

8.2.4  2D satellite and 3D Lidar labelled dataset creations of pre-earthquake 

building footprints and post-earthquake multi-level damaged building 

information 

To achieve Objective 4, Chapters 4 to 7 all generated their own labelled large-scale datasets. 

Specifically, Chapter 4 created a four-level building damage dataset using satellite images 

from the 2010 Haiti Earthquake. Chapters 5 and 6 constructed labelled land cover Lidar 

datasets, and the labelled classes include ground, low vegetation, medium vegetation, high 

vegetation, and buildings. These Lidar datasets were collected from New Zealand and 

Japan. Chapter 7 generated a four-level building damage Lidar dataset from the 2016 

Kumamoto Earthquake. Consequently, Objective 4 was completed as both satellite and 

Lidar datasets of pre-earthquake building footprints and post-earthquake multi-level 

damaged building information were created.  
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8.3 Theoretical contribution 

This study proposed three DLSS networks for multi-level BDLC after earthquakes. The 

proposed methods include one 2D image-based four-level BDLC method, one Lidar-based 

pre-earthquake building footprint extraction method, and one Lidar-based post-earthquake 

four-level BDLC method. To bridge the gap that lacks the discussion of large-scale outdoor 

scenarios, all scenarios applied in this study are large-scale. Through extensive 

experimentation, this study demonstrated the feasible applications of the proposed methods 

for multi-level BDLC in large-scale scenarios. Moreover, compared to existing networks, 

this study demonstrated that normal information could provide more feature information, 

and channel attention can emphasise key information in channels so they can improve the 

accuracy of the building information extraction results. 

8.4 Practical contribution 

This study underscores the practical contributions that DL and semantic segmentation can 

make to enhance earthquake management. This study has led to the creation of DL 

networks capable of analysing seismic data, satellite imagery, and Lidar point clouds in 

near real-time. These networks provide early warnings of impending disasters, enabling 

authorities to initiate evacuation procedures and resource mobilisation promptly. Following 

an earthquake, this study employs computer vision and remote sensing techniques to assess 

the extent of damage. By analysing high-resolution satellite imagery and Lidar data, we can 

quickly identify affected areas and damaged levels, facilitating targeted response efforts. 

Therefore, the proposed methods in this study provide possible solutions in remote sensing-
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based earthquake-related research, even natural disaster research, which is a road map for 

future research. As mentioned in Section 8.2.4, this study also generated three own labelled 

imagery and Lidar datasets to provide more datasets including building damage level 

information in the relevant research field. 

8.5 Implications 

This study related to disaster management is expected to have a significant implication for 

humanitarian-related purposes closely aligned with the United Nations (UN) Sustainable 

Development Goal (SDG) 11 ‘Make cities and human settlements inclusive, safe, resilient 

and sustainable’. After an earthquake, this study employs remote sensing to estimate 

building damage. It enables emergency responders and policymakers to rapidly and 

efficiently allocate resources for rescue and recovery operations, especially for low or 

middle-income countries due to limited resources, such as Pacific Island countries. 

Several Pacific Island countries are prone to volcanic eruptions, often leading to severe 

earthquakes. It is expected that this study work will be capable of providing the degree of 

building damage in each area, including no damage, minor damage, major damage, or 

complete collapse. The building damage levels may serve as an indicator of the 

dangerousness of the rescue operation. This ensures an accurate and rapid allocation of 

resources for post-earthquake rescue and recovery in these communities. The results can 

also be applied for predisaster urban visualisation information storage, update, and 

management.  
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In conclusion, the main impact of this study is to benefit the community after an earthquake 

by informed decision-making. The information provided by this study is crucial for saving 

resources and lives in the affected communities by the disaster, not only for developed 

countries or regions but also for developing regions such as Pacific Island countries. The 

impact of this study will be visible in reduced casualties and enhanced community 

resilience. Additionally, this study will promote collaboration between scientists and 

policymakers, leading to the development of a more coordinated and effective response to 

earthquakes. 

8.6 Recommendations for future work 

As evident from the aforementioned results and findings, this study has frequently opted for 

a single earthquake event as the case study for each main chapter. Given the substantial 

variations in the aftermath of different earthquakes, the potential for these proposed 

methods to be widely applicable or generalised effectively may be limited.  

Considering the results of this study, further research is suggested to find an approach to 

improve the segmentation accuracy of separating low, medium, and high vegetation. The 

quality of the training set could also be improved in future studies, such as increasing point 

numbers or densities of point clouds. Moreover, as the literature has shown in Chapter 2, 

many building damage evaluation codes and standards are developed from the structural 

engineering perspective. More unified and official codes and standards intended from the 

remote sensing perspective are suggested. Besides that, as shown in Section 6.5.3, a higher 

or lower resolution of 2D satellite images has little influence 3D Lidar data. Therefore, the 
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performance improvements that can be achieved using both the 2D satellite imagery and 

3D Lidar data should be further tested and discussed in future. 
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