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Abstract

Early detection of wildfires is crucial to mitigate their catastrophic effects on lives

and natural and built environments. Smoke (referring to fire smoke in this thesis)

detection is considered a promising approach for early fire (EF) detection since smoke

plumes are usually the first indicators when wildfires occur. Using satellite imagery for

smoke detection stands out because it provides cost-effective monitoring that covers

large scales and remote areas. Scene-level detection classifies imagery into smoke or

other classes based on whether smoke is in the imagery. It offers faster inference and

better scalability than pixel-level detection, which aims to identify all smoke pixels

individually. This makes scene-level detection ideal for fire disaster mitigation. In

this thesis, smoke detection refers to satellite-based scene-level smoke detection unless

specified.

Despite significant advancements in smoke detection enabled by deep learning (DL),

several limitations in previous research still need to be addressed. Existing DL models

are often complex and excessively demanding in terms of power supply, memory usage,

and computing resources. Such models are difficult to deploy onboard satellites, par-

ticularly small satellites (SmallSats). Additionally, previous DL-based smoke detection

research focused on RGB imagery and did not pay enough attention to spectral infor-

mation that could potentially improve detection accuracy. Furthermore, an effective

mechanism for fast model development for multiple satellites is yet to be investigated

to enhance the timely detection of EF smoke. This needs to consider that new sen-

sors usually lack observational data and that imagery data from different sensors often

present significant disparities.

This thesis develops three innovative approaches to address these limitations pro-

gressively. To facilitate the study, two multispectral imagery training datasets, Landsat6c

and Sentinel7c with a medium spatial resolution of 30 metres and 10 metres re-

spectively, are created. Landsat6c additionally incorporates one near-infrared (NIR)

and two shortwave infrared (SWIR) bands and Sentinel7c includes four additional

xi



infrared (IR) bands (two NIR and two SWIR ), compared to the sole publicly available

training dataset USTC SmokeRS, derived from Moderate Resolution Imaging Spectrora-

diometer (MODIS) three-band (RGB) imagery with a low spatial resolution (1 km).

The first approach proposes a lightweight convolutional neural network (CNN)

model called Variant Input Bands for Smoke Detection (VIB SD). VIB SD contains

less than 2% of the parameters of the state-of-the-art model SAFA (1.66 million ver-

sus 84.2 million) but demonstrates competitive accuracy (93.57% versus 96.22%) when

trained using USTC SmokeRS. This approach proceeds to train VIB SD using Landsat6c

with five different band combinations to investigate the contributions of IR bands to

detection accuracy. Results show that incorporating the NIR band enhances accuracy

compared to using solely RGB bands (84.82% versus 83.20%) and integrating both

SWIR bands leads to further improvements compared to using just one SWIR band

(86.45% versus 85.64%). Case studies illustrate VIB SD’s effectiveness in detecting EF

smoke amidst cloud cover when trained with Landsat6c.

The second approach further investigates how to effectively explore useful spectral

information in IR bands to improve smoke detection accuracy. Specifically, this ap-

proach introduces a DL module named Input Amplification (IA) which enables DL

models to automatically learn class-oriented spectral patterns. IA amplifies the input

band dimension (e.g., three or six) to 32 (determined through experiments), with the

learned spectral patterns added as pseudo bands. This allows for simultaneous learning

of multiple spectral patterns and integrating them with the original bands. Function-

ing as an input pre-processing block, IA facilitates seamless integration with various

DL architectures. The effectiveness of IA is demonstrated through its integration with

different CNN architectures (i.e., ResNet50, InceptionResNetV2, MobileNetV2, and

VIB SD) and testing on both USTC SmokeRS and Landsat6c. Significant accuracy im-

provements were observed for the examined CNN models after integration with IA,

showcasing IA’s great potential in advancing smoke detection. Notably, higher accu-

racy increments were obtained when using Landsat6c featuring additional IR bands

(4.61%, 1.08%, 1.9%, and 3.54% respectively for ResNet50, InceptionResNetV2, Mo-

bileNetV2, and VIB SD).

The third approach introduces a novel cross-sensor transfer learning method, no-

tably aided by the IA module. This aims to facilitate fast model development for

multiple satellites, considering data disparities across different sensors and the lim-

ited observational data available from new sensors. Landsat6c, originally containing

xii



1836 images (about 600 images per class), was expanded to 2770 images (more than

900 images per class) and used as the source domain. Sentinel7c, consisting of only

351 images (about 120 images per class), served as the target domain. The model

incorporating IA and VIB SD, named IA VIB SD, was employed. The transferability of

the Landsat6c-trained IA VIB SD model to Sentinel7c was investigated using vari-

ous transfer learning techniques and compared to the performance of the benchmark

IA VIB SD model exclusively trained on pure Sentinel7c data. The proposed transfer

learning method resulted in a transferred model with an average accuracy 5% higher

than the benchmark model. Notably, the proposed transfer learning method outper-

formed conventional transfer learning methods by more than 1% in terms of accuracy,

even when trained on only 10% of the Sentinel7c dataset.

In summary, the core achievement of this thesis is the IA VIB SD model. This model

significantly enhances smoke detection accuracy by employing both RGB and IR bands

and learning class-oriented spectral patterns from these bands. It has great potential

to facilitate onboard satellite smoke detection, particularly on SmallSats and SmallSat

constellations, due to its lightweight design. Aided by the IA module’s capability of

adapting learned spectral patterns, IA VIB SD pretrained on one sensor demonstrates

high accuracy when transferred to a new sensor using minimal training data from the

target sensor.

xiii



Declaration

I declare that this thesis presents work carried out by myself and does not incorporate

without acknowledgement any material previously submitted for a degree or diploma in

any university; to the best of my knowledge it does not contain any material previously

published or written by another person except where due reference is made in the text;

and all substantive contributions by others to the work presented, including jointly

authored publications, are clearly acknowledged.

Liang Zhao

November 2024

xiv



Acknowledgements

I am profoundly grateful to my supervisory panel for their invaluable guidance, ex-

ceptional advice, and unwavering support throughout my PhD journey. My deepest

thanks go to my principal supervisor, Associate Professor Jixue Liu, whose expertise

and insight have been pivotal in shaping my research since my Honour’s degree. Despite

the various challenges along the way, my academic journey has always been pleasant

under his heartfelt and supportive mentorship.

I am equally indebted to my co-supervisors, Professor Jiuyong Li and Dr. Stefan

Peters, both of whom also guided me during my Honour’s degree. The constructive

advice and feedback they offered significantly enhanced the quality and depth of my

research. Their astute guidance and continuous encouragement have seen my dramatic

growth from an inexperienced undergraduate to a competent researcher.

I extend my deep appreciation to my industrial advisors, Mr. Norman Mueller and

Mr. Simon Oliver, whose practical perspectives and assistance have greatly enriched

my academic experience. The invaluable industrial resources they shared and the

experiences they imparted greatly boosted the efficiency of my work, particularly during

data collection and processing, which posed substantial challenges.

I gratefully acknowledge the support provided by the Australian Government Re-

search Training Program (RTP) Scholarship, which has enabled me to pursue this

research. I am also thankful for the ongoing support from SmartSat CRC, whose

provision of a top-up scholarship has been instrumental in my research endeavours.

The opportunities they provided me to engage with industry partners and present my

project have been invaluable in broadening my professional horizons and deepening my

understanding of the field.

I also want to express my gratitude to my colleagues in the Data Analytics Group.

To Dr. Sha Lu and Xiongren Chen, who have provided precious inspiration through

xv



in-depth discussions and brainstorming. To Dr. Xiaomei Li, Dr. Ziqi Xu, Dr. Andres

Mauricio Cifuentes Bernal, Dr. Ji-Young Park, Dr. Oscar Blessed Deho, and Dr.

Ha Xuan Tran for their encouragement, expertise, and resource sharing. To all other

members of the group who have enriched my knowledge through presentations and

discussions in group meetings. My PhD journey has been enjoyable and memorable

because of you.

Furthermore, I am deeply thankful to my family—my parents, my partner, and

particularly my two sons, Aaron and Archer, born during my PhD study. It is their

unconditional love and support that have enabled me to come this far. The immense

joy brought by the birth of Aaron and Archer has made my PhD journey unique and

unforgettable.

Once again, I must express my heartfelt gratitude to my supervisors and the STEM

academic unit at the University of South Australia. Their support has been particularly

meaningful since the birth of my sons during my PhD studies. The flexibility and

understanding they have shown have enabled me to balance my academic commitments

with my responsibilities as a parent, for which I am deeply thankful.

Lastly, I extend my appreciation to all who have supported me in this endeavour,

both seen and unseen. Your contributions have not gone unnoticed, and I am deeply

grateful to each one of you.

Liang Zhao

November 2024

xvi



List of Publications

The main content of this thesis builds upon three first-authored, peer-reviewed journal

papers, which present the core findings of my PhD research:

1. L. Zhao, J. Liu, S. Peters, J. Li, S. Oliver, and N. Mueller, “Investigating the

impact of using IR bands on early fire smoke detection from Landsat imagery with a

lightweight CNN model”, Remote Sensing, vol. 14, no. 13, p. 3047, 2022. Chapter 4

of this thesis is based on this paper

2. L. Zhao, J. Liu, S. Peters, J. Li, N. Mueller, and S. Oliver, “Learning class-

specific spectral patterns to improve deep learning-based scene-level fire smoke detec-

tion from multi-spectral satellite imagery”, Remote Sensing Applications: Society and

Environment, vol. 34, 2024, 101152. Chapter 5 of this thesis is based on this paper

3. L. Zhao, J. Liu, S. Peters, J. Li, N. Mueller, and S. Oliver, “Cross-sensor

transfer learning for fire smoke scene detection using variable-bands multi-spectral

satellite imagery aided by spectral patterns”, International Journal of Remote Sensing,

2024. Chapter 6 of this thesis is based on this paper

xvii



Other co-authored publications not included in the content of this thesis:

4. S. Lu, E. Jones, L. Zhao et al., “Onboard AI for fire smoke detection using

hyperspectral imagery: an emulation for the upcoming Kanyini Hyperscout-2 mission”,

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,

2024. The model prototype used for the emulation in this paper is the VIB SD model

proposed in publication 1

5. J. Liu, J. Li, S. Peters, L. Zhao, “A transformer boosted UNet for smoke seg-

mentation in complex backgrounds in multispectral LandSat imagery”, Remote Sensing

Applications: Society and Environment, vol. 36, 2024, 101283. Collaborated work with

my supervisors

xviii



Chapter 1

Introduction

1



CHAPTER 1. INTRODUCTION

1.1 Background and Rationale of the Research

1.1.1 Importance of Early Fire (EF) Smoke Detection

In recent years, the world has witnessed a surge in devastating fire disasters, exac-

erbated by the far-reaching impacts of global climate change [1]. These catastrophic

events have inflicted tremendous losses on communities and ecosystems [2, 3, 4]. For

example, two wildfires in California, USA, in August 2020 burned 682,135 acres, de-

stroyed 3,843 structures, and caused 21 deaths collectively; another wildfire in 2018

burned a smaller area but destroyed 18,804 structures and caused 85 deaths [5]. In

Australia, an unprecedented bushfire season lasted almost half a year from 2019 to

2020, with hotspots burning simultaneously in multiple regions across the country.

The fires burned 24 to 40 million hectares, emitted 434 million tons of carbon dioxide,

killed 33 people and more than 3 billion animals [6], and caused 1.95 billion Australian

dollars in smoke-related health costs [7].

EF detection is crucial in mitigating the destructive impact of wildfires. The earlier

fires can be detected, the more lives, property, and natural resources can potentially

be saved [8]. Various methods have been employed with this aim:

• Volunteer Geographic Information: This method involves people reporting

fires via phone apps or calls. While effective in populated areas, it relies heavily

on human presence and prompt reporting [9].

• Fire Towers: Traditionally manned by lookouts who visually scan for smoke,

these towers are now gradually equipped with surveillance cameras and other ad-

vanced monitoring technologies. This provides continuous monitoring even when

personnel are absent, enhancing detection capabilities under various visibility

conditions [10, 11]. However, surveillance cameras often cover only a limited

area, potentially missing fires outside their field of view, and can fail due to

harsh weather conditions or technical issues [12]. In addition, fire towers are of-

ten located in remote areas, resulting in costly maintenance and operation, and

delays in response time [13, 14].

• Unmanned aerial vehicles (UAVs) or Aerial Imagery: UAVs or planes

equipped with cameras can detect fires from the air. This method allows for high-

resolution imagery and can cover large areas quickly, but it is resource-intensive

and dependent on flight operations [15, 16].
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• Satellite Remote Sensing: Satellite-based detection offers comprehensive cov-

erage, especially beneficial in remote areas where ground-based methods are im-

practical. Satellites equipped with thermal and infrared sensors can detect heat

signatures from fires, providing early warnings and continuous monitoring capa-

bilities [17, 18].

Satellite-based fire detection has gained significant attention due to the wide avail-

ability of satellites monitoring the Earth seamlessly at decreasing costs. According to

the Union of Concerned Scientists, more than 6,700 operational satellites are orbiting

the Earth [19]. Many of these satellites are equipped with mid-wave infrared (MWIR)

and themal infrared (TIR) bands, which are sensitive to temperatures, making them

suitable for active fire detection.

However, using satellites for the timely detection of EFs, which typically burn at

small geographical extents and lower temperatures, remains challenging due to several

factors:

• EFs can be easily obscured by thick canopies, clouds, haze, or the smoke plumes

they emit.

• EFs can be masked by the heated background in hot weather, and false alarms

can frequently be caused by other hot sources (e.g., heated bare soils or deserts,

highly reflective regions, gas flames, geysers, hot springs) when using the MWIR

or TIR bands for detection [20, 21, 22].

• Satellites suitable for detecting smaller fires are typically sun-synchronous satel-

lites in near-polar orbits, which are often equipped with sensors of higher spatial

resolutions. However, these satellites tend to have lengthy revisit times (or tempo-

ral resolution when referring to sensors), leading to delayed detection of burning

fires. For example, the Landsat 8 Operational Land Imager (OLI) sensor has a

spatial resolution of 30 metres in its near-infrared (NIR) and shortwave infrared

(SWIR) bands, meaning that the smallest fire it can detect is 900 m2. However,

its temporal resolution is 16 days, meaning that a fire starting right after the

satellite has passed the fire location can keep burning for 16 days without being

detected by the satellite.

• In contrast, sensors suitable for near real-time (NRT) fire detection, typically

those on geostationary satellites, tend to have coarse spatial resolutions, leading
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to the overlooking of smaller fires. For example, the Advanced Himawari Imager

(AHI) on the geostationary satellite Himawari 8 has a temporal resolution of 10

minutes, meaning it can capture an image of the same location on Earth every

10 minutes. However, the spatial resolution of its MWIR band, used for hotspot

detection, is 2 km, meaning the smallest active fire it can detect is 4 km2.

Smoke (referring to fire smoke in this thesis) detection emerges as a promising

alternative to direct fire detection due to the following advantages:

• Smoke plumes are less likely to be obscured as they can rise quickly into the sky,

often becoming the first indicator seen from space when fires occur.

• Smoke often presents distinctive colours against the background, particularly

vegetation, making it highly observable from space.

• Smoke plumes disperse quickly over larger areas than the actual spread of fires,

allowing smaller fires to be detected more effectively.

• Smoke plumes have significantly lower temperatures than burning fires and other

hot sources, thus reducing the likelihood of false positive alarms compared to fire

hot-spot detection using MWIR or TIR bands.

These advantages position smoke detection as an effective and proactive approach

to EF detection. In particular, utilising satellite imagery and advanced deep learning

(DL) models has emerged as a promising and cost-effective strategy, since well-trained

DL models have demonstrated significantly higher scene classification accuracy than

traditional algorithms.

Smoke detection can be either at the pixel level, which segments all smoke pixels

from others, or at the scene level, which classifies if the scene in the imagery contains

smoke. Compared to pixel-level detection, scene-level detection (or scene detection)

has the following advantages:

• Classification models are generally less complex than segmentation models. They

focus on determining whether an image contains smoke, which involves a single

decision per image [23].
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• Classification models require labelled images indicating the presence or absence

of smoke. These labels are simpler and quicker to generate than pixel-level an-

notations needed for segmentation. Scene-level labelling is usually more accurate

compared to pixel annotation [24].

• Classification models typically process images faster during inference since they

only need to output a single label per image. This can be crucial for real-time

monitoring and early warning systems [25].

• Due to their simplicity, classification models can be more easily scaled to analyse

a large number of images, covering extensive geographical areas without requiring

significant computational resources [26].

This thesis focuses on smoke detection at the scene level using satellite imagery.

Unless specified, smoke detection refers to satellite-based scene-level smoke detection

in this thesis.

1.1.2 Challenges in Smoke Detection

To prevent fire disasters, smoke plumes must be detected quickly and accurately while

they are still early and small. Higher spatial resolution is required for satellite sensors

to detect smaller smoke plumes and higher temporal resolution is needed for quicker

detection. Achieving higher accuracy typically involves more complex detection models.

However, the accurate and timely detection of EF smoke faces several challenges:

1. Challenges related to accurate smoke detection:

• The diverse shapes and colours of smoke plumes, as shown in Figure 1.1,

captured by the Landsat 8 OLI sensor.

• The presence of confounding aerosol phenomena, such as clouds, haze, and

dust, overlap with smoke in spectral and structural characteristics and of-

ten intermingle, making it harder to distinguish them visually, as seen in

Figure 1.2.
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Figure 1.1: Variants of smoke in Landsat 8 OLI true-colour imagery. (a) Dark grey
smoke plumes under cirrus clouds. (b) Long slim smoke plume in bright colour. (c)
Dispersed smoke on the edge of the image. (d) Brown-coloured dense smoke in the
whole image. (e) Wide, dispersed smoke in light blue colour covering most of the
image. (f) Dense smoke in dark grey colour under altocumulus clouds. Adopted from
[27, Figure 1]

Figure 1.2: Cloud, haze, dust, and smoke captured in Moderate Resolution Imaging
Spectroradiometer (MODIS) true-colour imagery are difficult to visually differentiate.
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2. Challenges related to timely smoke detection:

• Delays due to latency caused by data downlink, image processing, and anal-

ysis in ground-based approaches, especially DL methods. For example, the

latency of Sentinel-2 A/B is 2-4 hours [28], in addition to a revisit time of

3-5 days. During this period, small fires can develop uncontrollably.

• Limited power supply, memory, and computing resources for timely onboard

satellite detection, often requiring detection models to trade accuracy for

suitability [29, 30, 31]. As such, despite generally producing higher accuracy,

complex DL models are often excluded from onboard satellite applications.

This particularly affects small satellites (SmallSats), which are increasingly

considered the future of satellite-based fire detection [32, 33].

3. Challenges related to achieving both high temporal resolution and spa-

tial resolution:

• Sun-synchronous satellite sensors generally have lower temporal resolutions

but higher spatial resolutions, while geostationary satellites typically offer

higher temporal resolutions but coarser spatial resolutions. Although some

geostationary satellite sensors achieve spatial resolutions below 50 metres,

such satellites are rare, and the cost to develop, launch, and operate them

is often prohibitive. Known geostationary satellites with spatial resolutions

below 50 metres, such as Gaofen-4, Gaofen-13, Gaofen-13-02, Ludi Tance-4,

and the recently launched Yaogan-41, are all owned by the Chinese gov-

ernment, with highly restricted public data access [34, 35, 36]. Estimates

suggest that developing a single satellite of this type can cost from hundreds

of millions to over a billion US dollars (USD), with annual operational costs

running into several million to tens of millions of USD [37, 38]. Instead

of relying solely on geostationary satellites with high spatial resolutions, a

more feasible and cost-effective alternative is required to achieve the neces-

sary temporal resolution and spatial resolution for the timely detection of

EF smoke.

1.1.3 Limitations in Previous Research

Using satellite imagery for smoke detection has been studied for a long time. How-

ever, previous research primarily focused on pixel-level detection, which, as discussed

earlier, is less advantageous for fire disaster mitigation compared to scene-level de-

tection. Moreover, pixel-level detection predominantly relied on non-DL methods and
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often involved manual feature engineering. For instance, multiple threshold values were

typically derived manually from selected spectral or pseudo bands to help distinguish

smoke from clouds and other confounding pixels [39, 40]. These threshold values can be

significantly influenced by the physical and chemical characteristics of smoke particles

and the spectral radiometric characteristics of the sensors.

One noteworthy study on pixel-level smoke detection is the work in [41], which

proposed a fully convolutional network (FCN) to segment smoke pixels in Himawari

8 AHI imagery. This approach avoided cumbersome feature engineering by leverag-

ing a DL method, which also learns spatial features to enhance pixel-level detection.

However, the smoke masks (the labels in the training dataset) were annotated using

an algorithm [42] rather than ground truth data. This highlights a common issue in

using satellite imagery for pixel-level smoke detection with DL methods. A reliable

pixel-level satellite imagery training dataset has not yet been made publicly available

to support future research efforts in this field.

Satellite-based scene-level smoke detection, as a relatively new research area and

the focus of this thesis, was first investigated in 2019 within the work of Ba et al. [43].

In this study, the authors proposed SmokeNet, a convolutional neural network (CNN)

model specifically designed for smoke detection, and introduced USTC SmokeRS, the

first satellite imagery training dataset derived from MODIS RGB imagery and labelled

at the scene level. SmokeNet outperformed other renowned DL models (e.g., ResNet

[44], DenseNet [45], SE-ResNet [46]) when trained and tested on USTC SmokeRS. Fol-

lowing this work, Chen et al. [47] proposed the current state-of-the-art model SAFA,

which improved accuracy from 92.75% with SmokeNet to 96.22% using USTC SmokeRS.

SAFA also outperformed other advanced DL models that were developed more recently,

including D-CNN [48], RSSC-ETDL [49], KFBNet [50], and LPDCMEN [51], among

others.

However, several limitations are yet to be addressed in satellite-based scene-level

smoke detection for fire disaster mitigation, beyond improving the accuracy.

Firstly, the DL models specifically designed for smoke detection are complex and

have a substantial number of parameters. SmokeNet comprises 53.5 million parameters,

while SAFA contains 84.2 million parameters. The models can hardly meet the growing

demand for using SmallSats or SmallSat constellations for NRT fire disaster monitoring,

due to their complexity and high requirements for power supply, memory space, and
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computational resources.

Secondly, previous research did not effectively address the accurate detection of EF

smoke. On the one hand, studies using the USTC SmokeRS MODIS RGB imagery

did not focus on spectral information, particularly in the infrared (IR) bands, which

is crucial for distinguishing smoke from other confounding aerosols. On the other

hand, although MODIS is onboard the sun-synchronous satellites Aqua and Terra, the

USTC SmokeRS dataset has a low spatial resolution of 1 km. This means that small

smoke plumes, which are critical for early alerts, are likely to be overlooked.

Thirdly, previous research did not effectively address the timely detection of smoke,

primarily due to the low temporal resolution (0.5 days) of MODIS, even when using

both Aqua and Terra for detection. While multiple satellites may collectively improve

temporal resolution, this approach requires customising models for each satellite due

to significant disparities in their imagery data. However, an effective mechanism for

fast model development across multiple satellites, considering the challenges posed by

limited training data or even a lack of observational data from new satellites, is yet

available. Although the Hazard Mapping System of the NOAA serves as a commend-

able example of a multi-satellite fire and smoke detection program, it primarily relies

on traditional remote sensing algorithms to identify thermal anomalies indicative of

active fires. Additionally, the Hazard Mapping System depends on manual process-

ing and validation to review and integrate results from different sensors for the final

prediction and dissemination [52, 53].

Although outside the primary focus of this thesis, it is worth noting that the work in

[54] incorporated spatiotemporal changes for smoke detection in satellite imagery. This

study presents a rare example of detecting spatiotemporal changes in sun-synchronous

satellite imagery, which does not naturally form a time series. The changes were

derived from two Advanced Very-High-Resolution Radiometer (AVHRR) images—one

before the fire event and one during the event—capturing the same location during two

separate satellite passes. The two passes are at least 12 hours apart due to the temporal

resolution of AVHRR. Manual geometric correction is required to align the images,

allowing for the identification of spatiotemporal changes. In addition, this method is

more practical for smoke detection with geostationary satellites, which produce time

series imagery at short intervals with less need for geometric correction. However,

compared to video imagery, detecting spatiotemporal changes in satellite imagery is

more complex and is easily influenced by other dynamic phenomena such as cloud
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cover. This is primarily due to differing observation patterns and the longer intervals

between image captures. Furthermore, exploring dynamic spatiotemporal information

for smoke detection requires additional data processing and more complex methods,

especially with sun-synchronous satellites. Therefore, smoke detection in static satellite

imagery is more feasible and remains the focus of this thesis.

1.2 Research Questions

Motivated by the urgent need to enhance fire disaster mitigation, this thesis aims to

develop innovative approaches for the accurate and timely detection of EF smoke. Con-

sequently, this thesis is structured around three interrelated research questions, which

address the limitations of previous research and work collectively towards achieving

this goal:

• RQ-1 How to design a lightweight DL model that can potentially be

deployed onboard SmallSats for accurate EF smoke detection using

multispectral satellite imagery?

The first research question can be further divided into two sub-questions:

– RQ-1.1 How to design such a lightweight DL model to achieve competitive

accuracy with state-of-the-art models?

– RQ-1.2 Can the inclusion of IR bands in satellite imagery effectively improve

smoke detection accuracy?

The first sub-question seeks to investigate and employ advanced DL techniques

to create a lightweight model without sacrificing accuracy. The model’s per-

formance will be fairly compared to state-of-the-art models using the existing

USTC SmokeRS training dataset. The second sub-question aims to investigate

the effectiveness of multispectral satellite imagery with additional IR bands in

enhancing smoke detection accuracy. Such investigation has yet to be conducted

with solid evidence in the literature. To support this study, a multispectral satel-

lite imagery training dataset with medium to high spatial resolution must be

created to ensure effectiveness in detecting EF smoke. In terms of the spectral

bands, the NIR and SWIR regions, which are less sensitive to temperatures com-

pared to MWIR and TIR, are the primary focus due to the rapid cooling of smoke

plumes.

10



CHAPTER 1. INTRODUCTION

• RQ-2 How can smoke detection accuracy be improved more effec-

tively using multispectral satellite imagery, beyond simply including

additional IR bands in model training?

This research question can be resolved by addressing two sub-questions:

– RQ-2.1: What essential information in multispectral satellite imagery is

likely to improve smoke detection accuracy more effectively?

– RQ-2.2: How can such information be precisely extracted and used to im-

prove the accuracy of DL models for smoke detection?

The second research question focuses on developing an innovative approach to

enhance the accuracy of DL models by identifying and utilising essential infor-

mation for smoke detection from multispectral imagery. Compared to simply

training DL models with multispectral satellite imagery data, this approach ex-

plores more refined techniques for customised feature extraction tailored to the

task. Specifically, the aim is to boost accuracy more effectively.

• RQ-3 How to leverage transfer learning for fast model development

across multiple satellites for timely smoke detection, given insuffi-

cient labelled training data from some satellites?

Transfer learning has been widely employed to update DL models when training

data is insufficient in the target domain. Adapting an already-trained model

from one satellite to another saves the time and effort required for designing and

training models from scratch for the target satellites. While transfer learning

seems an ideal solution to fast model development across multiple satellites, its

feasibility depends on resolving the following sub-questions:

– RQ-3.1 How to address variant spectral bands and numbers of spectral bands

in the imagery data from different satellite sensors?

– RQ-3.2 How to handle data distribution disparities in the imagery data from

different sensors?

– RQ-3.3 How to achieve good accuracy with limited training data from the

new sensors?

This research question aims to propose an innovative transfer learning approach

to address all three sub-questions. After resolving the first and second research

questions, a multispectral satellite imagery training dataset will be available to

serve as the source domain. A pretrained lightweight DL model on this dataset
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will also be ready for transfer. Additionally, a new labelled multispectral satellite

imagery training dataset must be constructed to serve as the target domain. This

dataset must be derived from a sensor different from the source sensor, featuring

different spectral radiometric characteristics, a varying number of spectral bands,

and minimal training samples.

1.3 Overview of the Contributions to the Field

This thesis has conducted three studies to answer the research questions presented

in Section 1.2. These studies have made the following contributions to the field of

satellite-based smoke detection:

1. Contributions of study one (based on [27]):

• Development of a lightweight DL model called Variant Input Bands for

Smoke Detection (VIB SD), which has the potential for onboard deploy-

ment on SmallSats for NRT smoke detection. VIB SD achieves competitive

accuracy (93.57% versus 96.22%) with the state-of-the-art model SAFA,

while using less than 2% of its parameters (1.66 million versus 84.2 mil-

lion) when trained on the MODIS RGB imagery dataset USTC SmokeRS.

(For a fair comparison, the USTC SmokeRS imagery data was resized to

224× 224× 3 to align with the training settings of SmokeNet and SAFA.)

• Creation of a multispectral satellite imagery smoke detection training dataset

named Landsat6c, consisting of 1836 six-band (i.e., RGB, NIR, SWIR 1,

SWIR 2) 256×256 images. Landsat6c is the first multispectral satellite im-

agery dataset designed for scene-level smoke detection. With a 30-metre spa-

tial resolution, Landsat6c ensures that EF smoke plumes are captured in the

imagery and can be effectively detected by trained DL models. Landsat6c

was further expanded for study three to provide additional training samples

for each class in the source domain.

• Demonstration of the significance of using multispectral satellite imagery

with additional IR bands for smoke detection through comprehensive ex-

periments employing VIB SD and Landsat6c.

• The effectiveness of deploying VIB SD onboard SmallSats has been exper-

imentally verified. VIB SD served as the model prototype for a SmartSat

CRC-funded project, which simulated NRT smoke scene detection onboard
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Kanyini [55], a cube satellite (CubeSat) co-designed by SmartSat CRC and

the South Australia (SA) government.

2. Contributions of study two (based on [56]):

• Invention of a DL module named Input Amplification (IA), which auto-

matically learns class-oriented spectral patterns from multispectral imagery

for smoke detection. IA can be seamlessly integrated with DL models, en-

abling them to extract and use these class-oriented spectral patterns to

effectively improve smoke detection accuracy.

• Creation of a new lightweight DL model named IA VIB SD, which integrates

IA with VIB SD. When trained on Landsat6c, IA VIB SD achieves signif-

icantly improved accuracy compared to VIB SD (85.33% versus 81.79%),

which simply takes the multispectral imagery training data as input.

3. Contributions of study three (based on [57]):

• Introduction of a novel transfer learning approach aided by IA. This ap-

proach robustly adapts a pretrained model using imagery from one satellite

to another, regardless of variations in spectral radiometric characteristics

or the number of spectral bands. It is the first transfer learning approach

in the literature to address variant multispectral imagery in both source

and target satellites without incorporating new DL models or intermediate

domains. This method significantly facilitates the use of multiple existing

satellites or satellite constellations for the timely and accurate detection of

EF smoke.

• Creation of another multispectral satellite imagery training dataset named

Sentinel7c for smoke detection. Sentinel7c comprises 351 seven-band

(i.e., RGB, NIR, NIR 2, SWIR 2, and SWIR 3) 256 × 256 images. With a

10 metre spatial resolution, Sentinel7c further enhances the capabilities of

trained models in detecting EF smoke.

1.4 Structure of the Thesis

This thesis continues with the following chapters:

• Chapter 2 introduces the essential technical concepts and theoretical background

relevant to the work presented in this thesis.
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• Chapter 3 provides a comprehensive review of smoke detection approaches, fo-

cusing primarily on satellite-based methods and covering non-satellite platforms,

including UAVs and surveillance cameras. Additionally, it reviews transfer learn-

ing techniques, with an emphasis on cross-sensor transfer learning, where data

distribution disparity is a significant concern.

• Chapter 4 proposes the lightweight DL model VIB SD and introduces the multi-

spectral satellite imagery training dataset Landsat6c for scene-level smoke de-

tection. It also presents the results of investigating the impact of using IR bands

on smoke detection by employing Landsat6c and VIB SD [27].

• Chapter 5 presents the IA module, which enables DL models to automatically

learn class-oriented spectral patterns from multispectral satellite imagery to en-

hance smoke detection accuracy [56].

• Chapter 6 presents a novel cross-sensor transfer learning approach to facilitate

the use of multiple satellites for smoke detection. This transfer learning approach

adapts class-oriented spectral patterns rather than the data distribution. The IA

module aids in both learning and adapting these spectral patterns [57].

• Chapter 7 concludes the thesis, discussing the practical implications, limitations

of the research, and future research directions.
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CHAPTER 2. TECHNICAL AND THEORETICAL BACKGROUND

This chapter addresses the technical and theoretical concepts related to the research

of the thesis, including satellites and sensors, spectral patterns, and transfer learning.

2.1 Satellites and Sensors

Satellites and sensors are distinct yet complementary concepts often employed together

in the realms of space and remote sensing. Satellites typically carry multiple sensors

as part of their payload. For instance, the Terra satellite is equipped with MODIS,

Multi-angle Imaging SpectroRadiometer, and Clouds and the Earth’s Radiant Energy

System [58]. Similarly, Landsat 8 carries OLI and the Thermal Infrared Sensor (TIRS)

[59].

These sensors collect data about Earth and other celestial bodies. The data col-

lected by these satellite-borne sensors is transmitted back to Earth for analysis and

utilisation in various applications, including weather forecasting, environmental moni-

toring, and scientific research [60, 61].

2.1.1 Satellites

Satellites are artificial objects that are intentionally placed into orbit around Earth

or other celestial bodies. Satellites serve various purposes, including communication,

weather monitoring, navigation, Earth observation, scientific research, and military

applications. A satellite typically consists of a power source (such as solar panels),

communication systems, propulsion systems, control systems, and various payloads,

which can include sensors. There are different types of satellites based on their func-

tion, such as communication satellites, weather satellites, navigation satellites (e.g.,

GPS), and Earth observation satellites. Satellites operate in various orbits, including

low Earth orbit (LEO), medium Earth orbit (MEO), and geostationary orbit (GEO),

depending on their mission requirements. Table 2.1 shows that each orbit type serves

specific purposes based on altitude and characteristics [62].

It is noteworthy that sun-synchronous satellites, as a specific type of LEO satellites,

have orbits designed to ensure that they pass over the same part of the Earth at roughly

the same local solar time. Such orbits, typically between 600 km to 800 km above the

Earth’s surface with inclinations around 98 degrees, revolve around the Earth at the

same rate that the Earth orbits the Sun, maintaining a consistent relationship with

the position of the Sun. This orbital characteristic ensures consistent illumination
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Table 2.1: Summary of LEO, MEO, and GEO orbit types and their characteristics.

Orbit Altitude Orbital Applications Examples

Type Range Period

(km) (hours)

LEO 160 - 2,000 1.5 - 2 Earth observation,
scientific missions,
space stations,
communication

ISS 1, Hubble Space
Telescope, Dove Satel-
lites, Iridium Satellites

MEO 2,000 -
35,786

2 - 12 Navigation,
communication,
scientific missions

GPS Satellites, Galileo
Satellites, GLONASS
Satellites, O3b Satel-
lites

GEO 35,786 24 Communication,
weather monitoring,
broadcasting

GOES, SES Satellites,
Intelsat Satellites, Hi-
mawari Satellites

1 International Space Station.

conditions in imagery captured in a specific time frame over successive years or a

particular area over a sequence of days. This makes sun-synchronous satellites ideal for

Earth observation, environmental monitoring, and reconnaissance. Some well-known

sun-synchronous satellites include the NOAA sun-synchronous satellite family (e.g.,

NOAA 6/15/18/19, Suomi NPP), Terra, Aqua, Landsat 7/8/9, and Sentinel-1/2 [63].

Most Earth observation satellites, including sun-synchronous satellites, tend to be

medium (typically between 500 kg to 1,000 kg) to large (typically more than 1,000

kg) satellites because they require substantial instrumentation and power to perform

their missions effectively. Despite being powerful and capable, their complexity ne-

cessitates extensive testing and stringent quality control measures, leading to higher

launching costs due to complicated launch logistics [64] and overall mission costs [65].

For instance, the Terra satellite (with a launch mass of approximately 4,864 kg), a key

component of the Earth Observing System of NASA, had a total mission cost esti-

mated at around 1.3 billion USD, which included development, launch, and operations

[66, 67]. In addition, these larger satellites often require longer development and con-

struction times, which can delay deployment and limit technological innovation [68].

Once in orbit, large satellites are less adaptable to changes in mission requirements

and can be challenging to upgrade or repair, often resulting in a reliance on outdated

technology over their operational lifespan [69].
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In contrast, SmallSats offer numerous advantages that address these disadvantages.

SmallSats refer to satellites weighing lower than 500 kg. They can be further divided

into nanosats (less than 10 kg), microsatellites (10-100 kg), and minisatellites (100-500

kg). The reduced complexity of SmallSats simplifies testing and integration processes,

decreasing overall mission expenses [70]. For instance, CubeSats, a standardised type

of nanosats typically measured in multiples of 10x10x10 cm units called “U” (weighing

about 1.33 kg per unit), can be built and launched for as little as 50,000 USD to

500,000 USD depending on their complexity and the launch provider [71]. The lower

cost and quicker development cycles of SmallSats enable faster deployment and more

frequent technological updates [72]. They are also more flexible in terms of launch

options, as their smaller size allows them to be launched as secondary payloads or in

large numbers within a single mission [73]. This flexibility extends to their operational

adaptability, as SmallSats can be easily reconfigured, replaced, or augmented with

newer technology [74]. Consequently, SmallSats provide a cost-effective, agile, and

innovative alternative to their larger counterparts, making space more accessible and

versatile for a wider range of applications and stakeholders [75, 76]. SmallSats are

typically deployed in LEO due to several factors, including lower launch costs, reduced

latency for communications, and the suitability of LEO for many SmallSat missions

such as Earth observation, scientific research, and technology demonstrations.[77, 78,

79, 80, 81].

A single satellite often suffers from limited coverage, lengthy revisit times (the pe-

riod between a satellite visiting the same location on Earth twice), and potential single

points of failure [82]. Satellite constellations, consisting of multiple satellites working

together in coordinated orbits, were developed to provide enhanced coverage, improved

revisit time, and greater reliability [83]. These satellites typically employ identical or

near-identical sensors to ensure consistent data quality, simplify calibration and op-

eration, reduce costs, and enhance data integration and long-term mission reliability.

The earliest satellite constellations can be traced back to the Iridium constellation

launched in the late 1990s and the GPS constellation operational since the 1990s [84,

85]. More and more satellite constellations, notably many CubeSat constellations, have

been launched or planned to be launched into space to accomplish more complex tasks.

For example, the recent mega-constellations like OneWeb and Starlink aim to provide

global broadband internet, demonstrating the growing capabilities and applications of

satellite constellations [86, 87]. Planet Labs, an American private Earth imaging com-

pany, operates a CubeSat constellation called Doves, consisting of more than 430 Dove
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and SuperDove CubeSats in sun-synchronous orbits. These satellites are equipped

with sensors, including a NIR band with a 3.7-meter spatial resolution, suitable for fire

and smoke detection [88, 89]. PlanetScope, the data product from these satellites, has

been used in various environmental monitoring applications, including fire detection.

A European company called OroraTech has planned to launch 100 CubeSats equipped

with high-resolution thermal imagers by 2026, jointly achieving an average 30-minute

revisit time [90]. These advancements mark a significant evolution in satellite tech-

nology, enabling continuous global coverage, real-time data collection, and enhanced

communication networks, which are crucial for various applications such as disaster

management, environmental monitoring, and global navigation systems [91, 92].

As an alternative to satellite constellations, multiple satellites with varied sensors

can be employed collectively to enhance temporal and geographical coverage, combine

complementary data, improve accuracy, and ensure consistent monitoring, particularly

during sensor downtimes or outages. For instance, NOAA uses the Hazard Mapping

System to monitor wildfires across north and central America by integrating data from

multiple satellites such as NASA’s Aqua and Terra with the MODIS sensor, Suomi-

NPP and NOAA-20 with Visible Infrared Imaging Radiometer Suite (VIIRS), and

geostationary satellites like GOES equipped with the Advanced Baseline Imager [93].

Although using multiple satellites with different sensors typically requires significant

manual data engineering due to disparities in spectral and ratiometric characteristics,

it offers several advantages compared to satellite constellations:

• Data Availability: Existing satellites like Landsat 8 and Sentinel-2 provide a

rich repository of observational data spanning many years, enabling the collection

and labelling of data from historical fire smoke events [94, 95]. Moreover, these

satellites can capture diverse fire smoke types, which can contribute to training

more robust DL models. In contrast, satellite constellations typically have shorter

operational histories, limiting their ability to provide comprehensive datasets [96].

Furthermore, most constellations are privately owned and restrict public access

to their data, reducing their utility for research purposes [97].

• Cost Efficiency: Utilising the infrastructure of existing satellites is far more

cost-effective than launching and maintaining new satellite constellations [98].

The expense of deploying and operating constellations is significantly higher than

using satellites already in orbit, making the latter a more resource-efficient solu-

tion for fire monitoring [99].

• Technological Contribution: Tackling the challenges associated with integrat-
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ing data from multiple existing satellites can lead to technological advancements

that enhance data processing and utilisation. For example, developing methods

to adapt DL models to inconsistently distributed data from various sensors could

improve fire detection systems and support faster deployment across constella-

tions [100].

• Immediate Implementation: Since existing satellites are already operational,

fire detection strategies can be implemented immediately. This is vital for timely

responses to wildfires, potentially reducing damage and saving lives [101]. The

urgency of fire detection, combined with the availability of satellite data, under-

scores the importance of leveraging these assets [102].

One objective of this thesis is to investigate mechanisms for fast model develop-

ment that leverage data from multiple existing satellites—such as Landsat 5/8 and

Sentinel-2 A/B—for accurate and timely smoke detection, while minimising data re-

quirements and manual engineering efforts. Such mechanisms can also be adapted for

satellite constellations, enabling new SmallSat constellations to rapidly and efficiently

perform smoke detection without the need for complex integration or concerns about

the spectral radiometric characteristics of the sensors.

2.1.2 Sensors

Sensors are devices or instruments that detect and measure physical properties, such as

light, heat, motion, or sound, and convert these measurements into data. Sensors can

be deployed on various platforms, including satellites, aircraft, ground-based stations,

and handheld devices. When used on satellites, sensors collect data from space for

remote sensing applications [103]. Sensors gather information about the environment

or the object being observed. In the context of satellites, sensors collect data for vari-

ous applications, including imaging, temperature measurement, atmospheric analysis,

and more. A sensor typically includes a detector (which senses the physical property),

electronics to process the signal, and sometimes systems for data storage or transmis-

sion. Sensors can be divided into active sensors and passive sensors based on how they

gather information and the type of energy they rely on:

• Active Sensors have an internal source of energy, which emits energy (usually

in the form of electromagnetic waves) towards the target, then measures the re-

flected or backscattered energy and the time it takes for the energy to return

20



CHAPTER 2. TECHNICAL AND THEORETICAL BACKGROUND

after interacting with the target. This information can be used to determine var-

ious properties of the target, such as distance, speed, and material characteristics

[104]. Examples of active sensors include Radar and SAR (Synthetic Aperture

Radar), which uses radio waves to detect objects and measure their distance and

speed, and lidar, which uses laser pulses to measure distances and create high-

resolution maps of surfaces. Active sensors can operate day or night since they

do not rely on external light sources. Their energy pulses can usually penetrate

through clouds, smoke, and certain materials, providing data in various weather

conditions. Active sensors are widely applied in the areas of weather forecast-

ing (e.g., weather radars), topographic mapping (e.g., lidar), and military and

defence (e.g., radar systems).

• Passive Sensors do not have their own energy source and rely on external

sources of energy, primarily sunlight. These sensors measure the naturally occur-

ring energy that is reflected from or emitted by the Earth’s surface or atmosphere.

This includes visible light, IR radiation, and thermal radiation. Examples of pas-

sive sensors include optical sensors, which capture visible light and create RGB

images similar to photographs, thermal sensors that detect IR radiation (usu-

ally used to measure temperature) emitted by objects, and multispectral and

hyperspectral sensors, which capture data across multiple wavelengths, providing

detailed information about the composition and properties of objects. Passive

sensors are typically simpler and less expensive than active sensors and can pro-

vide a wide range of information about the environment, including vegetation

health, land use, and atmospheric conditions (e.g., the presence of smoke) [104].

However, the applications of passive sensors are limited by the availability of

natural light or thermal emissions.

Sensors have the following key attributes:

• Spectral Bands refer to specific ranges of wavelengths in the electromagnetic

spectrum that sensors on satellites or other imaging devices can detect. Each

spectral band corresponds to a particular range of wavelengths and can cap-

ture unique information about the Earth’s surface and atmosphere based on how

different materials reflect or emit electromagnetic energy at those wavelengths.

Multispectral bands, in particular, are a subset of spectral bands, covering various

parts of the spectrum, typically including visible, NIR, and sometimes SWIR

regions [105].

• Spectral Resolution is the ability of a sensor to distinguish between different

wavelengths of electromagnetic radiation. It determines how many spectral bands
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the sensor can capture and how narrow these bands are. For example, the spectral

resolution of multispectral sensors, which capture data in a few broad spectral

bands, is lower compared to hyperspectral sensors, which capture data in many

narrow spectral bands [106].

• Spatial Resolution refers to the smallest distinguishable distance between two

objects on the Earth’s surface that can be resolved by a sensor, typically measured

in meters. Higher spatial resolution yields more detailed images, allowing for

finer distinctions between objects. Different bands of a sensor may have different

spatial resolutions. For example, panchromatic bands are often designed with

the highest spatial resolution for detailed imaging; multispectral bands typically

have lower spatial resolutions compared to panchromatic bands; TIR bands often

have the lowest spatial resolutions due to the longer wavelengths and the need for

larger detector elements to capture sufficient thermal energy. The altitude of the

satellite’s orbit plays a predominant role in determining a sensor’s overall spatial

resolution. Satellite sensors in lower orbits like LEO generally provide more

detailed imagery compared to those in higher orbits like GEO. For instance, the

WorldView-3 satellite, operating in low Earth orbit at approximately 617 km,

can capture images with a high spatial resolution of 1.24 meters in its visible

and NIR bands, and 0.31 meters in its panchromatic band [107]. The OLI sensor

on Landsat 8, orbiting at 705 km, offers a spatial resolution of 30 metres in its

multispectral bands [108]. In contrast, the Himawari-8 AHI sensor, operating

in GEO at approximately 35,786 km, provides a spatial resolution of 500-2000

metres across its bands [109]. The design of the sensors also plays an important

role in affecting their spatial resolutions. For example, the MODIS sensors on

Terra and Aqua, operating at the same altitude as OLI, have a lower spatial

resolution of 250 metres in some of their visible and NIR bands due to their

broader swath width and different mission objectives [110]. Notably, the High

Resolution Optical Imager, carried by the GEO satellite Gaofen-4 and enhanced

by state-of-the-art technology, can provide a spatial resolution of 50 metres in its

visible bands [111]. Such a high spatial resolution is phenomenal and rare among

GEO sensors. However, the data access to Gaofen-4 is restricted to Chinese

governmental agencies and research institutions within China, with limited and

controlled access to their commercial partners or international collaborators.

• Swath Width is the width of the ground area that a satellite sensor can capture

in a single pass. It is typically measured in kilometres. A wider swath width

allows a sensor to cover a larger area of the Earth’s surface in a single pass, which
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is useful for applications such as land cover mapping and disaster monitoring. For

example, the Landsat 8 OLI sensor has a swath width of 185 km, the Sentinel-2

Multispectral Instrument (MSI) has a swath width of 290 km, while the MODIS

sensor on Terra and Aqua has a swath width of 2,330 km [112].

• Temporal Resolution refers to the time interval at which a sensor can cap-

ture data over the same location. It is associated with, but different from, the

satellite’s revisit time, which implies how quickly a satellite passes over the same

point on the Earth’s surface. For example, the MODIS sensors on Terra and

Aqua have a temporal resolution of about half a day (considering both satellites

working together), whereas each satellite has a revisit time of 1-2 days. The

Landsat 8 OLI’s temporal resolution is 16 days, determined by the satellite’s

revisit time of 16 days. Himawari-8 AHI has a temporal resolution of 10 min-

utes for full-disk images and 2.5 minutes for specific areas, despite the satellite

remaining static over the same location on Earth. Temporal resolution is crucial

for monitoring dynamic processes, as it determines how often data is collected

for the same location [113]. This attribute is essential for applications such as

weather monitoring, crop growth analysis, and environmental change detection.

The temporal resolution of a sensor or the revisit time of a satellite is predomi-

nantly affected by the orbit altitude and the swath width of the sensor [114, 92,

115].

• Radiometric Resolution is the ability of a sensor to distinguish between dif-

ferent levels of radiance or reflectance. It determines how finely a sensor can

quantify the detected energy, typically measured in bits. Higher radiometric res-

olution allows for more precise detection of subtle differences in energy levels.

For example, an 8-bit sensor can distinguish 256 different radiant levels, while

a 12-bit sensor can distinguish 4,096 levels. The Landsat 8 OLI sensor has a

radiometric resolution of 12 bits, enabling it to detect 4,096 different levels of

radiance. In comparison, the Sentinel-2 sensor has a radiometric resolution of 12

bits for most of its bands, but it also includes bands with 10-bit radiometric reso-

lution, distinguishing 1,024 levels. This variation in radiometric resolution allows

Sentinel-2 to balance between precision and data volume, making it suitable for

detailed surface analysis as well as broader environmental monitoring [116].

Table 2.2 compares some attributes of three different sensors onboard different sun-

synchronous satellites.
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Table 2.2: Comparison of some attributes in different satellite sensors

Attribute MODIS OLI MSI

Terra/Aqua Landsat 8 Sentinel-2 A/B

Orbit Altitude (km) 705 705 786

Swath Width (km) 2330 185 290

Temporal Resolution (day) 0.5 16 3-5

Number of Spectral Bands 36 11 13

Blue Bandwidth (nm) 459-479 452-512 458-523

Blue Spatial Resolution (m) 250 30 10

In summary, satellites are platforms that carry sensors into space, while sensors are

the instruments that collect data. The combination of satellites and sensors enables

remote sensing and valuable information collection from space. Often, the names of

the sensors are used to refer to the satellites when the context is clear. In this thesis,

the sensor names and satellite names are used interchangeably. For example, MODIS

may refer to the satellite missions Aqua or Terra.

2.1.3 Fire and Smoke Detection Using Satellites

Satellites have been used to monitor fire-related events, including pre-fire observations

(e.g., fire risk monitoring), active fire detection (e.g., hot-spot detection, flaming or

smouldering fire detection, smoke detection), and post-fire analysis (e.g., Burned areas

detection) [28].

Hot-spot detection using satellite sensors is the predominant method of active fire

detection, and primarily relies on MWIR and TIR bands due to their sensitivity to

high temperatures [117, 118]. The bandwidths of MWIR typically cover 3.55 to 3.93

µm, while the TIR bands range from 10.5 to 12.5 µm.

Many sensors are equipped with onboard hot-spot detection modules. Table 2.3

presents examples of these sensors along with the specific bands used in their hot-spot

detection modules [119, 120].

Table 2.4 summarises satellite sensors suitable for fire detection [28].
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Table 2.3: Examples of sensors and their hot-spot detection bands

Sensor Band Wavelength Range (µm)

MODIS Band 21 (MWIR) 3.929–3.989

MODIS Band 31 (TIR) 10.78–11.28

VIIRS I4 Band (MWIR) 3.55–3.93

VIIRS I5 Band (TIR) 10.5–12.4

GOES-16/17 MWIR ˜3.9

GOES-16/17 TIR ˜10.7

AHI Band 7 (MWIR) 3.8

AHI Band 13 (TIR) 10.4

AHI Band 14 (TIR) 11.2
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Table 2.4: Comparison of satellite sensors suitable for fire detection [28, Table 1]

Satellite/ Spatial Temporal Latency Typical Cost

Sensor Resolution* Resolution Detection

Target

Himawari 8-AHI 2 km 10 min 17 min** Hot-spots Free

MODIS 500 m/1 km 1 day 10-30 min Hot-spots Free

AVHRR 1.09 km 12 h 10-30 min Hot-spots (day
and night)

Free

Suomi-VIIRS 375/750 m 12 h 10-30 min Hot-spots (day
and night)

Free

Landsat-7/8 30/60/100 m 8-16 days Initial TIRS: <12h Tier1/Tier2: 14-26 days Burned areas Free

Sentinel-1 A/B 10 m 6 days 2 - 12 h (average 5-6 h) Cloud-free
burned areas

Free

Sentinel-2 A/B 10/20 m 3-5 days 2 - 12 h (average 5-6 h) Burned areas Free

Sentinel-3 A/B 1 km 1 day 2 - 12 h (average 5-6 h) Hot-spots (day
and night)

Free

RadarSAT 3 m 1 day 4 h Cloud-free
burned areas

12 USD/km2

WorldView-3 0.37/1.24/3.7 m < 1 day n/a Burned areas 58 USD/km2

* Spatial resolutions of the respective relative bands (e.g., MWIR)

** Himawari 8/9 hot-spots are generally loaded onto the Sentinel Hot-spots platform approx. 17 minutes after acquisition time (in

rare cases up to 30 min)
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As demonstrated in Table 2.3 and Table 2.4, the sensors used for active fire detection

are typically passive sensors, either sun-synchronous or geostationary. The relatively

higher spatial resolutions of sun-synchronous sensors enable them to detect smaller

fires more effectively. However, their low temporal resolutions (generally more than 12

hours) implies that they may fail to detect burning fires promptly. In contrast, the high

temporal resolutions (normally less than 30 minutes) of geostationary sensors allows

them for NRT active fires detection. Nevertheless, their coarser spatial resolutions,

particularly in the MWIR and TIR bands, indicate that they are prone to overlook

nascent fires, which typically have smaller sizes [28, 117, 118].

Apart from the contradiction between temporal resolution and spatial resolution,

the accuracy of onboard hot-spot detection is also affected by the following factors:

atmospheric interference, sensor limitations, and data processing constraints. Atmo-

spheric conditions such as clouds and aerosols can obstruct the sensor’s view, leading

to false negatives (FNs) or inaccuracies in hotspot identification [121]. Moreover, the

sensitivity and resolution of the sensors onboard satellites are often limited by their

design and the operational constraints of the satellite platform, which can result in false

positives or missed detections [122]. Specific factors causing false positives include hot

backgrounds such as deserts or urban areas during summer, which can be mistakenly

identified as fires. On the other hand, nascent fires burning at lower temperatures may

not be detected, resulting in FNs [123].

Algorithms such as Fire Radiative Power (FRP) and spectral indices like Normalised

Difference Vegetation Index (NDVI) are commonly used in hotspot detection. While

FRP estimates the energy released by fires and helps in quantifying their intensity, it

can be misled by non-fire heat sources, thus generating false positives. Spectral indices

like NDVI can help distinguish vegetation from burned areas but may fail in heteroge-

neous landscapes where different types of ground cover exist [124]. Additionally, these

algorithms often require complex calibration and validation processes, and their accu-

racy can be compromised by the resolution of the satellite imagery and the presence

of noise in the data [122].

Furthermore, onboard satellite detection systems are constrained by limited power

supply, storage space, and computational capability. These limitations often necessitate

the exclusion of complicated methods such as DL models, which are typically resource-

intensive [25, 125]. Although some large satellites may have adequate resources to

support such onboard DL models, many current systems do not have the capacity
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for these demanding computational tasks [126]. These factors collectively reduce the

reliability of onboard satellite hotspot detection systems and highlight the need for

complementary ground-based processing methods.

Free from the constraints on power supply, storage space, and computational ca-

pacity, ground-based approaches offer much more flexibility, allowing more fire-related

objects (e.g., fire flames, smoke plumes) to be detected with a wider range of methods.

For example:

• False colour composition enhances the visibility of fire and smoke by using

different spectral bands to create composite images that highlight these features.

By combining IR and visible bands, false colour compositions can distinguish be-

tween hot surfaces, active fires, and smoke plumes. This technique is particularly

effective in identifying fire locations and extents, providing clear visual contrasts

that are easier to interpret than single-band images [127, 128].

• Multi-threshold methods apply multiple threshold values to different spectral

bands and pseudo bands to detect fire and smoke. For instance, a combination of

TIR and MWIR thresholds can be used to identify active fires, while visible and

NIR thresholds can help detect smoke. Multi-threshold methods can reduce false

positives by cross-referencing multiple criteria, thus improving detection accuracy

[129, 130].

• DL classification methods such as CNNs, can classify satellite images to detect

fire and smoke. These models are trained on large datasets of labelled images,

learning to identify features associated with fire and smoke. DL classification

methods offer high accuracy and can adapt to different types of landscapes and

atmospheric conditions. They can distinguish between fire, smoke, clouds, and

other objects, reducing false positives and FNs [131, 132].

• DL segmentation methods such as U-Net and Mask R-CNN, can identify

and delineate the boundaries of fire and smoke within an image. These models

provide pixel-level accuracy, allowing for precise mapping of fire extents and

smoke plumes. Segmentation methods are particularly useful for detailed analysis

and monitoring of fire progression and its impact on the environment [133, 134].

Ground-based approaches have significant advantages over onboard systems. They

allow for the use of more complex and computationally intensive algorithms, such as DL
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models, which can achieve higher accuracy and reliability in detecting and classifying

fire events. These approaches can leverage extensive computational resources and large

labelled datasets, facilitating the development and refinement of advanced detection

algorithms [135, 136]. Moreover, the flexibility to update and improve these models

continuously ensures that the detection systems can adapt to new types of data and

evolving environmental conditions.

However, one drawback of ground-based approaches is the latency caused by the

time needed for data downlink, processing and dissemination, which can lead to signif-

icant delays in detecting and responding to fires. Additionally, effectively training DL

models requires large amounts of labelled data, which can be challenging to obtain and

maintain. This reliance on extensive datasets can limit the scalability and adaptability

of these models in different regions or under varying conditions. Furthermore, the com-

putational resources needed for processing and analysing satellite data on the ground

can be substantial, necessitating powerful infrastructure and continuous maintenance

[136].

Whether using onboard satellite or ground-based methods, it is important to note

that smoke detection is influenced by several factors.

Firstly, smoke detection is heavily influenced by the chemical characteristics of the

smoke, which ultimately determine its spectral signature in satellite imagery pixels.

Smoke is composed of various gases, particulate matter, and aerosols, with common

constituents including carbon dioxide (CO2), carbon monoxide (CO), methane (CH4),

volatile organic compounds, and particulate matter (PM2.5 and PM10) [137]. The

spectral properties of these components affect how smoke is detected in different bands

of satellite sensors, especially in the visible, IR, and TIR spectra [138].

Additionally, different types of smoke arise from various fuel types, moisture lev-

els, and environmental conditions, including wind. For instance, smoke from burning

peatlands, forests, and grasslands can vary significantly in composition and density,

affecting the visibility and detectability of smoke in satellite images [139]. Moisture

content in the fuel also influences the amount and type of smoke produced; wetter fuels

produce more smoke due to incomplete combustion [140]. Wind conditions can further

disperse smoke, impacting its concentration and the area it covers, affecting satellite

detection capabilities [141].
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Furthermore, the altitude to which smoke elevates is another critical factor in its

detectability. Smoke can rise to various altitudes depending on the intensity of the

fire and atmospheric conditions. Smoke plumes can ascend to the lower stratosphere

during intense wildfires, but most smoke resides in the troposphere [142]. Over time,

smoke particles disperse and settle, eventually becoming less visible in satellite imagery

as they mix with the surrounding atmosphere and undergo chemical transformations

[143].

2.2 Spectral Patterns

A “Spectral pattern” can be generally described as a pattern in the pixel values across

the spectral bands of remotely sensed imagery, indicative of certain characteristics of

the object, material, or phenomenon within the pixel. Although the term “Spectral

pattern” has been frequently mentioned in the fields of remote sensing and computer

vision [see 144, 145, 146, 147], its definition remains vague in the literature.

Spectral patterns are usually related to but distinct from spectral signatures. The

latter refers to the characteristic ways in which objects, materials, or phenomena reflect,

absorb, or emit electromagnetic radiation across various wavelengths [148]. In contrast,

spectral patterns are potential rules that can be uncovered, often based on the spectral

signatures of these objects, materials, or phenomena, to differentiate them. Figure 2.1

demonstrates the spectral signatures of vegetation, water, and soil, highlighting how

each reflects electromagnetic radiation differently across various wavelengths.

Spectral indices, such as NDVI, Normalised Burn Ratio (NBR), and Normalised

Difference Built-Up Index (NDBI), can be considered a special group of spectral pat-

terns. Spectral indices are calculated using designated spectral bands and formulas,

and their values present different patterns against the original bands, indicating the

existence or occurrence of certain objects or events.

Table 2.5 presents several common spectral indices utilised in remote sensing liter-

ature. It is important to note that spectral patterns should indicate the type of a pixel

and are typically not simple linear combinations of the selected band values.
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Figure 2.1: Spectral signatures of vegetation, water, and soil across different wave-
lengths, adapted from [149].

Table 2.5: Some spectral indices used in remote sensing

Index Formula Objective References

NDVI NIR−Red
NIR+Red Highlight vegetation

[150]

[151]

[152]

[153]

NBR NIR−SWIR
NIR+SWIR Highlight burnt areas

[152]

[154]

[155]

NDBI SWIR−NIR
SWIR+NIR Highlight urban areas

[156]

[157]

[158]

31



CHAPTER 2. TECHNICAL AND THEORETICAL BACKGROUND

Similarly, the multi-threshold values derived from multiple bands to distinguish fire

or smoke pixels from pixels belonging to other objects can be considered as spectral

patterns.

To make discussions precise, this thesis gives a formal definition of “spectral pat-

tern” as follows:

Definition 2.2.1. Given an input image X ∈ RW×H×C , where W ∈ N, H ∈ N, and
C ∈ N represent the width, height, and number of spectral channels of X, for any pixel

P(i,j) = (p1(i,j), . . . , p
k
(i,j), . . . , p

C
(i,j)) in X, where i ∈ [0,W )∩N and j ∈ [0, H)∩N are the

indices of the pixel, pk(i,j) ∈ R is the value of the pixel P(i,j) in the k-th channel, and

k ∈ [1, C] ∩ N, a spectral pattern refers to a semantic mapping SP , which maps P(i,j)

to a new value pSP(i,j) ∈ R that is indicative to certain physical/chemical properties of

P(i,j):

SP : P(i,j) 7−→ pSP(i,j) (2.2.1)

For example, a spectral pattern indicative of smoke may map smoke pixels to values

close to 1 and other pixels close to 0, assuming all original pixel values are normalised

to the range [0, 1]. The aforementioned spectral indices and multi-threshold values

align with Definition 2.2.1.

2.3 Transfer Learning

Transfer learning is a machine learning technique where a model developed for a par-

ticular task is reused as the starting point for a model on a second task. Formally,

transfer learning can be defined as follows:

Definition 2.3.1. A domain is a set D = {X , P (X)} consisting of a feature space X
and a marginal probability distribution P (X), where X = {x1, x2, . . . , xn} ∈ X .

Definition 2.3.2. A task is a set T = {Y , f(·)} consisting of a label space Y and a

predictive function f(·), which is typically learned from the training data consisting of

pairs {(xi, yi)}, where xi ∈ X and yi ∈ Y .

Definition 2.3.3. Given a source domain DS = {XS, PS(X)} and a source learning

task TS = {YS, fS(·)}, and a target domain DT = {XT , PT (X)} and a target learning
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task TT = {YT , fT (·)}, transfer learning aims to enhance the learning of the target pre-

dictive function fT (·) in TT using knowledge from fS(·), which encompasses information

from DS and TS, where DS ̸= DT and/or TS ̸= TT [159, 125].

Based on the above definition, transfer learning typically applies to the following

scenarios:

• DS ̸= DT but TS = TT : This scenario is typically encountered in transductive

transfer learning.

– Addressing data distribution differences: Techniques such as domain adap-

tation can be used to align the feature spaces XS and XT or to adapt the

model to work in the target domain [160, 133].

– Example: Using a model trained on English text for sentiment analysis to

perform sentiment analysis on Chinese text.

• DS = DT but TS ̸= TT : This scenario is typically encountered in inductive

transfer learning [159].

– Addressing different tasks: Techniques such as fine-tuning the model on the

new task-specific data or using multi-task learning approaches can help [161,

162].

– Example: Using a model trained for image classification to help with object

detection in the same set of images.

• DS ̸= DT and TS ̸= TT : This scenario is typically encountered in unsupervised

transfer learning.

– Addressing both differences: Techniques such as unsupervised domain adap-

tation and transfer learning algorithms that can handle both domain and

task discrepancies are applied [163, 164].

– Example: Using a model trained on labelled image data to help with clus-

tering of unlabelled text data.

Chapter 6 of this thesis focuses on using a smoke detection model trained on Landsat

imagery data to perform smoke detection on Sentinel-2 imagery data, where DS ̸= DT

but TS = TT . This is an example of transductive transfer learning.
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This chapter reviews the literature closely related to the research aim of this thesis:

developing innovative approaches to smoke detection using satellite imagery for fire

disaster mitigation. Achieving this aim requires addressing accurate and timely smoke

detection, as outlined in Chapter 1. Accordingly, the literature review concentrates on

two main areas:

1. Smoke detection approaches using remotely sensed imagery. The review

focuses on satellite-based approaches but extends to approaches for non-satellite

platforms (e.g., surveillance cameras, UAVs, and aircraft), covering both pixel-

level and scene-level detection. This provides a comprehensive context about

various methods, and how common methods (e.g., CNN models) are used differ-

ently for satellite and non-satellite imagery. Despite unique challenges related to

satellite-based smoke detection, approaches using non-satellite imagery can pro-

vide valuable information for accurate smoke detection using satellite imagery.

2. DL-based transfer learning approaches in remote sensing, focusing on

cross-sensor transfer learning. The review aims to provide insights about

leveraging transfer learning for fast model development for multiple satellites to

enhance timely smoke detection collectively.

In addition, the review examines if the satellite-based approaches can effectively

detect EF smoke, which is determined by the spatial resolution of the satellite imagery

and is crucial for fire disaster mitigation.

The content of this Chapter is organised as follows. Section 3.1 reviews approaches

using non-satellite imagery. Section 3.2 reviews approaches using satellite imagery. Sec-

tion 3.3 reviews DL-based transfer learning in remote sensing. Section 3.4 summarises

identified gaps in the previous research that this thesis aims to address.

The approaches discussed in Section 3.1 and Section 3.2 are further categorised into

pixel-level and scene-level detection.

Pixel-level detection, which aims to identify smoke pixels individually, has been

extensively studied using both non-satellite and satellite imagery. Approaches range

from traditional methods like image processing and support vector machines (SVMs)

to more advanced artificial neural networks, including multi-layer perceptrons (MLPs)

(also known as fully connected neural networks) and more complex architectures such

35



CHAPTER 3. LITERATURE REVIEW

as CNNs and FCNs. Consequently, traditional methods and artificial neural networks

are reviewed separately in Section 3.1.1 and Section 3.2.1 in the context of pixel-level

detection. It is important to note that DL models generally refer to artificial neural

networks with more than three hidden layers. In this thesis, while foundational MLPs

are discussed separately, other types of artificial neural networks, such as CNNs and

FCNs, are considered DL models since they typically employ more than three hidden

layers.

In contrast, scene-level detection, relying exclusively on DL, has emerged as a new

area of study in the last decade, driven by the rapid development of image classification

and object detection using CNNs and other DL techniques. Image classification meth-

ods predict the entire image as smoke or other scene classes. Object detection methods

are more complex, aiming to detect possible smoke regions within the image to infer the

scene class (e.g., non-smoke scene if smoke is not detected), with a predicted bounding

box around each detected smoke region. Object detection is often adopted for smoke

detection using surveillance camera imagery, where smoke plumes typically appear ver-

tically with definable boundaries and without interference from clouds. In contrast,

smoke plumes in satellite imagery generally diffuse horizontally over larger areas with

less distinct boundaries, and are often mixed with or obscured by clouds, making object

detection using bounding boxes less practical. Additionally, DL models require fixed

input shapes, constraining satellite imagery-based smoke detection to smaller imagery

tiles, in which smoke plumes can cover the entire tile, rendering bounding boxes unnec-

essary. Figure 3.1 compares a typical smoke scene in surveillance camera imagery with

various smoke scenes in Landsat 8 OLI imagery, suggesting that image classification is

a more suitable option for smoke detection using satellite imagery.

Since DL-based scene-level smoke detection depends heavily on labelled imagery

datasets, the availability of such satellite imagery datasets is discussed in Section 3.2.2.

It is worth noting that the imagery data used in previous studies, particularly those

utilising surveillance cameras, primarily contain the RGB bands. Only a few studies,

specifically those focused on satellite-based smoke detection, have incorporated both

RGB and IR bands.

Prior to the detailed review, Table 3.1 summarises the smoke detection approaches

found in the literature, organised by detection levels, platforms, bands used, approach

types, and techniques employed.
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(a) Smoke plumes fit within bounding boxes in a surveillance camera image.

(b) In Landsat 8 OLI imagery tiles, dense smoke plumes are often surrounded by diffuse,
lighter plumes without clear boundaries. Smoke and clouds are difficult to separate using
bounding boxes, and bounding boxes become unnecessary when smoke covers entire tiles.

Figure 3.1: Comparison of smoke scenes in a typical surveillance camera image and
Landsat 8 OLI imagery.
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Table 3.1: Approaches used in smoke detection across different platforms.

Detection Level Platform Bands Used Approach Type Techniques Employed

Pixel level

Non-satellites RGB and/or IR
Traditional

Image processing techniques (e.g., histograms,
wavelets, segmentation, image enhancement,
optical flow); machine learning techniques
(e.g., bag of features, k-means clustering, ro-
bust adaboost); other approaches such as fuzzy
logic and extended Kalman filter.

Artificial neural networks

MLP, DL segmentation models (e.g., FCNs,
Deeplabv3+), GAN; hybrid methods incorpo-
rating traditional techniques such as optical
flow.

Satellites RGB and/or IR
Traditional

Deterministic methods (e.g., false colour com-
posite, multi-threshold values derived from
spectral bands and pseudo bands, including
spectral indices); traditional machine learning
techniques (e.g., k-means clustering, Fisher’s
linear discriminant, random forest).

Artificial neural networks MLP, DL segmentation models.

Scene level
Non-satellites RGB Artificial neural networks

MLP, CNN (e.g., DNCNN, MobileNetV2,
YOLO family, 3D CNN, Faster-R-CNN).

Satellites RGB Artificial neural networks CNN (e.g., SmokeNet, SAFA).
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3.1 Smoke Detection Using Non-satellite Imagery

The primary non-satellite platforms used for smoke detection are surveillance cam-

eras and UAVs. These platforms operate in environments significantly different from

satellites, with distinct observation patterns. For instance, surveillance cameras are

typically fixed on the ground, facing a specific direction, and produce RGB imagery

in a time series, often in video format. Unless otherwise specified, smoke detection in

video refers to the use of RGB imagery data in the following reviews. In contrast, UAVs

are frequently equipped with IR sensors, flying at low altitudes and observing smaller

areas, whereas satellites operate in distant orbits and commonly employ sensors with

IR bands. Smoke plumes usually disperse vertically in surveillance camera imagery

but appear horizontally in UAV and satellite imagery. Compared to satellites, smoke

plumes observed from surveillance cameras and UAVs are less likely to intermingle

with or be obscured by other aerosols such as clouds, dust, and haze. Additionally,

the shapes and colours of smoke plumes tend to show less variability in surveillance

and UAV imagery than in satellite imagery. These differences arise primarily due to

variations in observation angles, distances from the source, and the scales at which

smoke plumes disperse [165, 166, 167, 168].

Since the primary focus of this thesis is on smoke detection using satellite imagery,

the review of non-satellite approaches in this section concentrates on the methods

employed. Discussions about the advancements and limitations are kept minimal.

3.1.1 Pixel-level Approaches

Approaches Using Traditional Meethods

The traditional approaches to smoke detection using non-satellite imagery can be

grouped into image processing techniques and traditional machine learning techniques

[169], depending on whether machine learning techniques were employed.

Image processing techniques commonly employ deterministic methods to extract

useful information or features from different bands (or channels). These features can

then be transformed into discriminative values for smoke detection.

Frequently used image processing techniques in non-satellite applications include

histograms, wavelets, segmentation, and image enhancement [169]. Histograms were

often utilised to analyse the distribution of pixel intensities, which can be altered by
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smoke pixels. For example, Yuan et al. [170] combined histograms with dynamic

texture analysis to detect smoke in video sequences. Wavelet transforms, used for

multi-resolution analysis, extract smoke features at different scales, as demonstrated by

Liu and Ahuja [171]. Segmentation approaches typically relied on colour and texture.

Yuan [172] developed a model combining motion orientation and colour analysis for

smoke identification. Image enhancement techniques were employed to improve the

visibility of smoke. Çelik et al. [173] used statistical colour models and contrast

enhancement for this purpose. Notably, Ye et al. [174] developed an algorithm that

integrates multiple image processing techniques to detect moving fire and smoke blobs

from videos, combining colour segmentation and wavelet analysis.

Traditional image processing methods often make several assumptions: that smoke

colour is homogeneous, that smoke and non-smoke regions exhibit distinct reflected

solar radiations, and that the background remains relatively stable [175]. However,

these assumptions may not accurately reflect real-world conditions, potentially leading

to a high false alarm rate. As a result, image processing techniques are frequently

combined with machine learning techniques to extract features from images and reduce

reliance on these assumptions.

Frequently used traditional machine learning approaches include SVMs [176], bag of

features [177], k-means clustering [178], and robust adaboost [179, 169]. For example,

Gubbi et al. [180] combined wavelet analysis with SVM for smoke detection in video.

Zhang et al. [181] utilised a bag of features model combined with SVM to detect smoke

in videos. Wu et al. [182] proposed a robust adaboost classifier using both static and

dynamic features extracted from image processing for video-based smoke detection.

Ajith and Martinez-Ramon [183] explored unsupervised segmentation techniques for

detecting fire and smoke in IR videos, comparing k-means clustering, Gaussian mixture

models [184], Markov random fields [185], and Gaussian Markov random fields [186].

The authors concluded that Markov random fields provided the best performance.

Fuzzy logic [187] was also employed to derive possible smoke pixels in combination

with an extended Kalman filter [188], as demonstrated by Yuan et al. [189]. By

adopting the extended Kalman filter, the fuzzy logic module was able to dynamically

refine the rules, leveraging the learning capability of the filter.
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Approaches Using Artificial Neural Networks

MLPs, the earliest and simplest type of artificial neural networks, were initially ap-

plied to smoke detection using non-satellite imagery. For example, Yu et al. [190]

employed an MLP model for smoke detection in videos, using motion and colour fea-

tures extracted from video frames as input. In another study [191], the same authors

proposed employing MLP alongside more complex motion features derived from the

Lucas-Kanade optical flow algorithm [192].

In the last decade, DL techniques have become mainstream. Yuan et al. [193]

designed an FCN with an encoder-decoder structure using skip connections for video-

based smoke segmentation. The model was trained on synthetic smoke images and

outperformed other smoke detection approaches. Similarly, Cheng et al. [194] utilised

Deeplabv3+ [195] and DenseCRF [196] for smoke detection and optimisation. Deeplabv3+

is an DL segmentation model with an encoder-decoder structure that employs atrous

convolution [197], offering a more flexible receptive field compared to traditional convo-

lution in regular FCNs. DenseCRF is a fully connected conditional random field that

enhances pixel-wise classification using contextual information. After segmentation,

they developed a heatmap model based on brightness values in the HSV colour space

to indicate smoke thickness. Additionally, they trained a GAN model using sequen-

tial information to predict the trend of smoke motion, providing useful information to

assist with evacuation or rescue efforts. Alternatively, Barmpoutis et al. [198] used

two Deeplabv3+ networks for fire and smoke segmentation, employing 360-degree RGB

cameras mounted on UAVs.

Aslan et al. [199] trained a GAN model in two stages for smoke detection in

video. In the first stage, the GAN model was trained using background video images

(without smoke) and random noise perturbations. The discriminator learnt to robustly

distinguish the normal, smoke-free scenes from the altered scenes generated by the noise

vectors. In the second stage, the discriminator was retrained using both the background

images and real smoke images. This enabled the network to classify real smoke as an

anomaly in the scene, leading to successful detection. The retrained discriminator was

then adopted as the final classifier.

More recently, Yuan et al. [200] proposed a lightweight network incorporating an

attention mechanism to reduce complexity in smoke segmentation. Another study

[201], by the same authors, further refined smoke segmentation by employing multi-

scale residual paths and weighted surveillance.
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3.1.2 Scene-level Approaches

Scene-level smoke detection using non-satellite imagery is a relatively new area of study,

relying exclusively on DL methods, as previously mentioned. An early example is the

work of Frizzi et al. [202], which proposed a simple nine-layer CNN for fire and smoke

detection in video. The authors employed a sliding window on the final feature map

to locate fire and smoke areas. Similarly, Yin et al. [203] introduced a 14-layer CNN,

named DNCNN, for scene-level smoke detection using images captured by surveillance

cameras.

CNN models with more complex structures typically extract features that are more

representative of underlying patterns, especially in challenging tasks like smoke detec-

tion. However, increased complexity may limit their use on small UAVs. Researchers

have worked to balance this trade-off. For instance, Chen et al. [204] proposed a

nine-layer CNN for detecting smoke and fire from UAVs. Jiao et al. [205] introduced a

YOLOv3-tiny model, modified from YOLOv3 [206], to detect fire, smoke, and fire plus

smoke on small UAVs. Zeng et al. [207] modified RefineNet [208] using depthwise sepa-

rable convolutions [209] and channel pruning based on scale and shift factors, resulting

in a lighter model with comparable accuracy. Similarly, Hossain et al. [210] employed

an MLP to detect smoke using colour and texture features extracted with Local Binary

Pattern [211] from 16× 16 image tiles. Their method processed 19 frames per second

and outperformed other techniques, including SVM, random forest, and YOLOv3.

It is noteworthy that the YOLO model family [212, 213] has been frequently utilised

for fire and smoke detection in UAV and surveillance camera-based systems, further

exemplified by works such as [214, 215, 216, 217]. This can primarily be attributed

to their relatively lightweight architectures and strong performance in object detec-

tion. However, the review of the YOLO model family’s use in smoke detection on

non-satellite platforms will not be further expanded. As aforementioned, image clas-

sification techniques are preferred over object detection methods for satellite-based

smoke detection, which is the focus of this thesis. Table 3.2 provides a brief summary

of the YOLO model family.

In contrast, some researchers utilised more complex networks to handle spatiotem-

poral features in videos. Hohberg [225] trained a 3D CNN [226] to extract spatiotempo-

ral features for wildfire smoke detection in video. The 3D CNN demonstrated improved
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Table 3.2: Summary of the YOLO Model family

Model Released Key Characteristics

YOLOv1 [212] 2016 Single bounding box per grid cell

YOLOv2 (YOLO9000) [218] 2017 Input image random resizing, anchor
boxes, batch normalisation

YOLOv3 [206] 2018 Multi-scale detection, Darknet-53
backbone [206]

YOLOv4 [219] 2020 Balances high accuracy and speed
with CSPDarknet backbone [220]

YOLOv5 [221] 2020 Lightweight, optimised for PyTorch
implementation

YOLOv6 [222] 2022 Designed for high efficiency in
industrial applications

YOLOv7 [223] 2022 Improved speed and accuracy with
scalable architecture

YOLOv8 [224] 2023 Flexible architecture supporting
segmentation tasks

performance over traditional CNNs with a lower false positive rate. Alternatively,

Zhang et al. [227] trained a Faster R-CNN [228] model using synthetic smoke images

for simultaneous smoke detection and localisation in video, supported by the region

proposal network within the Faster R-CNN architecture.

3.2 Smoke Detection Using Satellite Imagery

3.2.1 Pixel-level Approaches

Approaches Using Traditional Methods

Early approaches to smoke detection in satellite imagery primarily relied on false colour

composite, statistical or mathematical analyses, and traditional machine learning tech-

niques.

False colour composite techniques usually employ three distinct bands from satellite

sensors to enhance visual interpretation of smoke pixels, as demonstrated in [229,

230]. The bands typically include one visible, one NIR, and one SWIR, as smoke

and cloud pixels exhibit varying radiometric characteristics in these bands. Derived

43



CHAPTER 3. LITERATURE REVIEW

pseudo-bands, such as the Smoke Aerosol Reflectance Index and Water Index, were

later introduced to enhance this approach, as seen in [231]. However, one limitation of

this approach is that other aerosol phenomena prone to confusion with smoke, such as

dust and haze, were not adequately addressed. Additionally, this method is not well-

suited for automated workflows when processing large-scale satellite datasets [232, 43].

Given these limitations, approaches based on deriving multiple threshold values

using selected spectral bands and/or pseudo bands, referred to as multi-threshold ap-

proaches, have gained popularity over false colour composite. The reflectance and

brightness temperature (BT) values in certain spectral bands were typically used to

derive the threshold values. This is because the spectral signatures of smoke often ex-

hibit distinctive patterns from clouds and other confounding phenomena in these bands.

One or more bands could be used in both the visible and IR regions (including NIR,

SWIR, MWIR, and TIR), depending on the sensors used. An initial multi-threshold

approach was proposed by Christopher et al. [39], who used multi-thresholds on sev-

eral spectral combinations to extract texture features with the grey level difference

vector [233]. Smoke detection was then performed based on texture analysis. Fol-

lowing this study, Baum and Trepte [234] proposed a grouped threshold approach to

discern smoke, snow, clouds, fire, and clear sky. Similarly, Asakuma et al. [40] defined

multi-threshold values to extract texture features for smoke detection using imagery

from the GMS-5 satellite and AVHRR. In preparation for the launch of the Insat-3D

satellite, Shukla and Pal [235] applied multi-threshold values for smoke detection over

India using MODIS imagery with similar spectral bands. These threshold values were

derived from spectral bands in the visible, MWIR, and TIR regions, along with a CLD

pseudo band [236].

Notably, Chrysoulakis et al. [237, 54] proposed using multi-temporal and multi-

spectral changes in four derived pseudo-bands with experimental thresholds for smoke

detection in AVHRR imagery. The authors collected two images—one before and one

during the smoke event. After aligning the images through geometric correction, mul-

tispectral thresholds were applied to mask water and cloud pixels. Multi-temporal

thresholds were then used to detect the smoke core, based on the absence of smoke in

the earlier image. Finally, texture information was used to expand the detected smoke

area from the core, assuming homogeneity of smoke texture.

This method is a rare example of employing spatiotemporal changes for smoke de-

tection using sun-synchronous satellite imagery. It is suitable for post hoc analyses and
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is more practical when applied to smoke detection using geostationary satellites, which

produce time series imagery at short intervals with less frequent need for geometric

corrections. However, it is less practical for real-time detection due to the need to

repeatedly acquire two images, with smoke absent in the earlier one—a condition that

often requires manual verification. Furthermore, other dynamic events, such as clouds,

can influence spatiotemporal changes, particularly given the long intervals between

image captures when using sun-synchronous satellites (e.g., 12 hours for AVHRR).

A common problem with multi-threshold approaches is that the threshold values

are often customised and hard to generalise. These values can be influenced by factors

including atmospheric conditions, terrain, solar zenith angles at the time of image ac-

quisition, and the spectral-radiometric characteristics of the sensors [238, 43]. Defining

the threshold values requires consideration of these factors, often demanding substan-

tial experience and domain knowledge.

More recent research employed various traditional machine learning methods, pri-

marily supervised techniques, for automatic smoke detection. Notably, false colour

composite and multi-threshold approaches were frequently adopted to extract and la-

bel pixel samples for training and verifying these models. For instance, Asakuma et

al. [40] developed a supervised Euclidean classification model for smoke detection,

using training pixels obtained through false colour analysis. Similarly, a supervised

classification tree model was utilised in [239], where Himawari-8 sample data pixels

were collected using multi-threshold approaches. In contrast, Li et al. [240] employed

unsupervised k-means clustering to classify smoke, vegetation, water, and cloud pixels,

followed by Fisher’s linear discriminant method [241] to separate smoke from cloud

pixels, which were not adequately clustered by k-means. Although the sample pixels

were unlabelled, they were initially extracted using multi-threshold methods. Despite

the use of empirical threshold values to differentiate smoke from cloud pixels, this ap-

proach faced difficulties in distinguishing smoke from warm clouds and detecting smoke

accurately in the downwind direction.

Although it deviates from the focus of this thesis, it is worth mentioning that

Yao et al. [242] proposed a random forest [243] model to predict the minimum smoke

height caused by forest fires using Cloud-Aerosol Lidar and Infrared Pathfinder Satellite

Observation (CALIPSO). This was possible because CALIPSO is a sun-synchronous

active satellite that emits lidar signals for remote sensing. Their research offers valuable

insights into potential data fusion using lidar data in the future.
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Very recently, [244] employed an improved sub-pixel mapping method based on the

random forest algorithm for smoke detection in Himawari-8 imagery. In another re-

cent study, [245] applied Mahalanobis distance [246] to measure the similarity between

smoke pixels and a smoke concentration centre identified using the Laplace operator.

It is noteworthy that traditional machine learning techniques typically focused on

distinguishing smoke from clouds by utilising specific spectral features (e.g., differences

in BT values in some IR bands), which often required hand-crafted feature engineering.

Approaches Using Artificial Neural Networks

Early applications of artificial neural networks in pixel-level smoke detection using

satellite imagery primarily relied on simpler MLPs, constrained by limited computing

capabilities and the relatively early development of neural network techniques. For

instance, Li [232] proposed an MLP with a single hidden layer containing 10 neu-

rons to classify pixels in AVHRR imagery into “Smoke”, “Cloud”, and “Land”. The

model’s input consisted of top of atmosphere (TOA) reflectance values from band 1

(Red) and band 2 (NIR), along with BT values from bands 3–5 (in the TIR region).

The training pixel samples were manually selected from representative polygons of the

aforementioned classes.

Similarly, in a more recent study, Li et al. [238] proposed another shallow MLP

consisting of one hidden layer with 20 neurons to classify pixels in MODIS imagery into

“Smoke”, “Cloud”, and “Underlying Surface”. The model’s input vector comprises six

values: TOA reflectance values in bands 3 (Red), 7 (SWIR), 8 (NIR), 26 (NIR), the

BT value in band 11 (NIR), and the BT difference between band 20 (MWIR) and

32 (TIR). Notably, the training pixel samples were obtained using the multi-threshold

approach, incorporating smoke events from different seasons to address the spectral

variance of smoke caused by seasonal impacts.

Both networks produced good results but failed to precisely detect smoke pixels

with low density or in the downwind direction. The reasons behind these failures are

multifaceted. As the authors noted, one possible cause could be related to the locations

where training samples were collected, which often results in spectral variance of smoke

due to different types of fuels. Another possible issue, though rarely mentioned, is the

varying sun–sensor–surface geometry. This often causes differences in reflectance or
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BT values between identical surface coverages captured at the same date and time but

at different latitudes and longitudes. Such discrepancies may further affect detection

accuracy.

One common issue with the two MLP models is that spatial information could not

be utilised, as the methods focused on individual pixels. Additionally, both approaches

examined only a fixed set of input features determined by domain knowledge. However,

other potentially useful features were not explored or compared.

To incorporate spatial information for pixel-level smoke detection, Larsen et al. [41]

proposed a more advanced DL model: an FCN for smoke segmentation in Himawari-8

imagery. The authors created a smoke segmentation training dataset (unpublished)

with 975 imagery files, each containing a binary smoke mask serving as the label. A

cloud-masking algorithm [42] was employed to create the smoke masks for the selected

975 imagery files, which had a spatial resolution of 2 km. Notably, the imagery data

comprised five spectral bands (i.e., RGB, NIR, and SWIR) and two derived pseudo-

bands (TOA temperature and FRP), allowing for spectral information to be explored

across a broader spectrum. The input imagery was fed into an encoding block followed

by a decoding block with skip connections, resulting in a binary image that classified

pixels as either smoke or background. The model achieved an overall accuracy of 99.5%

on the test dataset, which comprised 30% of the original dataset.

This study combined spatial and spectral features for pixel-level smoke detection

using advanced DL techniques, which is notable in the literature. However, while FRP

is considered a reasonable spectral indicator for smoke detection, the authors did not

explore its specific contribution to the model’s accuracy. Additionally, the labels of

the training dataset—the smoke masks—were derived using an algorithm rather than

real ground truths. This highlights a common issue in pixel-level smoke detection, as

mentioned earlier, raising concerns about the reliability of the reported performance

due to the limitations of the labelling process.

More recently, Shen et al. [247] employed combined DL models to reconstruct low-

resolution VIIRS imagery by adapting it to super-resolution using Landsat imagery,

thereby enhancing smoke detection accuracy in the reconstructed VIIRS imagery. This

study primarily focuses on DL-based image reconstruction rather than on designing DL

models specifically for smoke detection.
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3.2.2 Scene-level Approaches

The rapid development of computer vision techniques in the last decade, particularly

CNNs since AlexNet [25], has greatly advanced the accuracy of image classification.

Various customised CNN models have been designed to tackle specific challenges in

scene classification and object detection in remotely sensed imagery, including satellite

imagery. For instance, one recent model, MGSNet, proposed by Wang et al. [248], uses

multi-scale features and spatial context-aware mechanisms to enhance the separation

of target and background information. Similarly, LSCNet, also proposed by Wang et

al. [249], employs large kernels and multi-frequency attention to improve the learning

of discriminative information, thereby increasing object detection accuracy. However,

both models were designed to classify land use and land cover (e.g., urban areas, forests,

harbours) or detect specific objects (e.g., aircraft, ships, vehicles) rather than smoke

detection.

While CNN applications have been frequently studied for land use management, as

further demonstrated in the works [250, 251, 252], few studies have focused on smoke

detection using satellite imagery. This may be largely because land use and land cover

ground truth data are relatively easy to collect, and several open-access datasets are

available, such as the UC-Merced Dataset [253], RSSCN7 Dataset [254], and SAT4

and SAT6 datasets [255]. In contrast, collecting and labelling training data for smoke

detection is much more challenging, and the sole publicly available training dataset for

satellite-based smoke detection was published only a few years ago.

The first publication using CNNs for smoke detection in satellite imagery was the

work by Ba et al. [43]. In this work, the authors proposed SmokeNet, a CNN model

customised to address specific challenges in smoke detection (e.g., similarities between

smoke, clouds, haze, and dust) using satellite imagery. Notably, a scene-level imagery

training dataset for smoke detection, named USTC SmokeRS, was created in this work,

based on MODIS RGB imagery with a spatial resolution of 1 km.

The USTC SmokeRS dataset, the first and only publicly available satellite imagery

training dataset for smoke detection, comprises 6,225 MODIS RGB images collected

over nearly 20 years, covering six continents. The dataset includes six classes: “Smoke”,

“Cloud”, “Haze”, “Dust”, “Land”, and “Seaside”, each containing more than 1,000

training samples. The data collection and labelling process was meticulously supported

by various methods, including geometric correction, radiometric calibration, analysis of

thermal anomalies, and visual interpretation of true-colour and false-colour composi-

48



CHAPTER 3. LITERATURE REVIEW

tions. Google Earth was also employed to identify land cover types. It is important to

note that “Smoke”, “Dust”, and “Haze” images were purposely selected to exclude the

presence of one another, although clouds may be present in these images and do not

affect the image labels. In contrast, “Cloud” images are free from all other confounding

aerosols. While this strategy aids trained models in distinguishing smoke from clouds,

the inclusion of smoke-free dust and haze scenes contributes less to the accurate detec-

tion of smoke when mixed with dust or haze. Moreover, EF smoke plumes are likely

to be overlooked due to the coarse spatial resolution of the imagery. Additionally, the

absence of IR bands in the dataset limits the ability to explore useful spectral informa-

tion that could improve smoke detection accuracy. No multispectral satellite imagery

training dataset for smoke detection was available prior to the research conducted in

this thesis, to the best of the author’s knowledge.

SmokeNet integrated the residual attention module [256] and the channel atten-

tion module [46] to help extract fine-grained features for distinguishing smoke from

other aerosols. Additionally, a spatial attention module was developed to enhance

the extraction of distinct spatial features related to different scene classes. Trained

on the USTC SmokeRS dataset, SmokeNet achieved an overall classification accuracy

of 92.75%, outperforming previous state-of-the-art CNN models, including VGGNet

[257], ResNet [44], DenseNet [45], AttentionNet [258], and SE-ResNet [46]. However,

the classification accuracy specific to the “Smoke” class was 87.68% due to a higher

number of misclassifications among smoke, dust, and haze images.

Building on the work in [43], Chen et al. [47] further proposed the current state-

of-the-art scene-level smoke detection model, SAFA. In addition to incorporating the

attention mechanism [259] and residual learning [260], SAFA was designed with a

Global Information Extraction Path to capture global features, encompassing both

background and aerosol phenomena. Furthermore, a Salient Feature Extraction Path

was developed to learn salient features that highlight the key characteristics of differ-

ent scenes. Specifically, a module called Mutual Activation Interim was introduced to

smooth the fusion of features between different levels in the Global Information Ex-

traction Path. The model makes its final predictions by combining the outputs of the

Salient Feature Extraction Path and Global Information Extraction Path, weighted by

two learnable coefficients.

Trained on USTC SmokeRS, both SAFA and SmokeNet used 64% of the dataset

for training, 16% for validation, and the remaining 20% for testing. The same train-
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ing and testing settings, as well as evaluation metrics, were applied in both studies.

SAFA achieved a testing accuracy of 96.22%, surpassing SmokeNet’s 92.75%. This ac-

curacy also outperformed that of other advanced DL models developed more recently,

including D-CNN [48], RSSC-ETDL [49], KFBNet [50], HRNet [261], BoCF [262], and

LPDCMEN [51], among others.

It is noteworthy that both SmokeNet and SAFA incorporated the attention mecha-

nism [259] to extract salient features. The attention mechanism has been widely used

in scene classification models, such as in [256, 263, 264, 265, 266, 267]. However, the

implementations vary. SmokeNet adopted the channel attention implementation from

Hu et al. [46] and implemented the spatial attention module based on a similar algo-

rithm. In contrast, SAFA implemented its own spatial attention module and channel

attention module in a more complex manner, incorporating parallel average pooling

and max-pooling, feature map transformation with dual kernel sizes, and learnable

coefficients.

Additionally, both SmokeNet and SAFA employed residual learning. SmokeNet

adopted the residual attention module proposed in [256], which allowed the learning of

fine-grained features relevant to the classification tasks. SAFA, on the other hand, used

the residual blocks from He et al. [260] as the backbone blocks and further integrated

the residual blocks with the spatial attention and channel attention modules to extract

salient features in its Salient Feature Extraction Path.

3.3 Cross-sensor Transfer Learning

In this section, a brief introduction to transfer learning in computer vision tasks, typi-

cally based on conventional RGB images, is presented. Subsequently, transfer learning

approaches specifically applied to remote sensing tasks, with a particular focus on the

utilisation of multispectral imagery, are reviewed.

3.3.1 Transfer Learning in Computer Vision Using Conven-

tional RGB Images

DL models for typical computer vision tasks, such as image classification, segmenta-

tion, and object detection, have predominantly been designed to process imagery data
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containing three channels (RGB bands by default). This aligns with how human vision

perceives colour through red, green, and blue channels. Consequently, most publicly

available imagery training datasets, including those derived from satellite imagery,

consist of only RGB bands. For example, ImageNet [268], CIFAR-10 / CIFAR-100

[269], COCO [24], PASCAL VOC [270], as well as the aforementioned satellite imagery

datasets UC-Merced [253], RSSCN7 [254], and SAT4/SAT6 [255], all comprise RGB

images.

Transfer learning has been widely leveraged in computer vision tasks to adapt

DL models pretrained on larger datasets for new tasks using smaller, domain-specific

datasets (e.g., datasets for smoke detection). For instance, many renowned CNN mod-

els have been pretrained on ImageNet. These models have learned to extract essen-

tial features for general image classification tasks and can be readily transferred and

adapted to datasets such as UC-Merced for land-use classification.

The process typically involves two steps when using new imagery data from the

target domain. First, the classification head is retrained while freezing the convolu-

tional base of the pretrained CNN model. Second, the entire model is fine-tuned with

a very low learning rate. In the first step, the transferred model directly utilises its

capabilities learned from the source domain for feature extraction while learning a new

prediction mechanism for the target domain using the extracted features. In the second

step, the model gradually updates both its feature extraction capabilities and predic-

tion mechanism simultaneously, adapting itself to the target domain through controlled

fine-tuning.

The above transfer learning strategy generally performs well when both the source

and target domains utilise conventional RGB images. However, it becomes less prac-

tical when the number of channels in the imagery data differs between the source and

target domains. In remote sensing tasks, for instance, the acquired imagery typically

includes IR bands, which provide significant spectral information beyond the visible

range. Some sensors, such as hyperspectral sensors, may even divide the visible spec-

trum into more than three bands (i.e., standard RGB bands) to capture finer spectral

details. This richer spectral information in remotely sensed multispectral imagery is

often crucial for tasks like smoke detection. However, transferring a CNN model pre-

trained on conventional RGB images to multispectral imagery is significantly more

challenging. The transfer learning strategy must not only account for the variation in

input channels but also handle feature extraction across diverse spectral bands. Sim-
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ilarly, transferring a model across different satellite sensors faces the same challenges,

as these sensors often have varying numbers of spectral bands, which may also differ

in their spectral regions and bandwidths.

Compared to transferring a CNN model from an RGB source domain to a multi-

spectral target domain, studies on transfer learning where both the source and target

domains utilise multispectral satellite imagery are even rarer, primarily due to the

scarcity of labelled multispectral satellite training data.

3.3.2 Transfer Learning Applied to Remote Sensing Tasks

Transfer learning has been extensively investigated for various remote sensing tasks.

For instance, Verma et al. [271] employed transfer learning to map urban slums using

satellite imagery, while Shabbir et al. [272] adapted ImageNet-trained ResNet50 [260]

for land cover scene classification. Nowakowski et al. [273] and Patel et al. [274]

explored transfer learning for crop type classification using hyperspectral imagery and

benchmark CNN models. Wu et al. [275] investigated transferring pretrained Mo-

bileNetV2 [276] for wildfire detection from UAV imagery, and Agrawal et al. [277]

utilised CNNs with transfer learning for natural disaster classification in satellite and

drone images.

However, while transfer learning has been widely studied for land use and crop

identification tasks in satellite imagery, as demonstrated in the works [271, 272, 278,

274, 273, 279, 280], no study has focused on smoke scene detection due to the limited

availability of suitable datasets. In addition, previous studies on transfer learning

in remote sensing primarily concentrated on transferring models trained using non-

satellite imagery to satellite imagery (e.g., Sharma et al. [281], Xiao et al. [282],

Verma et al. [271]).

Cross-sensor transfer learning, involving both the source and target domains us-

ing satellite imagery, had not been thoroughly explored until 2021 when Wang et al.

[283] introduced a method using knowledge distillation [284] and two distinct CNN net-

work structures for knowledge transfer between different sensors. This method involves

fine-tuning a pretrained model from the source domain incorporating RGB images to

generate pseudo labels for multispectral and hyperspectral data within two different

target domains. Subsequently, a distinct model is selected and trained using the data

featuring pseudo labels from the target domains.
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The underlying premise of this approach is rooted in the belief that the fine-tuned

source model is proficient in accurately labelling data within the target domains. How-

ever, it is essential to note that no mechanism is currently in place to validate whether

these pseudo labels accurately represent the true classes of data in the target domain.

Furthermore, it is noteworthy that this approach entails training a new model recur-

sively using data with pseudo labels from the target domain rather than transferring

a pretrained model from the source domain.

In a recent study, Tao et al. [285] proposed a transitive transfer learning framework

as an innovative solution to simultaneously address data distribution gaps and task dif-

ferences between source and target domains. This framework operates by strategically

constructing multiple intermediate domains, allowing the transfer learning task to be

divided into manageable subtasks. Each subtask focuses on one aspect—either data

adaptation or task adaptation, progressively transitioning from the source domain to

the target domain through these intermediate domains.

For instance, consider a case where the source domain uses RGB imagery with 10

scene classes, while the target domain employs multispectral imagery with 30 scene

classes. Two intermediate domains can be constructed from the target domain by

grouping the bands in the imagery data: RGB and IR. The first intermediate domain

contains only the RGB bands, while the second intermediate domain includes the IR

bands. Consequently, the first subtask uses RGB imagery (same as the source domain),

but the task shifts to 30 classes. The second subtask then shifts to IR imagery while

keeping the task (30 classes) unchanged. Ultimately, this framework facilitates the

transition from RGB imagery with 10 classes to multispectral imagery with 30 classes.

This structured approach supports cross-sensor transfer learning tasks that involve

varying spectral bands, numbers of spectral bands, and classification tasks. However,

each subtask requires a specific strategy to handle either data distribution or task

differences, leading to substantial data pre-processing and model customisation. More-

over, the overall success of this framework heavily depends on intensive model training

for all transfer learning subtasks.

The transfer learning strategies presented in [283] and [285] both fall under

heterogeneous-network transfer learning, where the model used for the target domain

is independent of the model pretrained in the source domain.
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In contrast, homogeneous-network transfer learning, where the model pretrained

from the source domain is updated for the target domain, is more straightforward.

However, it primarily relies on bridging data distribution gaps, which becomes more

challenging when dealing with multispectral imagery that contains varying spectral

bands and numbers of bands. Traditionally, previous research has required that the

channel counts of the imagery data in the target domain either match or be trans-

formable (e.g., through band selection or mapping) to align with the channel counts of

the source domain imagery. This ensures that the convolutional base of the pretrained

model can be transferred smoothly. These methods can be categorised into different

groups based on how they align the channel counts of input imagery between the source

and target domains:

1. Transferring a model pretrained with a grayscale image dataset to multispectral

satellite imagery, where the transferred model processes each band individually,

using a subset of bands specifically selected from the multispectral satellite im-

agery. This method was demonstrated in Sharma et al. [286, 281].

2. Transferring a model pretrained with RGB image datasets (e.g., ImageNet) to

satellite imagery with three input channels (e.g., RGB bands) or three channels

derived through dimensionality reduction techniques, such as principal compo-

nent analysis. This approach is exemplified in Sharma et al. [281], Jian et al.

[287], Gadiraju et al. [280], and Patel et al. [274].

3. Transferring a model pretrained with RGB image datasets (e.g., ImageNet) to

multispectral satellite imagery that has been mapped to three channels, as demon-

strated in He et al. [288] and Singhal et al. [289].

4. Transferring a model pretrained for one task to a new task (e.g., transferring

a model pretrained for crop type classification to land use classification) using

multispectral imagery with the same number of bands from the same satellite, as

explored in Cong et al. [290].

Figure 3.2 illustrates the above transfer learning approaches.
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Figure 3.2: Previous transfer learning approaches require the imagery data from both
satellites to have equal channel counts or to align the channel counts through adjust-
ments (e.g., dimensionality reduction).

3.4 Identified Research Gaps

This thesis focuses on research gaps related to DL-based approaches, given their supe-

rior scalability and ability to automatically learn fine-grained semantic features com-

pared to traditional methods. Based on a comprehensive literature review, the identi-

fied research gaps in the previous research are summarised as follows:

1. Research gaps related to DL models, particularly those designed specif-

ically for scene-level smoke detection:

• Limited suitability for deployment onboard SmallSats, which are increas-

ingly used in satellite constellations for NRT fire/smoke detection, due to

the models’ heavyweight architectures (often with tens of millions of param-

eters) and their excessive demands on power, memory, and computational

resources.

• Insufficient exploration of spectral information, especially regarding IR bands,

which are essential for distinguishing smoke from similar aerosol phenomena

(e.g., clouds, haze, dust). The lack of IR bands in the training data and the

absence of effective methods to fully leverage these spectral bands remain

underexplored.
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2. Research gaps in terms of effectiveness for fire disaster mitigation:

• Potentially high FNs in detection due to overlooking EF smoke, partly

caused by the coarse spatial resolution of MODIS RGB imagery used for

training.

• Delayed or missed detections due to the low temporal resolution (12 hours)

of MODIS.

• Lack of research on using multiple satellites with higher spatial resolutions

to collectively achieve higher temporal resolution for timely EF smoke de-

tection.

3. Other research gaps related to the above issues:

• Inadequate annotated satellite imagery training datasets, particularly those

with IR bands and from sensors with higher spatial resolutions. Before this

thesis, the only publicly available dataset was USTC SmokeRS, derived from

MODIS RGB imagery with a spatial resolution of 1 km.

• Lack of research on adapting pretrained models to new satellite sensors for

faster model development, especially when observational data from the new

sensors is limited. Adapting models from one satellite sensor to another can

facilitate rapid development; however, models trained on one sensor’s data

may perform suboptimally on another sensor’s imagery due to differences in

spectral bands and radiometric characteristics.

To address the above research gaps, the following objectives are pursued:

1. Design a DL architecture that is lightweight (in terms of the number of param-

eters) yet accurate for satellite-based smoke detection. This architecture must

use multispectral satellite imagery containing IR bands so that essential spectral

information in these bands can be explored. In the meantime, the contribution

of IR bands on smoke detection can be also investigated and verified. Ideally,

this architecture should be suitable for onboard SmallSats deployment, paving

the way to employ satellite constellations equipped with onboard DL models for

accurate NRT scene-level smoke detection.

2. Construct new satellite imagery training datasets meeting the following require-

ments to effectively facilitate fire disaster mitigation:
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• Using satellites equipped with good spatial resolutions so EFs smoke plumes

that cover small geographic extents can be effectively captured in their im-

agery and detected by the DL model.

• Including essential IR bands (e.g., NIR, SWIR) that provide significant spec-

tral information to help distinguish smoke and other confounding aerosols

more effectively.

• Reflecting variant types of smoke in terms of their colours, shapes, density,

scales, etc., to improve the model’s robustness in detecting variant smoke

plumes.

3. Develop a mechanism that enables the DL model to automatically learn use-

ful spectral patterns hidden in the IR bands that can improve smoke detection

accuracy.

4. Investigate effective approaches to robustly adapting a pretrained DL model to

new sensors with limited training data, facilitating fast model development to

use multiple satellites for accurate and timely smoke detection.
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VIB SD: A Lightweight DL Model

for Smoke Detection Using Satellite

Imagery with IR Bands
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As discussed in Chapter 1, existing DL models customised for smoke detection have

limited suitability for onboard satellite applications, particularly for SmallSats. This

is mainly due to their heavyweights and excessive demands for power supply, memory

space, and computational resources. Applying a DL model for onboard SmallSat smoke

detection often requires trading the model’s accuracy for suitability.

While multispectral satellite imagery provides more essential information for smoke

detection than RGB satellite imagery, previous DL-based research only used the RGB

bands. In addition, the sole publicly available imagery training dataset

(i.e., USTC SmokeRS [43]) used for the studies of satellite-based smoke detection was

derived from MODIS with a coarse spatial resolution of 1 km. EF smoke plumes are

likely to be overlooked in such lower spatial resolution imagery. Consequently, the

models trained using this dataset tend to be ineffective for EF smoke detection.

This chapter addresses the above limitations relating to the first research question

posed in Chapter 1:

RQ-1 How to design a lightweight DL model that can potentially be

deployed onboard SmallSats for accurate EF smoke detection using mul-

tispectral satellite imagery?

To prepare for potential onboard-SmallSat smoke detection, this chapter proposes

the aforementioned lightweight CNN model VIB SD, incorporating residual learning

and attention mechanism with customised convolutional layers for feature extraction in

variant scales. Despite its substantially lighter weight, with less than 2% of the state-

of-the-art model SAFA’s parameter count (1.66 million versus 84.2 million), VIB SD

achieved competitive accuracy (93.57% versus SAFA’s 96.22%) when trained on the

RGB USTC SmokeRS dataset.

To further contribute towards EF smoke detection using multispectral satellite im-

agery with higher spatial resolutions, this chapter presents a new training dataset,

Landsat6c. As the first multispectral satellite imagery dataset for smoke detection,

Landsat6c was constructed using imagery from Landsat 5 Thematic Mapper (TM)

and Landsat 8 OLI, with a spatial resolution of 30 metres. It contains 1836 images,

labelled into three classes: “Smoke”, “Clear”, and “Other aerosol”.

Additionally, to investigate the impact of using extra IR bands on the accuracy
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of smoke detection, this chapter compares the VIB SD model trained on Landsat6c

using five different band combinations. The results demonstrate that adding the NIR

band improved prediction accuracy over the RGB bands. Adding both SWIR bands

improved the model’s performance further over adding only one SWIR band. The case

studies show that the model trained with multispectral bands could effectively detect

EF smoke plumes over small geographic extents, even if they are undercovered or mixed

with clouds.

This chapter is organised as follows: Section 4.1 provides the background of the

work; Section 4.2 introduces the satellite imagery datasets used, the structure of

VIB SD, and the implementation details of its key modules; Section 4.3 outlines the

experimental settings and evaluation metrics; Section 4.4 presents the experimental re-

sults and findings; Section 4.5 demonstrates the effectiveness of the model trained with

multispectral bands in detecting smoke mixed with clouds or over small geographic

extents, through case studies; Section 4.6 discusses the results in further detail and

explores future possibilities; and Section 4.7 concludes the chapter.

The work presented in this chapter is based on my paper “Investigating the Im-

pact of Using IR Bands on Early Fire Smoke Detection from Landsat Imagery with a

Lightweight CNN Model” [27], which was published in the journal “Remote Sensing”

in June 2022.

4.1 Introduction

Aggravated by climate change, wildfires are occurring more frequently and often de-

velop rapidly, leading to significant societal, ecological, and economic consequences [2,

3, 4]. Detecting fires in their early stages can help prevent the disastrous impacts of

wildfires. One cost-effective approach is using satellite imagery for EF detection, as an

increasing number of satellites are being launched to monitor the Earth. However, EF

detection from satellite imagery is challenging, as EFs can be easily obscured by thick

forest canopies, clouds, or the smoke plumes they emit. Even with thermal bands, fires

can be masked by heated backgrounds during hot weather, and false alarms are often

triggered by heated bare soils, deserts, or other highly reflective regions [20, 21, 22].

Detecting smoke to infer fires presents a valuable alternative to direct fire detection.

Smoke has the following characteristics: (1) it can rise above forest canopies in a short
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time and typically has distinct colours compared to vegetation; (2) smoke disperses

more quickly and over a larger area than the fire itself, making it easier for satellites to

capture; (3) the temperature of smoke is significantly lower than the hot background.

Nevertheless, as discussed in Chapter 1 and demonstrated in Figure 1.1, smoke

detection from satellites is challenged by other factors: (1) the varying characteristics

of smoke plumes, including their shapes, colours, and scales; (2) the similarity and

overlap in spectral signatures between smoke and other objects, such as snow, clouds,

and dust [232, 291, 238, 43].

Early research attempted to distinguish smoke in satellite imagery from other con-

founding objects (e.g., water, snow, clouds) using handcrafted features derived from

deterministic rules at the pixel level [39, 234, 40, 237, 54, 235, 239, 240]. However,

these features are often closely tied to specific local conditions, making it difficult for

them to generalise effectively.

The development of DL techniques, especially CNNs, has shifted the focus of smoke

detection in satellite imagery to the scene level in recent years [43, 47]. DL models

can automatically extract semantic features to determine whether the satellite imagery

contains smoke, regardless of the shapes and positions of the smoke plumes, even when

other confounding objects or aerosols are present. However, several gaps remain:

• Existing satellite-based scene-level smoke detection DL models are complex and

struggle to meet the growing demands for onboard-SmallSat NRT smoke detec-

tion.

• These DL models were trained on the USTC SmokeRS dataset [43], derived from

MODIS RGB imagery, leaving valuable information in the IR bands unexamined.

Such information could improve detection accuracy, particularly when fires are

obscured. For instance, in Figure 4.1, visualising the smoke scenes using SWIR 2,

NIR, and blue bands reveals active fires in vivid red, burnt scars in dark red

(bottom-left image), and smoke in light blue in both bottom images. These

properties are not clear in the RGB images in the top row.

• Furthermore, previous DL-based smoke detection studies were conducted using

satellite imagery with coarse spatial resolutions (e.g., 0.25–1 km in MODIS im-

agery and 0.5–2 km in Himawari-8 AHI imagery), where EF smoke over small

geographic extents could easily be overlooked. Effective detection of EF smoke

over small geographic areas has yet to be investigated, primarily due to the lack of
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suitable imagery training data with higher spatial resolutions that can accurately

capture EF smoke.

Figure 4.1: Two smoke scenes are visualised in different bands. (a) RGB. (b) SWIR 2,
NIR, and blue.

To address the above gaps, this work specifically aims to:

• Design a CNN model that is both accurate and lightweight, with the potential

to be deployed onboard SmallSats for NRT smoke detection.

• Construct a labelled multispectral imagery training dataset with higher spatial

resolution, supporting future studies on EF smoke detection and advancing fire

disaster mitigation efforts.
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• Investigate the impact of using additional IR bands in DL-based smoke detection,

validating the nuanced contributions of individual IR bands.

For the first aim, this work proposes the lightweight CNN model VIB SD, which

integrates the latest DL techniques proven effective for smoke detection to achieve opti-

mal detection accuracy. By taking multispectral satellite imagery with varying numbers

of bands as input, VIB SD enables the investigation of the nuanced contributions of

individual IR bands using various band combinations. VIB SD will be introduced in

Section 4.2.3.

For the second aim, this work creates a multispectral imagery training dataset,

Landsat6c, for smoke detection, based on Landsat 5 TM and Landsat 8 OLI imagery

data. Landsat6c contains 1836 256×256×6 imagery tiles, featuring six spectral bands:

RGB, the NIR band, and two SWIR bands (i.e., SWIR 1 and SWIR 2), all with a 30-m

spatial resolution. Details about Landsat6c will be introduced in Section 4.2.2.

For the third aim, this work conducts comprehensive experiments by training

VIB SD using Landsat6c with five different band combinations: RGB, RGB plus NIR,

RGB plus NIR and SWIR 1, RGB plus NIR and SWIR 2, and all six bands. The nu-

anced contributions of the individual IR bands are analysed by comparing the model

performances across these combinations. The experimental details will be introduced

in Section 4.3.1. Results show that adding the NIR band significantly improved model

prediction accuracy, while both SWIR bands further enhanced accuracy.

The major contributions of the work presented in this chapter are:

• The development of the lightweight CNN model VIB SD, which achieved com-

petitive accuracy compared to the state-of-the-art SAFA model (93.57% versus

SAFA’s 96.22%) when trained on USTC SmokeRS. More importantly, this perfor-

mance was achieved with less than 2% of the parameters used by SAFA. VIB SD

demonstrates significant potential for onboard-SmallSat applications due to its

lightweight architecture and high accuracy.

• The creation of a multispectral satellite imagery smoke detection training dataset,

Landsat6c, derived from moderate spatial resolution (30-metre) Landsat im-

agery. As the first dataset of its kind in the literature, the six-band Landsat6c

is labelled into three smoke-related scene classes (i.e., “Smoke”, “Clear”, and

“Other aerosol”). This dataset serves as a valuable resource for future research
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on satellite-based smoke detection, particularly studies utilising IR bands for EF

smoke detection.

• A comprehensive investigation into the impact of IR bands on smoke detection,

marking the first time in the literature. The findings suggest that while individ-

ual IR bands (i.e., NIR, SWIR 1, and SWIR 2) contribute to the effective im-

provement of smoke detection accuracy, using all three IR bands together yields

the highest accuracy. These results offer valuable guidance for band selection

strategies in multispectral or hyperspectral satellite imagery smoke detection ap-

plications.

4.2 Materials and Methods

This section introduces the two satellite imagery datasets used in this work, and the

VIB SD model along with its key modules.

4.2.1 RGB USTC SmokeRS Dataset

The USTC SmokeRS dataset was used to evaluate VIB SD by comparing it with ex-

isting models developed and trained on this dataset.

The USTC SmokeRS dataset consists of 6225 256× 256× 3 RGB images collected

from MODIS (Level-1B), which has a spatial resolution of 1 km. The dataset con-

tains six smoke-related scene classes: “Smoke”, “Cloud”, “Dust”, “Haze”, “Land”,

and “Seaside”. The number of images in each class of the USTC SmokeRS dataset is

shown in Table 4.1. Further details on the dataset can be found in [43]. To the best

of the author’s knowledge, the USTC SmokeRS dataset was the only labelled satellite

imagery dataset for DL-based smoke scene detection prior to this research.

Table 4.1: Number of images in USTC SmokeRS.

Smoke Cloud Haze Dust Land Seaside Total

1016 1164 1002 1009 1027 1007 6225

64



CHAPTER 4. A LIGHTWEIGHT MODEL: VIB SD

4.2.2 Multispectral Landsat Imagery Dataset

One of the key contributions of this work is the construction of a labelled multispectral

moderate spatial resolution satellite imagery dataset, named Landsat6c, specifically

for EF smoke detection. The dataset comprises three smoke-related scene classes:

“Smoke”, “Clear”, and “Other aerosol”. This dataset is utilised to explore the contri-

bution of additional IR bands to the accuracy of smoke detection. This section outlines

the processes of data collection and labelling.

Data Source

The multispectral Landsat imagery data were collected based on historical wildfires in

Australia. Although the dataset is geographically specific to Australia, the methods

developed are not limited to applications in other regions globally.

The Landsat series was selected as the target satellite platform due to its signifi-

cantly higher spatial resolution (30 m) compared to MODIS and Himawari-8 AHI. The

primary data source is Landsat 8 OLI, launched on 11 February 2013, and in continuous

operation since then. To increase the likelihood of capturing smoke-related imagery,

the query period was extended back to 2010, allowing Landsat 5 TM (decommissioned

on 5 June 2013) to be used as a minor data source. Landsat 7 was excluded due to the

black stripes in its imagery, caused by the failure of its scan line corrector on 31 May

2003. Landsat 9, launched on 27 September 2021, was not included as its data were

not publicly available at the time the data collection process commenced.

The surface reflectance Landsat imagery data, processed using the Nadir Corrected

Bi-directional Reflectance Distribution Function Adjusted Reflectance Coupled with

a Terrain Illumination Correction (NBART) algorithm [292], were queried and down-

loaded from the Digital Earth Australia (DEA) Sandbox platform [293]. The NBART

Landsat imagery data are indexed by DEA with open access to the public and can be

queried and downloaded based on specified location coordinates, time range, and band

requirements.

The time windows and spatial ranges required for querying the data were extracted

from historical fire datasets in SA and New South Wales (NSW), hosted on Data SA

[294] and Data NSW [295], respectively. Table 4.2 presents a sample record from the

SA historical fires dataset.
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Table 4.2: A sample record in the SA historical fires dataset.

Attributes Values

FID 5801

INCIDENTNU 202011011

INCIDENTNA Overland Corner/Calperum

INCIDENTTY Bushfire

FIREDATE 2020-11-15

FINANCIALY 2020/2021

FIREYEAR 2020

SEASON SPRING

DATERELIAB 1

IMAGEINFOR Landsat 8 17/11/2020

FEATURESOU 33

CAPTURESOU 4

HECTARES 1447.32

SHAPE Leng 0.91332

SHAPE Area 0.00141367

min longi 140.372

max longi 140.613

min lati −33.7796

max lati −33.6953

Sensor MODIS

geometry (POLYGON ((140.4123221680001 −33.6969758549999 . . . )))

Data Collection Strategy and Processes

The construction of Landsat6c consists of two phases: imagery collection, followed by

tiling and labelling.

1. Imagery Collection:

In this phase, scripts were developed to extract time and location information
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from the historical fire datasets on Data SA and Data NSW, and to download

Landsat 5 TM and Landsat 8 OLI imagery in bulk based on the derived temporal

and spatial data. The query time range was extended to cover 16 days before and

after the recorded fire date, which may not precisely indicate the ignition date due

to recording discrepancies. This extension also allowed imagery from the same

area to be collected at different times and under varying weather conditions. A

5 km buffer along both the longitude and latitude was applied to the polygon

coordinates of the burnt scars. The returned imagery was then visually inspected

to select those successfully capturing smoke.

Six spectral bands in the imagery data were retained, including the RGB bands,

the NIR band, the SWIR 1 band, and the SWIR 2 band. As shown in Table 4.3,

the wavelengths of the six selected bands for Landsat 5 TM and Landsat 8 OLI

differ slightly, though each corresponding band falls within a similar range. The

majority of the imagery data were collected from Landsat 8 OLI. The thermal

band was excluded because the initial aim was to construct a mixed imagery

dataset from both Landsat and Sentinel-2 (A and B), which could be used to

train a model adaptable to different sensors. Since Sentinel-2 does not include a

thermal band, it was considered preferable to exclude the thermal band from the

Landsat imagery. However, incorporating the thermal band will be considered in

future data collection, where applicable.

Table 4.3: Wavelengths of the selected bands of Landsat 5 TM and Landsat 8 OLI.

Band
Wavelength (µm)

Landsat 5 TM Landsat 8 OLI

Red 0.63–0.69 0.64–0.67

Green 0.52–0.60 0.53–0.59

Blue 0.45–0.52 0.45–0.51

NIR 0.76–0.90 0.85–0.88

SWIR 1 1.55–1.75 1.57–1.65

SWIR 2 2.08–2.35 2.11–2.29
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A total of 477 imagery files covering fire sites across a wide range of locations

were downloaded from DEA Sandbox. Of these, eight files were from SA, with

the remainder from NSW. Fifteen imagery files were sourced from Landsat 5 TM,

while the rest were from Landsat 8 OLI. The areas covered by these files varied

significantly, depending on the scale of the fires.

2. Tiling and Labelling:

In this phase, the imagery files were tiled into 256 × 256 × 6 patches with a

50% overlap both horizontally and vertically. The overlap between patches aids

the model in learning to recognise smoke, regardless of its position within the

patches. The tiling process is illustrated in Figure 4.2.

Figure 4.2: Overlapped tiling.

The patches were labelled into three classes: “Smoke”, “Clear”, and “Other aerosol”.
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“Other aerosol” refers to non-smoke scenes that are not classified as “Clear”, such

as scenes with cloud, dust, haze, or other aerosol mixtures. Patches were labelled

as “Clear” if no visible aerosol was present, and as “Smoke” if they contained

any visible smoke.

Identifying smoke in the patches is not always straightforward, as shown in the

bottom images of Figure 4.1. To improve labelling accuracy, the patches were

visually examined in false colour using the SWIR 2 band, the NIR band, and the

blue band. Additional imagery files containing only clear backgrounds or clouds

were also downloaded during this phase to balance the number of images in the

non-smoke classes.

After tiling 36 imagery files from various fire sites and labelling the resulting

patches, Landsat6c is created, containing 1836 256 × 256 × 6 imagery patches

with more than 600 patches in each class. Landsat6c captures a wide range of

smoke scenes (e.g., smoke in different shapes, sizes, colours, and densities; smoke

over diverse backgrounds; smoke mixed with various types of clouds), reflecting

the complexity of wildfire events and the challenges that smoke detection faces.

Table 4.4 presents the class distribution of the Landsat6c dataset.

Table 4.4: Class distribution of the Landsat6c dataset.

Smoke Other aerosol Clear Total

615 605 616 1836

4.2.3 VIB SD

As mentioned in Section 4.1, the design of VIB SD needs to meet two key requirements:

• Be lightweight (in terms of parameters) to improve efficiency for potential onboard-

SmallSat applications;
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• Maintain the highest possible detection accuracy despite the lightweight design.

To achieve good accuracy, attention mechanism [259], residual learning [260], and

the inception structure [296, 297] were integrated to assist in extracting smoke-related

features. Module stacking was minimised to control the model’s size. To support a

smooth investigation into the impact of IR bands, the implementation ensures flexibility

in training VIB SD with input imagery containing varying numbers of bands.

Figure 4.3 displays the main structure of VIB SD on the left, alongside the struc-

tures of the stem block, reduction block, and classification head on the right.

Figure 4.3: Structure of VIB SD.
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As demonstrated in Figure 4.3, VIB SD contains two major modules: Inception-

Residual (shown in Figure 4.5) and Inception-Attention (shown in Figure 4.6), both

of which adopt multi-path architectures inspired by Inception-ResNet-V2 [297]. The

multi-path architectures enable the two modules to extract features across multiple

scales simultaneously, enhancing the robustness of VIB SD in detecting smoke plumes

of varying sizes. Unlike the residual block in Inception-ResNet-V2, the Inception-

Residual module in VIB SD employs more paths and larger kernels. This design helps

the model learn more fine-grained features, accounting for the diverse characteristics

of smoke plumes. Additionally, the Inception-Attention module enhances multi-scale

feature learning by incorporating both Spatial Attention and Channel Attention, the

other two key modules of VIB SD.

Below is a more detailed description of the Spatial Attention, Channel Atten-

tion, Inception-Residual, and Inception-Attention modules. The Spatial Attention

and Channel Attention modules are introduced first, as they form components of the

Inception-Attention module.

1. Spatial Attention:

The Spatial Attention module is designed to learn the weight of each pixel within

each channel of a feature map. These weights are learnt simultaneously, with the

variations among them helping to deduce spatial associations between pixels,

ultimately improving the model’s predictive performance.

As depicted in Figure 4.4 (a), the Spatial Attention module first reshapes the in-

put feature map F = [f1, f2, . . . , fc] ∈ RW×H×C into a 2D vector V = [v1, v2, . . . , vl],

where l = W ×H. Each vi = [pi1, p
i
2, . . . , p

i
C ] is a 1D vector representing the pixel

values at position i across all channels in F after flattening, with pij denoting the

pixel value at the j-th channel.

Next, V is passed through two fully connected layers, both activated using the

sigmoid function. The intermediate output’s dimensionality is reduced by a ratio

of r = 16 [43], minimising computational complexity. The result is then reshaped

into the spatial attention distribution S = [s1, s2, . . . , sC ], where sj ∈ RW×H

represents the spatial attention distribution of the channel fj.
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The final output of the spatial attention module, Os = [os1, o
s
2, . . . , o

s
C ], is obtained

by multiplying the spatial attention distribution S with the feature map F , where

osj = sj × fj. Further details can be found in [43].

Figure 4.4: Attention modules. (a) Spatial Attention. (b) Channel Attention.

2. Channel Attention:

The Channel Attention module aims to learn the weight of each channel in a

feature map. This weight indicates the importance of the channel in predicting

the class of the image.

As illustrated in Figure 4.4 (b), for any input feature map F = [f1, f2, . . . , fc] ∈
RW×H×C , the Channel Attention module first applies a global average pooling to

generate a vector A = [a1, a2, . . . , aC ], where aj ∈ R.

A is then transformed using two fully connected layers with a dimension re-

duction ratio r = 16 [43], activated by a ReLU function and a sigmoid func-

tion, respectively. The transformed output is the channel attention distribution

C = [c1, c2, . . . , cC ], where cj ∈ R is the weight of channel fj.
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The final output of the Channel Attention module Oc = [oc1, o
c
2, . . . , o

c
C ] is then

obtained by multiplying the channel attention distribution C by F , where ocj =

cj × fj. Readers can refer to [43, 46] for more details.

3. Inception-Residual:

The Inception-Residual module aims to learn residuals associated with spatial

features in various scopes since information in the residuals may be important

for detecting EF smoke that usually presents in a small area in the satellite

imagery.

As displayed in Figure 4.5, the Inception-Residual module uses a four-path in-

ception block with kernels of different sizes (1, 3, and 5, respectively, with an-

other path employing max pooling) to achieve this purpose. Notably, depthwise-

separable convolution [298, 276] was used to reduce computational complexity by

using coupled n× 1 and 1×n convolutional layers instead of n×n convolutional

layers.
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Figure 4.5: Inception-Residual module.

4. Inception-Attention:

The Inception-Attention module in VIB SD aims to apply the attention mech-

anism to spatial features in various scopes extracted using kernels of different

sizes.

As shown in Figure 4.6, the Inception-Attention module incorporates five paths.

Specifically, spatial features were extracted in three different scopes through three

paths. One path uses a kernel size of 3 to extract spatial features in small scopes.

Another path uses a kernel size of 7 to extract spatial features in medium scopes.

The third path adopts a kernel size of 11 to extract spatial features in large

scopes. The three paths are each followed by a Spatial Attention module.
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The remaining two paths, respectively employing a 1× 1 convolutional layer and

a 3× 3 max pooling layer followed by a 1× 1 convolutional layer, focus more on

the channel-wise connections in the input tensor.

The feature maps generated from the five paths are concatenated, after which a

Channel Attention module is used to allocate weights to the channels in the new

feature map. This helps the model make predictions based on the importance of

the extracted spatial features.

Figure 4.6: Inception-Attention module.
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4.3 Experimental Settings and Evaluation Metrics

4.3.1 Experimental Settings

The work in this Chapter includes two separate experiments. The first experiment

evaluates the performance of VIB SD using the USTC SmokeRS dataset. The second

experiment investigates the impact of IR bands in satellite-based smoke detection,

employing VIB SD alongside the multispectral satellite imagery dataset Landsat6c.

In the first experiment, VIB SD is trained and compared with SmokeNet [43],

SAFA [47], and Inception-ResNet-V2 [297] under identical training settings. The

USTC SmokeRS dataset is used as SmokeNet and SAFA were originally trained on

this dataset. As previously noted, SmokeNet was the best-performing model before

SAFA, which is now considered state-of-the-art. Inception-ResNet-V2 features a simi-

lar key component to VIB SD: a multi-path residual learning block.

The model comparison in this work does not extend to other potential DL models

that could be applied for smoke detection, as the comparison against the previous and

current state-of-the-art models is sufficient to evaluate VIB SD’s performance. More-

over, comprehensive comparisons, including models such as BoCF [299], RSSC-ETDL

[49], LPDCMEN [51], D-CNN [48], and KFBNet [50], among others, have already been

conducted with SmokeNet and SAFA in [43, 47].

In the second experiment, VIB SD is trained using Landsat6c with five different

band combinations: RGB, RGBN, RGBNS1, RGBNS2, and RGBNS1S2. Here, N

refers to the NIR band, S1 to the SWIR 1 band, and S2 to the SWIR 2 band. In

subsequent sections of this Chapter, the five band combinations also refer to the five

VIB SD models derived from these combinations, where the context is clear.

The contribution of different IR bands can be evaluated with these five models as

follows:

• The contribution of NIR is assessed by comparing the RGBN model to the RGB

model.

• The contribution of the SWIR bands is assessed by comparing RGBNS1 or

RGBNS2 to RGBN.

• The individual contribution of each SWIR band is assessed by comparing

RGBNS1S2 to RGBNS1 and RGBNS2.
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The two experiments share some common settings:

• In both experiments, the datasets are split into training (64%), validation (16%),

and testing (20%) sets, with a batch size of 32, consistent with [43, 47].

• The same optimisation methods, regularisation strategies, and loss function are

adopted in both experiments.

– Adam [300] is used for optimisation, with the learning rate dynamically

reduced from 0.01 by a factor of 0.2 when the validation loss fails to de-

crease after 20 epochs. The maximum number of epochs is increased to 500,

compared to 200 in [43, 47], since the training accuracy shows potential for

further improvement after 200 epochs. Early stopping is applied when the

validation accuracy fails to improve within 90 epochs to avoid redundant

training while ensuring optimal performance.

– The loss function is sparse categorical cross-entropy, defined by the following

formula:

Loss = −
C∑
i=1

yi · log ŷi, (4.3.1)

where C is the number of classes, ŷi is the predicted probability of an in-

stance being the i-th class, and yi is 1 if the ground truth label is the i-th

class, and 0 otherwise.

However, the number of logits in VIB SD differs between the two experiments, as

shown in Figure 4.3. This number is set to 512 when using USTC SmokeRS, as the

dataset contains six classes. It is set to 256 when training VIB SD with Landsat6c, as

this dataset only includes three classes.

Other experimental settings are customised for each experiment as follows:

1. Customised settings for the first experiment:

To ensure fair model comparison, the same data pre-processing steps as in [43,

47] are followed.
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The input images for training are resized to 230×230×3 before random cropping

to 224 × 224 × 3. Training samples are augmented with random horizontal and

vertical flipping. Validation and testing samples are resized directly to 224×224×
3. All samples are standardised using the “per image standardization” function

provided by TensorFlow.

2. Customised settings for the second experiment:

All imagery files in the training data are augmented with random horizontal and

vertical flipping, maintaining the original dimensions of 256 × 256 × 6. Stan-

dardisation is not applied, as better training performance is observed without it.

Augmentation is not applied to imagery files used for validation and testing.

The five models generated using the five band combinations are compared in two

ways:

(a) The training process is repeated 10 times, with samples generated by ran-

dom splitting using the split ratios mentioned above. The samples obtained

differ for each split. The overall performance of the models is compared.

Variations in training data distributions ensure objective analysis of train-

ing performance.

(b) All five models are trained using the same training and testing samples in

a single random split. The models’ performance is compared, providing a

direct comparison under identical conditions.

4.3.2 Evaluation Metrics

The work in this Chapter uses accuracy and Cohen’s Kappa coefficient (referred to as

Kappa for brevity in the following content) as the evaluation metrics, following the

approach in [43, 47] to facilitate model evaluation and comparison.

The formulas for calculating accuracy and the Kappa are defined in Table 4.5.

N denotes the total number of images; i refers to a specific class; Nii represents the

number of true positive predictions for class i; Ni− denotes the number of images from

class i that were classified as other classes; N−i refers to the number of images from

other classes that were classified as class i.
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Table 4.5: Formulas for accuracy and Kappa.

Predicted Class 1 · · · Predicted Class t

Actual Class 1 N11 · · · N1t

...
... · · · ...

Actual Class t Nt1 · · · Ntt

Accuracy

∑t
1Nii

N

Kappa
N

∑t
1Nii −

∑t
1(Ni−N−i)

N2 −
∑t

1(Ni−N−i)

4.4 Results

4.4.1 Results of the First Experiment

Table 4.6 compares the parameter count, accuracy, and Kappa of the four models. The

results show that VIB SD significantly reduces the parameter count, with only a minor

reduction in accuracy compared to the state-of-the-art model, SAFA. However, VIB SD

achieves higher accuracy and a better Kappa than both SmokeNet and Inception-

ResNet-V2. Notably, VIB SD uses less than 2% of SAFA’s parameters.

Table 4.6: Model performance comparison.

Model Parameter Count Accuracy Kappa

SmokeNet 53.5M 92.75% 0.9130

SAFA 84.2M 96.22% 0.9546

Inception-ResNet-V2 54.4M 91.33% 0.8958

VIB SD 1.66M 93.57% 0.9227
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The results indicate VIB SD’s great potential for onboard-SmallSat applications in

accurate smoke detection.

4.4.2 Results of the Second Experiment

Table 4.7 presents the parameter count, the accuracy and Kappa ranges within the 95%

confidence interval, along with the best accuracy and Kappa for each model, based on

10 results.

Table 4.7: Performance of models using variant bands based on 10 results.

Model Parameter Accuracy Best Kappa Best

Count Accuracy Kappa

RGB 1.660 M 83.28± 1.57% 86.45% 0.7488±0.0234 0.7964

RGBN 1.666 M 87.78± 1.38% 92.41% 0.8164±0.0207 0.8861

RGBNS1 1.671 M 87.78± 1.12% 89.97% 0.8164±0.0168 0.8491

RGBNS2 1.671 M 86.4± 0.09% 89.43% 0.7956±0.0135 0.8413

RGBNS1S2 1.68 M 86.21± 1.18% 89.16% 0.7929±0.0178 0.8373

According to Table 4.7, the RGB model shows the lowest accuracy and Kappa, while

the RGBN model achieves the highest accuracy and Kappa under both metrics. This

suggests that adding the NIR band improves model performance. However, accuracy

and Kappa unexpectedly decreased when the SWIR bands were added in combination

with the NIR band. Specifically, a larger decrease in both metrics was observed when

both SWIR bands were added compared to when only one SWIR band was included.

Potential reasons for these results will be discussed in Section 4.6.

Figure 4.7 presents boxplots of the accuracy and Kappa derived from the 10 results

of the five models.
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Figure 4.7: Boxplots based on the 10 results. (a) Accuracy. (b) Kappa.

The boxplots in Figure 4.7 indicate that the RGB model is less effective than the

other four models. In contrast to what Table 4.7 suggests by evaluating the models

using mean values, Figure 4.7 indicates that RGBNS1 has the highest median accuracy

and Kappa.

Table 4.8 presents the results of the five models trained and tested using the same

samples obtained from a single split. Since all models were trained on the same training

samples and tested on the same testing samples, the models can be compared more

fairly, although these results may not represent their best possible accuracy and Kappa.

Boldface font highlights the best accuracy and Kappa.
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Table 4.8: Performance of models using variant bands with the same samples.

Model Testing Accuracy Kappa

RGB 83.20% 0.7483

RGBN 84.82% 0.7723

RGBNS1 85.64% 0.7842

RGBNS2 85.64% 0.7843

RGBNS1S2 86.45% 0.7966

Table 4.8 shows a slightly different trend: the more bands a model includes, the

better its performance. It is also worth noting that RGBNS1 and RGBNS2 achieved the

same prediction accuracy, with minor differences in their Kappa. This indicates that

although both models correctly predicted the same number of images, the distribution

of true positive predictions across classes varied.

Tables 4.7 and 4.8, along with Figure 4.7, all suggest that using additional IR bands

can effectively improve model prediction accuracy. In particular, adding the NIR band

greatly enhances accuracy compared to using only the RGB bands.

Based on the fair comparison results in Table 4.8, the following inferences can be

made:

• Both the SWIR 1 and SWIR 2 bands contain valuable information for smoke

detection; adding either contributes similarly to improving prediction accuracy.

• The SWIR 1 and SWIR 2 bands provide distinctive information, and adding both

further enhances prediction accuracy.

4.5 Case Studies

To examine the effectiveness of using multispectral moderate spatial resolution imagery

for smoke detection, the RGBNS1S2 model was used to make predictions on four
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different smoke scenes captured by Landsat 8 OLI, as shown in Figure 4.8. None of

the four scenes were included in the training dataset. The best-performing weights of

RGBNS1S2, which achieved the highest accuracy of 89.16%, were selected for these

predictions.

Figure 4.8: Smoke scenes. (a) Smoke mixed with thin clouds above the seaside. (b)
Diffused smoke at multiple sites under altocumulus clouds. (c) Cloud-free smoke (in
the red circle) over a very small geographic extent. (d) Cloud-free smoke plumes of
varying scales at two different sites.

The smoke scenes were tiled first, and predictions were then conducted on the
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resulting patches. Since the area covered in scene (a) was too small to be properly

tiled with a 50% overlap, the overlap rate was increased to 75% for scene (a) during

prediction. For the other three scenes, the overlap rate remained at 50%.

The prediction results for scene (a) are shown in Figure 4.9. In the results, the

text above each patch displays the patch ID, the predicted class (where CLR refers to

“Clear”, SMK refers to “Smoke”, and OA refers to “Other aerosol”), and the proba-

bility of the predicted class. The text below each patch shows the probabilities of the

patch being “Clear”, “Other aerosol”, or “Smoke” from left to right.
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Figure 4.9: Prediction results for scene (a) in Figure 4.8.

In Figure 4.9, all patches were correctly predicted except for patch 0, which was

incorrectly classified as “Other aerosol”.

The prediction results for scene (b) are shown in Figure 4.10.
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Figure 4.10: Prediction results for scene (b) in Figure 4.8.

In Figure 4.10, patches 0, 1, 4, 5, 8, and 12 were correctly predicted as “Smoke”. The

remaining patches were also “Smoke” but were incorrectly classified as “Other aerosol”.

The prediction results for scene (c) are shown in Figure 4.11.
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Figure 4.11: Prediction results for scene (c) in Figure 4.8.

In Figure 4.11, the two patches at the top were both correctly predicted as “Clear”

with high probability. The two patches at the bottom both contain smoke on a very

small scale; however, only the left patch was correctly predicted, while the right patch

was incorrectly classified as “Clear”.

Since scene (d) is very large, displaying the results for all patches is impractical.

Therefore, only the patches containing smoke were selected to verify the prediction

performance. The prediction results for the smoke area in the top right corner of scene

(d) are shown in Figure 4.12, while the prediction results for the smoke area in the

middle of scene (d) are shown in Figure 4.13.
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Figure 4.12: Prediction results for the top right smoke area of scene (d) in Figure 4.8.

In Figure 4.12, almost all patches were correctly predicted, except for patches 6 and

23, which both contain smoke but were incorrectly classified as “Clear”.

Figure 4.13: Prediction results for the middle smoke area of scene (d) in Figure 4.8.

In Figure 4.13, patches 52, 53, 66, and 67 were correctly predicted as “Smoke,”

while patches 51, 63, 64, 65, 76, 77, 78, and 79 were incorrectly classified as either

“Clear” or “Other aerosol.”
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The above results demonstrate that:

• The RGBNS1S2 model achieves good overall accuracy;

• Smoke in the Landsat imagery can be detected, although some FNs are present;

• FN detections are more likely to occur where the smoke is small or mixed with

clouds.

4.6 Discussion

The results shown in Table 4.8 aligned with the expectation that using more spectral

bands can effectively improve model prediction accuracy. However, the results shown in

Table 4.7 and Figure 4.7 raised a question: why did both the RGBNS2 and RGBNS1S2

models yield worse overall performance compared to RGBN and RGBNS1?

Several factors could contribute to this issue. One factor might be linked to the

imbalance of smoke scenes in the dataset. This may be inferred from the skewed

distribution of the accuracy and Kappa of the models in Figure 4.7. Smoke could

be obscured by clouds, in dark colours hidden within a dark background, located

at the corners or edges of the images, or be too small or thin. When samples are

randomly split, the training set may contain predominantly one type of smoke scene,

while the testing set contains others, leading to compromised training and testing

performance. In contrast, when the testing samples are more similar to the training

samples, the models are likely to perform better. In this case, the overall performance

of the models might change if they are trained multiple times. However, repeating the

training process is time-consuming and may not guarantee different results. Expanding

the dataset to provide more evenly distributed training and testing samples during the

random splitting process could be a more effective solution.

Another factor could be whether the model is effectively learning from the addi-

tional spectral bands. During backpropagation, the model needs to update the weights

for all input bands and extract useful features for prediction. If the weights for certain

spectral bands are not properly updated, these bands may be treated as noise, nega-

tively impacting performance. This issue could be related to the size of the training

dataset or the model design. To address this, training with a larger dataset or further
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refining the model design may be necessary. Future work will consider expanding the

current dataset and fine-tuning the model structure to improve performance.

The case studies demonstrated the effectiveness of VIB SD in detecting EF smoke

when trained using Landsat6c with all six bands. Although the model’s prediction

stability can be further improved, it shows potential for EF detection. Notably, while

some “Smoke” patches were misclassified as “Clear” or “Other aerosol,” “Clear” or

“Other aerosol” patches were rarely misclassified as “Smoke.” This implies a low false

positive rate for predicting “Smoke,” making positive smoke predictions trustworthy.

Since predictions are conducted on overlapping patches, even if some smoke patches

are misclassified, the fire alarm could still be triggered as long as one smoke patch is

correctly predicted.

Furthermore, using multi-source satellite imagery to achieve timely detection of

EF smoke will be explored. The temporal resolution of Landsat 8 OLI is 16 days,

which is insufficient for timely detection. However, combining imagery from multiple

low-temporal-resolution satellites can collectively provide a much higher temporal res-

olution. Future research will aim to collect imagery datasets from additional satellites

(e.g., Sentinel-2) to enable timely detection of EF smoke using multi-satellite imagery.

4.7 Conclusion

To facilitate satellite-based smoke detection, a multispectral imagery dataset, Land-

sat6c, was constructed using data from satellite sensors with moderate spatial reso-

lution: Landsat 5 TM and Landsat 8 OLI. A lightweight CNN model, VIB SD, was

developed that could potentially be adopted for onboard-SmallSat applications, featur-

ing significantly reduced parameters with only minor compromises in accuracy. Five

models based on VIB SD were trained with Landsat6c using different band combina-

tions to evaluate the effectiveness of multispectral moderate spatial resolution imagery

in EF smoke detection. The experimental results demonstrated that incorporating all

three additional IR bands can effectively improve detection accuracy. The RGBS1S2

model was applied to real smoke scenes, with results indicating that the model can

effectively detect EF smoke in various scenarios, though prediction stability requires

further investigation. Future work will focus on refining the VIB SD structure, ex-

panding the dataset, collecting new data from other satellites (e.g., Sentinel-2), and

integrating multiple data sources for timely EF smoke detection.
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It is worth noting that, although beyond the scope of this thesis, the efficacy of

deploying VIB SD onboard SmallSats for smoke detection has been validated through

the work in the fourth publication [55] listed at the beginning of this thesis. Specifi-

cally, VIB SD was used as a model prototype for simulating smoke detection onboard

Kanyini, a co-designed SmallSat by SmartSat CRC and the SA government.

The imagery data used for this simulation were synthetic HS2 (the sensor of Kanyini)

49-band hyperspectral imagery tiles. VIB SD demonstrated optimal resource usage

when performing onboard inference on 84 such 256 × 256 imagery tiles: processing

time of 1.6 seconds, average memory usage of 29 MB with a peak memory usage of 54

MB, and power consumption of 1.31 W. VIB SD also achieved high prediction accuracy

(95.7%) with a low false negative rate (FNR) (2.3%).
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One significant challenge of satellite-based smoke detection is the similarity in spa-

tial and spectral characteristics between smoke and other confounding aerosols (e.g.,

clouds, haze, dust), as discussed in Chapter 1 and demonstrated in Figure 1.2. Early

studies, primarily focusing on pixel-level detection, sought to derive various threshold

values from reflectance and BT values in certain spectral bands to differentiate smoke

and cloud pixels, based on their distinct spectral characteristics. These distinct spectral

characteristics, represented by pixel-level threshold values or other potential spectral

patterns (see Definition 2.2.1 in Chapter 2), provide an effective means of accurately

detecting smoke among confounding aerosols.

However, these threshold values were derived using deterministic methods based on

domain knowledge (e.g., selecting specific bands and determining thresholds), making

them difficult to generalise or directly apply in DL models. Current DL models, in-

cluding those customised for smoke detection, are not designed to extract and utilise

these important spectral patterns effectively. DL models typically employ 3 × 3 or

larger kernels in their initial layers, focusing more on exploring spatial features within

a 3 × 3 or larger window, rather than discovering spectral patterns at the pixel level.

Additionally, previous studies on satellite-based smoke detection were conducted using

the MODIS RGB imagery dataset USTC SmokeRS [43], limiting the exploration of

spectral patterns due to the absence of IR bands.

No study has yet investigated how to extract useful spectral patterns to aid DL-

based remote sensing classification tasks, specifically for smoke detection. Although the

VIB SD model proposed in Chapter 4 demonstrated significantly improved accuracy

when trained using the multispectral dataset Landsat6c, it is not equipped with an

effective mechanism to explicitly and proactively extract useful spectral patterns. Like

previous DL models, VIB SD uses larger kernels in its initial layers and merely takes

the multispectral imagery data as input.

Further study is required to develop such a mechanism and examine whether ex-

tracting spectral patterns in the initial layers of a DL model can effectively improve

its performance for satellite-based smoke detection. This chapter responds to this

requirement and addresses the second research question posed in Chapter 1:

RQ-2 How can smoke detection accuracy be improved more effectively

using multispectral satellite imagery, beyond simply including additional

IR bands in model training?
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Consequently, this chapter introduces the DL module IA, designed to enable DL

models to automatically learn class-oriented spectral patterns from multispectral satel-

lite imagery, thereby improving smoke detection accuracy. IA can be conveniently inte-

grated with different DL architectures. The effectiveness of the IA module is evaluated

on different CNN architectures using two satellite imagery datasets: USTC SmokeRS,

derived from MODIS with three spectral bands, and Landsat6c, derived from Landsat

5/8 with six spectral bands. Experimental results demonstrate that the IA module

enhances smoke detection accuracy in CNN models. Additionally, spectral patterns

extracted by the IA module are visualised using test imagery, showing that the IA

module can effectively extract class-oriented spectral patterns.

The work presented in this chapter is based on my paper “Learning Class-Specific

Spectral Patterns to Improve Deep Learning-Based Scene-Level Fire Smoke Detection

from multi-spectral Satellite Imagery” [56], published in the journal “Remote Sensing

Applications: Society and Environment” in February 2024.

The content of this paper is organised as follows: Section 5.1 introduces the back-

ground. Section 5.2 presents the proposed IA module. Section 5.3 describes the ex-

perimental settings, including datasets, training settings, and evaluation metrics. Sec-

tion 5.4 interprets the results, including ablation studies and parameter selection for

the IA module. Section 5.5 discusses potential applications of IA and future work.

Section 5.6 presents the conclusion.

5.1 Introduction

Detecting EF smoke from satellite imagery is recognised as an effective and timely

approach to preventing fire disasters, as smoke plumes are typically the first visible

indicators of wildfires from space. By detecting smoke, small fires burning at lower

temperatures, such as some early-stage grass fires, can be more easily identified. How-

ever, as demonstrated in Figure 1.2, smoke shares similar spatial and spectral charac-

teristics with other aerosols (e.g. cloud, fog, haze, and dust) and often intermingles

with these aerosols in satellite imagery, making accurate detection of smoke amongst

them extremely challenging.

Early research on smoke detection from satellite imagery primarily focused on the
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pixel level. Researchers used mathematical and statistical methods to derive threshold

values from the reflectance and BT values in multiple spectral bands for each pixel.

Smoke pixels were then distinguished from others based on the differences in these

spectral-band threshold values [39, 234, 40, 237, 54]. These approaches demonstrated

that specific spectral patterns are valuable for accurate smoke detection using satellite

imagery. However, these threshold values heavily rely on domain knowledge and may

be influenced by local conditions. For example, fuel types, which often vary with

geographic location, may change the physical and chemical characteristics of smoke,

making it difficult to generalise these thresholds.

DL models like CNNs and vision transformers (VITs) can automatically extract

highly abstract features without the need for cumbersome feature engineering and have

been proven to greatly improve scene-level smoke detection accuracy. However, while

current CNNs and VITs excel in learning spatial patterns, they are not designed to

effectively learn spectral patterns, which provide valuable information at the pixel level.

Notably, CNNs employing 3× 3 or larger kernels in the initial layers do not explicitly

extract pixel-level spectral features from the input. In contrast, VITs, incorporating

the self-attention mechanism on divided subregions of the input imagery, focus more

on spatial correlations of these subregions.

Take the CNN model VIB SD, proposed in Chapter 4 and specifically designed for

scene-level smoke detection, as an example. VIB SD employs 9× 9 kernels for spatial

feature extraction right after the input layer. It demonstrated improved accuracy when

trained with additional IR bands compared to when trained with only the RGB bands.

Nonetheless, a relatively high FNR was still observed when smoke and other confound-

ing aerosols co-exist, implying that even spatial patterns learned from multispectral

imagery may not be adequate to differentiate these aerosols effectively. Additionally,

the varying shapes and colours of smoke, as demonstrated in Figure 1.1, further in-

dicate that spatial patterns alone are insufficient for accurate smoke detection from

satellite imagery.

One reasonable hypothesis is that the accuracy of DL models for smoke detection

can be improved by explicitly extracting spectral patterns, relating to individual pixels,

at the very beginning of the model, particularly when using multispectral satellite

imagery.

To validate this hypothesis, this chapter presents the IA module, designed to en-
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able a DL model to automatically learn class-oriented spectral patterns that are useful

for distinguishing smoke from the background and other visually similar objects. Un-

like previous methods deriving threshold values based on domain knowledge, which

are hard to generalise, IA automatically learns spectral patterns through supervised

training without human intervention. After integrating with IA, DL models take the

IA-extracted spectral patterns as input, thereby achieving enhanced performance.

The study further evaluates IA’s effectiveness using multiple baseline CNN mod-

els with variant architectures, namely ResNet50 [44], InceptionResnetV2 [297], Mo-

bileNetV2 [209], and VIB SD. The models are trained both with and without IA,

utilising two datasets: the three-band (RGB) USTC SmokeRS MODIS dataset and

the six-band (i.e., RGB, NIR, SWIR 1, and SWIR 2) Landsat6c dataset proposed in

Chapter 4. Results show that incorporating the IA module effectively improved the

prediction accuracy of the baseline CNN models for both datasets.

The IA module’s novelty and contributions are summarised as follows:

• IA uniquely facilitates class-oriented spectral pattern learning in DL models, a

pioneering achievement in the literature. It accomplishes this by synergistically

employing band, spatial, and channel attention directly on the input imagery.

• Designed to be lightweight as a pre-processing module, IA integrates seamlessly

with various DL models, such as CNNs or VITs, adding minimal computational

overhead. This feature is crucial for onboard satellite applications, where resource

constraints are a significant concern.

• Beyond smoke detection, IA’s potential extends to other remote sensing domains

like water observation and vegetation disease detection, where spectral patterns

are pivotal (this hypothesis is left for verification by researchers studying in these

domains). Additionally, the class-oriented spectral patterns learned by IA could

facilitate DL model interpretation and cross-sensor transfer learning, given their

informativeness and reduced variability compared to individual spectral bands.

5.2 IA

Figure 5.1 (a) depicts the structure of the IA module which has been devised to serve

the following objectives:

1. Automatic extraction of pixel-level spectral patterns;
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2. Extraction of multiple spectral patterns concurrently, with a focus on those con-

taining valuable class-oriented information;

3. Integration of spectral patterns and spatial patterns to enhance the accuracy of

scene-level smoke detection.

Figure 5.1: The architecture of the IA module. (a) IA (b) Spatial Attention* (c)
Channel Attention**

* Modified based on Figure 4.4 (a), with the channel reduction ratio changed from 1/16 to 1/8;

** Modified based on Figure 4.4 (b), with the channel reduction ratio changed from 1/16 to 1/8.

The IA module accomplishes the above objectives through three successive steps

that employ different types of attention:

1. Band attention is applied to individual pixels across the input spectral bands,

which produces raw spectral patterns.

2. Spatial attention is employed on pixels within each spectral band and spectral

pattern, leading to the refinement of raw spectral patterns.
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3. Channel attention is utilised on the combined spectral bands and spectral pat-

terns, focusing on significant spectral patterns.

Figure 5.2: Process of spectral pattern extraction by IA. (a) Raw spectral pattern
extraction is achieved through band attention by using 1 × 1 filters with non-linear
activation (b) Spatial attention emphasises the pixels that are spatially related while
suppressing other pixels, hence refines the raw spectral patterns (c) Channel attention
weights the spectral patterns according to their importance in the classification task.

In the first step, the IA module employs 1× 1 filters to learn the attention weights

of a pixel’s spectral bands. A 1 × 1 filter F = [f 1, . . . , fk, . . . , fC ](fk ∈ R) lin-

early maps any pixel P(i,j) = [p1(i,j), . . . , p
k
(i,j), . . . , p

C
(i,j)](p

k
(i,j) ∈ R) to a new value

pf(i,j) =
∑C

k=1 f
kpk(i,j). The ReLU function then applies a non-linear transformation

and produces a new value p
ReLU(f)
(i,j) . This process aims to extract spectral patterns,

as defined in Definition 2.2.1. Since a 1 × 1 filter applies weights across all bands

to a pixel, it acts as a band attention mechanism, highlighting the bands that more

effectively differentiate various pixels. Figure 5.2 (a) illustrates this process.
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By employing Conv2D layers with N such 1 × 1 filters and the ReLU activation

function, IA achieves multi-head band attention and extracts N spectral patterns con-

currently. The resulting output feature map of the Conv2D layer retains the same

dimensions as the original spectral bands in the input imagery and can thus be con-

sidered as pseudo bands. During backpropagation, the pixel values in the extracted

spectral patterns are adjusted based on their contributions to the class labels of the

input imagery. For convenience, these extracted spectral patterns are also referred to

as deep-pseudo bands hereinafter.

Two such 1 × 1 Conv2D layers are stacked to extract more fine-grained spectral

patterns, which are then concatenated with the original spectral bands. This design

ensures that the spatial and spectral information in the original imagery is retained

in subsequent steps to guide the further refinement of the extracted spectral patterns.

The intermediate output of the first step is referred to as raw spectral patterns, as

they will be refined in later steps. According to Definition 2.2.1, each of the original

spectral bands carried into the intermediate output in this step can be considered a

special type of spectral pattern generated with a specific mapping: P(i,j) 7−→ pk(i,j),

where k ∈ [1, C] ∩ N refers to the k-th spectral band in the input imagery.

For ease of implementation, the number of output channels of IA is set to 32.

Accordingly, its Conv2D layers use N = 32− n 1× 1 filters, where n is the number of

spectral bands in the input imagery. The choice of 32 was informed by ablation study

results, considering computational complexity.

In the second step, the IA module incorporates a Spatial Attention module to refine

the raw spectral patterns generated in the first step. As illustrated in Figure 5.1 (b),

during backpropagation, the Spatial Attention module learns an attention distribution

for each channel of the input feature map in the form of a W × H matrix, where

W ∈ N and H ∈ N are the width and height of the input imagery. These attention

distributions represent the importance levels of individual pixels.

Guided by supervised learning, the importance of each pixel is typically determined

by its association with the target classes. Consequently, within the 32 refined spectral

patterns—each associated with one spatial attention distribution—some may empha-

sise pixels belonging to one class, while others may highlight pixels associated with

different classes. For example, certain spectral patterns may enhance smoke pixels
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while suppressing those of other classes, or vice versa.

Figure 5.2 (b) illustrates this process. Notably, the intermediate output after this

step no longer contains the original spectral bands as they are also weighted by specific

spatial attention distributions.

In the third step, the IA module applies a Channel Attention module to weigh the

importance of the extracted spectral patterns before they are used as input to a DL

model. As depicted in Figure 5.1 (c) and Figure 5.2 (c), this module assigns higher

weights to the spectral patterns that have greater representative power for the target

classes. Unlike the band attention that captures the most representative bands for a

pixel in the first step (Figure 5.2 (a)), the channel attention here weights the extracted

features based on their significance in the prediction.

The Channel Attention module, together with the Spation Attention module in

step two, guides the model to effectively learn class-oriented spectral patterns.

The implementation of spatial attention and channel attention is common and typ-

ified by [43] and [27] in smoke detection. In the work of this chapter, spatial attention

and channel attention are applied from a novel perspective so that, together with 1×1

filters, they produce refined pixel-level spectral patterns while preserving spatial fea-

tures and emphasising class-oriented information. In contrast, previous applications of

spatial and channel attention were primarily focused on enhancing the extraction of

spatial patterns.

The IA module learns class-oriented spectral patterns automatically, without re-

quiring human expertise or intervention. This contrasts with traditional methods,

such as spectral indices and threshold values, which rely on predefined formulas based

on experience and domain knowledge. Additionally, the IA-extracted spectral pat-

terns are used as new input to DL models when integrated with them. This process

automates the link between the extracted spectral patterns and the scene-level clas-

sification, streamlining the learning pipeline for a more effective exploration of both

spectral and spatial patterns.
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5.3 Experimental Settings

This section introduces the datasets, training settings, and evaluation metrics used in

this study.

5.3.1 Datasets

To evaluate the effectiveness of the IA module, this study employs both the USTC SmokeRS

dataset [43] and the Landsat6c dataset, with the latter proposed in Chapter 4 of this

thesis.

The former, constructed using MODIS RGB images, spans nearly twenty years and

covers six continents, excluding Antarctica [43]. The latter contains three additional IR

bands, namely NIR, SWIR 1, and SWIR 2, covering historical fire events between 2010

and 2020 in SA and NSW, Australia. The wide range of global locations and temporal

conditions ensures that IA’s effectiveness is evaluated across varying locations and

times.

Table 5.1 presents a summary of the two datasets. For more detailed information

about each dataset, refer to [43] and Section 4.2.2 of the thesis, respectively.

Table 5.1: A summary of datasets used in this paper

Dataset Classes
Number of Images

Per Class Total

USTC SmokeRS

Cloud 1164

6225

Dust 1009

Haze 1002

Land 1027

Seaside 1007

Smoke 1016

Landsat6c

Clear 616

1836
Other aerosol 605

Smoke 615
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5.3.2 Training Settings

Four baseline models were selected, namely ResNet50 [44], InceptionResNetV2 [297],

MobileNetV2 [209], and VIB SD [27]. VIB SD is a lightweight model specifically de-

signed for smoke detection, as described in Chapter 4, while the other models are widely

recognised in the literature. These baseline models represent various CNN architectures

with differing depths and parameter counts. The objective is to verify whether integrat-

ing IA can effectively improve their prediction performance, irrespective of structural

differences.

All baseline models were initially trained using the two datasets separately. Next,

the models were integrated with the IA module, and the training process was repeated

under the same settings. The integration of IA is straightforward: it is inserted directly

after the input layer of the baseline models. The 32-channel feature map, produced by

IA and having the same width and height as the original input imagery, is then fed to

the baseline models as their new input.

For both datasets, 64% of the data was used for training, 16% for validation, and

20% for testing, consistent with the settings in Chapter 4. The test results were used

for comparison. To minimise the risk of overfitting, all input imagery in the training

data was augmented with random horizontal and vertical flipping. The augmentation

was kept simple to avoid introducing noise.

All models were trained using an input size of 256 × 256 for the width and height

dimensions, which corresponds to the original size of the imagery files. It is important

to note that ResNet50 and InceptionResNetV2 have default input sizes of 224 × 224

and 299× 299, respectively. Using these default sizes would require resizing the input

imagery, which could introduce interpolated pixel values across all input bands. This

may cause the learned spectral patterns to deviate significantly from the authentic

spectral patterns. To avoid this issue, the input size for ResNet50 and InceptionRes-

NetV2 was adjusted to 256× 256. This change allowed the models to learn effectively

without introducing interpolated pixels and did not affect the comparison.

The batch size was set to 32, and the number of epochs was set to 300. To avoid re-

dundant training, early stopping was applied if the validation accuracy did not improve

within 60 epochs. The initial learning rate was set to 0.01 and reduced by a factor of
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0.8 if the validation loss did not decrease within 20 epochs. The Adam optimiser [300]

was used for optimisation.

All algorithms were implemented using TensorFlow and trained under the Ubuntu

16.4 operating system. A global random seed was used, along with necessary local

seeds for dataset preparation and model training, utilising the mirror strategy with two

NVIDIA GeForce GTX 1080 Ti GPUs. This ensured the models were more compara-

ble, considering the many random processes involved during training, such as random

parameter initialisation, dataset splitting and shuffling, and job assignment.

The results of each baseline model were compared with those of the same model

incorporating the IA module.

5.3.3 Evaluation Metrics

This study includes both accuracy (%) and the Kappa in the evaluation metrics, con-

sistent with the settings in Chapter 4 of this thesis and the studies in [43, 47]. Addi-

tionally, the FNR of the target class “Smoke” is introduced as a new evaluation metric

in this study, due to its importance in natural disaster detection.

The formulas for calculating accuracy and the Kappa were provided in Table 4.5.

Using the same notations, the class-wise FNR is defined by the following formula:

FNR =
Ni−

Nii +Ni−
(5.3.1)

5.4 Experimental Results

This section presents and compares the test results of all baseline models, with and

without the IA module, in Section 5.4.1. Following this, Section 5.4.2 visualises and

analyses some of the spectral patterns in the deep-pseudo bands extracted by the IA

module. Finally, Section 5.4.3 showcases the results of the ablation studies.

103



CHAPTER 5. IA: LEARNING SPECTRAL PATTERNS

5.4.1 Model Performance with and without IA

The test results of the baseline models, both with and without the IA module, using

the USTC SmokeRS dataset and the Landsat6c dataset are shown in Table 5.2 and

Table 5.3, respectively.

Table 5.2: Results of using the USTC SmokeRS dataset

Model IA Parameter Count Accuracy Kappa FNR

ResNet50
No 23.600M 86.43% 83.71% 21.60%

Yes 23.693M 88.67% 86.41% 18.31%

InceptionResnetV2
No 54.35M 88.27% 85.92% 16.43%

Yes 54.36M 90.92% 89.10% 12.21%

MobileNetV2
No 2.266M 89.88% 87.86% 18.31%

Yes 2.276M 84.18% 81.04% 33.33%

VIB SD
No 1.745M 92.85% 91.42% 15.50%

Yes 1.897M 94.14% 92.96% 13.15%

Table 5.3: Results of using the Landsat6c dataset

Model IA Parameter Count Accuracy Kappa FNR

ResNet50
No 23.603M 75.82% 63.68% 26.47%

Yes 23.686M 80.43% 70.70% 29.41%

InceptionResnetV2
No 54.34M 83.97% 75.89% 24.77%

Yes 54.35M 85.05% 77.52% 18.38%

MobileNetV2
No 2.263M 76.90% 65.11% 22.06%

Yes 2.272M 78.80% 68.01% 21.32%

VIB SD
No 1.676M 81.79% 72.61% 24.26%

Yes 1.812M 85.33% 77.87% 13.97%

The results indicate that adding the IA module only slightly increased the parameter

counts compared to the original models.
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When training with the USTC SmokeRS dataset, the IA module effectively im-

proved all three evaluation metrics for ResNet50, InceptionResNetV2, and VIB SD.

However, the original MobileNetV2 achieved better results across all three metrics.

When training with the Landsat6c dataset, all four baseline models showed sig-

nificant improvements in terms of accuracy and the Kappa. Additionally, except for

ResNet50, the other three models also demonstrated improvements in the FNR for the

class “Smoke”.

The results demonstrate that the IA module effectively enhances CNN-based smoke

detection from satellite imagery. The reduced performance of MobileNetV2 with IA,

observed when trained on the USTC SmokeRS dataset, may be related to the extensive

use of 1×1 filters in its depth-wise separable convolutions and inverted residual blocks.

This aspect will be further discussed in Section 5.5.

5.4.2 Visualisation of IA-extracted Spectral Patterns

To better understand the spectral patterns extracted by the IA module, some of the

class-oriented spectral patterns extracted by the VIB SD model from imagery samples

in both the USTC SmokeRS and Landsat6c datasets were visualised.

In Figure 5.3, the five imagery samples in the leftmost column are labelled as

“Cloud,” “Dust,” “Haze,” “Seaside,” and “Smoke” from the USTC SmokeRS dataset.

The grey-scale images in the two columns on the right are two visualised corresponding

deep-pseudo bands produced by the IA module. It is evident that the spectral patterns

exhibit class-related attributes. The pixels representing the target class and those

from other classes, are highlighted respectively in each deep-pseudo band. Notably,

Figure 5.3 shows that the IA module can accurately identify smoke pixels even in the

absence of pixel-level ground truth in the training data.
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Figure 5.3: Original MODIS imagery samples (left) vs. two samples of deep-pseudo
bands extracted by IA
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In Figure 5.4, on the left are three ground truth imagery samples labelled as

“Smoke,” “Other aerosol,” and “Clears” from the Landsat6c dataset, visualised with

the RGB bands; on the right is the visualisation of two corresponding spectral patterns

containing class-oriented information. It can be observed that the spectral patterns

capture class-oriented pixels very well for both smoke and other aerosols.

Figure 5.4: Original Landsat imagery samples (left) vs. two samples of deep-pseudo
bands extracted by IA

Figures 5.3 and 5.4 also demonstrate that the IA module can enhance the model’s

explainability. The visualisation of the deep-pseudo bands clearly illustrates the spec-

tral patterns learned and utilised by the model in making predictions, providing tan-

gible insight into the decision-making process.
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5.4.3 Ablation Studies and Parameter Selection

Ablation studies were conducted to determine the optimal way to integrate the at-

tention mechanism in the IA module, how many 1 × 1 Conv2D layers the IA module

should include, and the number of output channels for the IA module.

The VIB SD model was used exclusively for the ablation studies. For the studies

on the attention mechanism and the number of 1 × 1 convolution layers, only the

USTC SmokeRS dataset was utilised. Both datasets were used for the study on the

number of output channels of the IA module.

The results regarding the attention mechanism are shown in Table 5.4, which sug-

gest that the VIB SD model employing the IA module with both spatial and channel

attention achieved the highest accuracy.

Table 5.4: Ablation study about attention mechanism

Attention Modules Accuracy Kappa FNR

None 92.85% 91.42% 15.50%

Channel Attention 91.57% 89.88% 16.43%

Spatial Attention 92.29% 90.74% 18.31%

Both 94.14% 92.96% 13.15%

The results regarding the number of 1× 1 Conv2D layers (#1× 1 Conv2D layers)

are shown in Table 5.5, which suggests that using two 1 × 1 Conv2D layers achieved

the highest accuracy.

Table 5.5: Ablation study about the number of 1× 1 Conv2D Layers

#1× 1 Conv2D Layers Accuracy Kappa FNR

1 92.37% 90.84% 16.43%

2 94.14% 92.96% 13.15%

3 93.98% 92.77% 11.27%

4 91.89% 90.26% 18.31%
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The results regarding the number of output channels (#Output Channels) of the

IA module are shown in Table 5.6. Based on the ablation study results from both

datasets and considering computational complexity, 32 output channels were adopted

in the proposed IA module.

Table 5.6: Ablation study about the output channel number of the IA module

Dataset #Output Channels Accuracy Kappa FNR

USTC SmokeRS

16 92.37% 90.84% 11.74%

24 93.33% 92.00% 15.02%

32 94.14% 92.96% 13.15%

40 94.14% 92.96% 10.33%

48 93.33% 92.00% 12.21%

Landsat6c

16 80.43% 70.53% 22.06%

24 82.88% 74.21% 16.91%

32 85.33% 77.87% 13.97%

40 82.07% 73.08% 18.38%

48 80.43% 70.41% 16.91%

5.5 Discussion

Smoke shares some similar spatial patterns with clouds, haze, fog, and other aerosols.

This makes it challenging to discern smoke from these aerosols using DL models that

primarily rely on spatial patterns. However, the particles in different aerosols exhibit

distinct reflection characteristics across various bands, making spectral patterns useful

for smoke detection. This is believed to be the primary reason why the IA module

improves the accuracy of CNN models for smoke detection in satellite imagery.

The performance of integrating the IA module with various CNN architectures

appears to be influenced by their specific designs. Notably, no performance improve-

ment was observed when MobileNetV2 was trained with the IA module using the

USTC SmokeRS dataset. This outcome might be attributed to factors related to both
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the USTC SmokeRS dataset and the MobileNetV2 model. Firstly, the USTC SmokeRS

dataset, comprising only visible bands, may limit the representativeness of the spectral

patterns learned, in contrast to the Landsat6c dataset, which includes additional spec-

tral bands. Consequently, the spectral patterns from USTC SmokeRS may be more

susceptible to distortion by the CNN architecture. Secondly, MobileNetV2’s extensive

use of depth-wise separable convolutions and inverted residual blocks, which feature

1×1 Conv2D layers, might alter the IA-learned spectral patterns due to the presence of

1×1 Conv2D layers. This alteration could lead to compromised performance. Readers

are referred to [209] for a comprehensive understanding of the MobileNetV2 architec-

ture. Further research is needed to identify the exact causes of this performance issue

and to investigate possible solutions.

Since the IA module serves as an input pre-processing block, it is easily applicable

to VITs as well as CNNs. Nonetheless, its efficacy on VITs was not evaluated in

this study due to the difficulty in identifying, implementing, and training appropriate

benchmark VITs within the constraints of this research project. Additional research is

planned to explore this avenue in the future.

The IA module is not limited to smoke detection from satellite imagery and can be

applied to a broader range of classification tasks, including those using non-satellite

imagery. It would be particularly useful for tasks where the reflection characteristics

of a class in different bands are distinct from those of other classes. For example,

detecting water pollution, vegetation diseases, or diagnosing human diseases such as

polyps or skin cancer may benefit from the IA module’s ability to extract class-oriented

spectral patterns. Future work could investigate the effectiveness of the IA module for

such tasks, as this is beyond the scope of this thesis.

In addition, it was observed that some of the deep-pseudo bands extracted by the

IA module can successfully mark pixels belonging to certain target classes, even when

no binary ground truths at the pixel level were provided in the training data. This

suggests the potential of using the IA module for tasks involving pixel-level labelling or

segmentation. Besides, since the deep-pseudo bands extracted by the IA module can

be easily visualised, they can enhance the interpretability of DL models.

Furthermore, the IA module can be leveraged to facilitate transfer learning for

training a smoke detection CNN model using imagery from multiple satellite sensors or

updating a trained model with a few labelled images from a new satellite sensor. For
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instance, one can first train a CNN model on a dataset with fewer spectral bands, and

then add the IA module in front of the trained model, setting the input channels to

match the number of bands in the new dataset and the output channels to the number

of bands in the original dataset. This approach allows the new model to be fine-tuned

through transfer learning using only a small number of images from the new dataset.

5.6 Conclusion

In conclusion, this study demonstrates the limitations of current DL models in exploring

pixel-level spectral patterns that are critical for smoke detection in satellite imagery.

To address this, a novel DL module called IA was proposed, enabling DL models to

extract class-oriented pixel-level spectral patterns alongside spatial patterns. The IA

module incorporates 1 × 1 filters and attention mechanisms and can be seamlessly

integrated with existing DL models with minimal computational overhead.

The IA module was evaluated on two smoke satellite imagery datasets:

USTC SmokeRS, which includes only the RGB bands, and Landsat6c, which comprises

six spectral bands (i.e., RGB, NIR, SWIR 1, and SWIR 2). The experimental results

demonstrate that integrating the IA module with an existing CNN model effectively

improves the model’s prediction accuracy.

The deep-pseudo bands extracted by the IA module were visualised, demonstrating

that these bands successfully segmented pixels belonging to specific target classes. This

suggests the potential of using the IA module for pixel-level labelling or segmentation

tasks.

Moreover, the IA module learns to extract class-oriented pixel-level spectral pat-

terns during the learning process based on the classification tasks, indicating its poten-

tial to be applied to a broader range of classification tasks in various domains. Overall,

the IA module is a promising approach to improving the accuracy and interpretability

of DL models, particularly in multispectral satellite imagery analysis.
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Satellite-based smoke detection (referring to scene-level smoke detection in this

chapter) for fire disaster prevention requires accurate and timely detection of EF smoke

plumes, which often cover small geographic extents.

Chapter 5 proposed the IA module and integrated it with the VIB SD model from

Chapter 4, resulting in a more accurate smoke detection model, IA VIB SD. Addi-

tionally, Chapter 4 introduced the multispectral satellite imagery dataset Landsat6c,

derived from Landsat 5 TM and Landsat 8 OLI imagery. Featuring extra IR bands,

Landsat6c facilitates the IA module in learning class-oriented spectral patterns, thereby

improving accuracy more effectively. Moreover, its 30-metre spatial resolution enables

the capture of EF smoke plumes, which further ensures the capability of the trained

IA VIB SD to detect such EF smoke effectively.

Nonetheless, the lengthy temporal resolution of 16 days for Landsat 5 TM and

Landsat 8 OLI can hardly satisfy the demand for timely detection of EF smoke. Com-

bining multiple satellites, such as the Landsat series providing medium to high spatial

resolutions, could improve the detection of EF smoke while collectively delivering bet-

ter temporal resolution. However, no investigation has yet been conducted in the

literature on how to quickly equip these satellites with accurate DL models, especially

given the lack of labelled training datasets, particularly for new satellites that have not

accumulated sufficient observational data. Furthermore, different satellite sensors typi-

cally have varying spectral bands with distinct spectral and radiometric characteristics,

which also pose significant challenges.

This chapter investigates feasible transfer learning strategies for rapid model de-

velopment in smoke detection using multiple satellite sensors, addressing the third

research question posed in Chapter 1:

RQ-3 How to leverage transfer learning for fast model development

across multiple satellites for timely smoke detection, given insufficient

labelled training data from some satellites?

Consequently, this chapter proposes a novel cross-sensor transfer learning approach

through the learning and adaptation of spectral patterns, facilitated by the IA VIB SD

model. The IA VIB SD model first learns to extract class-oriented spectral patterns

for smoke detection from the multispectral training data in the source domain. When

the model is transferred to the target domain, its ability to learn and utilise these
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spectral patterns is carried over. This capability is then fine-tuned and updated for

the new data in the target domain using a small amount of labelled training samples.

As a result, the new IA VIB SD model achieves enhanced smoke detection accuracy in

the target domain.

The adaptation of the pretrained IA VIB SD to the target domain data, which

features a different number of spectral bands, is achieved by replacing the IA module

for the target domain. It is important to note that, the VIB SD component of the pre-

trained model is retained to carry over the knowledge learned from the source domain.

This contrasts with the conventional transfer learning approach, which incorporates an

additional mapping layer to align the input dimensions between the source and target

domains, allowing the same model to be used in both domains.

The study employs the Landsat6c dataset as the source domain. Notably, Land-

sat6c is expanded from 1836 to 2770 imagery files in this study, ensuring that each class

contains more than 900 training samples to enhance the robustness of the pretrained

IA VIB SD. Additionally, this chapter introduces Sentinel7c, a new multispectral im-

agery smoke detection training dataset created from Sentinel-2 MSI imagery, to serve as

the target domain. Sentinel7c consists of 351 imagery files with seven spectral bands

and a 10-metre spatial resolution, compared to the six bands and 30-metre spatial

resolution of the source domain dataset, Landsat6c.

The study compared the performance of the proposed transfer learning approach

against the conventional approach (as illustrated in Figure 3.2 and demonstrated by

the work in [288]). In addition, the performance of the transferred IA VIB SD models

was compared to the IA VIB SD model trained purely on Sentinel7c data in the target

domain. The results demonstrate that the proposed approach outperformed the con-

ventional approach, and the transferred models surpassed the model trained purely on

the target domain, even when trained on a small portion of the Sentinel7c dataset.

This chapter is based on my paper “Cross-sensor transfer learning for smoke de-

tection using variable-bands multi-spectral satellite imagery aided by spectral patterns”

[57], published in the International Journal of Remote Sensing in April 2024.
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6.1 Introduction

Extreme wildfires, exacerbated by climate change, have occurred frequently in recent

years and caused tremendous losses worldwide. There is an urgent need for feasible

and effective solutions for NRT fire detection to mitigate such disasters. Smoke de-

tection using advanced DL models onboard satellites presents great potential due to

the proven accuracy of DL models and the reduced latency of onboard detection. Em-

ploying multiple satellite platforms collaboratively can further increase the likelihood

of promptly identifying the initiation of fires.

However, using multiple satellites for smoke detection typically necessitates cus-

tomised models for different satellites, which could significantly delay real-world appli-

cations.

On the one hand, models trained exclusively on imagery data from one specific

satellite often exhibit suboptimal performance when directly applied to data from an-

other satellite, even if the imagery from both satellites contains identical spectral bands.

For instance, Table 6.1 presents the results of directly applying the Landsat6c-trained

IA VIB SD model to make predictions on Sentinel7c imagery using the same set of

six corresponding bands. The results reveal that the model’s predictive accuracy on

Sentinel7c imagery was notably close to random guessing. More information about

Landsat6c, IA VIB SD, and Sentinel7c can be found in Section 4.2 of Chapter 4, Sec-

tion 5.2 of Chapter 5, and Section 6.2.1 of this chapter.

Table 6.1: Accuracy of Landsat6c-trained IA VIB SD predicting Sentinel7c imagery

Model Training data
Accuracy

Landsat6c Sentinel7c

IA VIB SD Landsat6c 85.08% 54.13%

On the other hand, when a new satellite sensor is involved in onboard smoke detec-

tion, it must accumulate adequate observational data before a reliable training dataset

with abundant samples can be created. This process can take a long time, with addi-

tional time needed for model training and deployment.

Several studies have investigated techniques to enhance DL model robustness for

remote sensing classification tasks involving multiple imagery sources, though not fo-
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cusing on smoke detection. For instance, [301] introduced the Multiscale Interactive

Fusion Network, which incorporates a Multiscale Interactive Information Extraction

block and a Global Dependence Fusion Module for classifying multi-source remote

sensing data. Subsequently, [302] proposed the Representation-enhanced Status Re-

play Network, which addresses representation and classifier bias, as well as feature

fusion imbalances, in multi-source remote sensing image classification.

However, these approaches require that the imagery from different sensors have

identical or similar spectral bands with the same band dimensions. Additionally, such

methods may compromise accuracy on individual sensors in favour of achieving overall

accuracy across all source sensors.

To expedite real-world applications of using multiple satellites for NRT smoke de-

tection, there is a pressing need to investigate effective approaches that enable rapid

model development for multiple satellites, including newly launched ones, without com-

promising accuracy. Additionally, such approaches must account for variations in both

the spectral bands and the number of bands in imagery from different satellites. Lever-

aging transfer learning emerges as a promising approach to achieve these aims.

Prior research on transfer learning in remote sensing has primarily focused on adapt-

ing models trained on RGB images, which does not align well with satellite imagery

containing multiple spectral bands for detecting smoke and aerosols. To better pre-

serve relevant features, this study focuses on exploring cross-sensor transfer learning for

smoke detection using multispectral imagery from both the source and target sensors.

This introduces more complex challenges due to the involvement of multiple spec-

tral bands, which can vary significantly between different sensors. For example, some

spectral bands used in the training data from one sensor may be absent in data from

another sensor, and the bands present across different sensors may differ in terms of

spectral, spatial, and radiometric resolution. Additionally, unlike the abundance of

large, readily available RGB image training datasets, labelled multispectral satellite

imagery datasets are scarce in the field of remote sensing [280, 289, 303]. Finding

a labelled multispectral satellite imagery dataset for smoke detection is exceptionally

challenging, especially when considering multiple sensors.

This chapter presents an innovative cross-sensor transfer learning approach to ad-

dress the above challenges, involving the creation of the Sentinel7c dataset as the
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multispectral target domain to support the study.

The innovation of the proposed transfer learning approach is closely tied to the

employment of the IA VIB SD model, specifically the IA module within it, for this

investigation. This is due to the model’s ability to extract class-oriented spectral pat-

terns with the assistance of the IA module. It is assumed that such spectral patterns,

extracted from multispectral imagery from different sensors, are less variable compared

to the spectral characteristics of the bands between sensors. Provided this assumption

holds, adapting the spectral patterns learned by the IA module from both the source

and target domains becomes a better alternative than addressing the data distribu-

tion discrepancies between the two domains. Furthermore, the lightweight design of

IA VIB SD holds great potential for onboard SmallSats smoke detection, making the

cross-sensor transfer learning study based on IA VIB SD even more valuable.

As mentioned, two labelled multispectral satellite imagery datasets, namely Land-

sat6c and Sentinel7c, are used as the source and target domains, respectively. Both

datasets are labelled into three classes: “Clean,” “Other aerosols,” and “Smoke.” The

former was introduced in Chapter 4, originally comprising 1836 6× 256× 256 Landsat

images, but has been expanded to 2770 images to provide more training samples in

each class for this study. The latter, newly constructed to support this study, comprises

351 images sourced from Sentinel-2, each with dimensions of 7× 256× 256. Sentinel7c

possesses an additional spectral band compared to Landsat6c and maintains a 10-

metre spatial resolution across all bands, distinct from the 30-metre spatial resolution

of Landsat6c. Further details about the two datasets are available in Section 6.2.1.

The transfer learning approaches were evaluated based on IA VIB SD, using the

Landsat6c and Sentinel7c datasets. The results reveal that all transferred models

outperformed IA VIB SD trained solely on the Sentinel7c dataset when using 10% to

50% of the dataset for training. Notably, the highest accuracy was achieved with the

transfer learning approach that replaces the IA module in the pretrained IA VIB SD

and updates the model with the new imagery data.

In summary, the study in this chapter makes a two-fold contribution:

1. Proposed a novel cross-sensor transfer learning approach that accommodates vari-

able spectral bands in multispectral imagery from different sensors by learning

and adapting class-oriented spectral patterns. This approach presents an inno-

vative strategy for few-shot learning in remote sensing and offers a promising
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solution for smoke detection using multi-sensor multispectral satellite imagery,

particularly for fire disaster prevention.

2. Introduced a labelled multispectral satellite imagery training dataset, Sentinel7c.

This dataset, together with Landsat6c, holds significant potential for advancing

research in DL-based smoke detection and cross-sensor transfer learning.

In contrast to conventional transfer learning approaches, as demonstrated in Fig-

ure 3.2, this study focuses on transferring a DL model pretrained on multispectral

imagery from one sensor to a new sensor with potentially different spectral bands, as

illustrated in Figure 6.1. The proposed transfer learning approach does not involve di-

mensionality reduction (in terms of channel count) in the new satellite imagery, which

could result in information loss. Instead, dimensionality increment is leveraged by ex-

tracting class-oriented spectral patterns with the assistance of the IA module. Such a

transfer learning strategy has not yet been explored in the existing literature.

Figure 6.1: The proposed transfer learning approach increases the input dimension by
utilising IA. Notably, although IA was originally designed to extract spectral patterns
to improve VIB SD performance, it also serves as a mechanism for mapping diverse
input bands to a consistent number of spectral patterns, which are used as input to
VIB SD.

Furthermore, compared to the cross-sensor transfer learning approaches proposed

in [283] and [285], this approach is more straightforward. It utilises a single DL model

structure and does not involve defining subdomains to bridge the source and target

domains, which would require additional cumbersome data pre-processing.

The remainder of this chapter is organised as follows:

• Section 6.2 introduces the materials and methods employed in this study.

118



CHAPTER 6. CROSS-SENSOR TRANSFER LEARNING

• Section 6.3 details the experimental settings and evaluation metrics.

• The experimental results are discussed in Section 6.4.

• Finally, Section 6.5 presents the conclusions drawn from this study.

6.2 Materials and Methods

This section presents additional information about the two datasets used in this in-

vestigation, along with the transfer learning approaches examined in this study and

the evaluation metrics. The architecture of the VIB SD model and the construction

of Landsat6c were detailed in Chapter 4. The design of the IA module, as well as

the IA VIB SD model resulting from its integration with VIB SD, was described in

Chapter 5.

6.2.1 Datasets

As previously mentioned, the source domain dataset Landsat6c comprises six spectral

bands: RGB, NIR, SWIR 1, and SWIR 2. In contrast, the target domain dataset

Sentinel7c, newly created from Sentinel-2 MSI imagery, comprises seven bands, namely

RGB, NIR, NIR 2, SWIR 2, and SWIR 3. The construction of Sentinel7c follows the

same procedure as that of Landsat6c, as described in Chapter 4.

Aside from the difference in the number of bands, Landsat6c and Sentinel7c dif-

fer across other properties associated with the characteristics of their sensors. Ta-

ble 6.2 provides detailed specifications for Landsat 5 TM, Landsat 8 OLI, and Sentinel-2

MSI, demonstrating the disparities in their bands, bandwidths, and spatial resolutions.

These differences highlight the challenges that cross-sensor transfer learning must ad-

dress when using multispectral satellite imagery from multiple sensors for smoke de-

tection.

The imagery files in Landsat6c and Sentinel7c both have dimensions of 256 × 256

pixels in terms of width and height. Table 6.3 shows the class names and the respective

number of images in each class for the two datasets.
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Table 6.2: Specifications of selected bands from Landsat 5 TM, Landsat 8 OLI, and
Sentinel-2 MSI used in the Landsat6c and Sentinel7c

Band
Wavelength (µm) Spatial Resolution (m)

TM OLI MSI TM OLI MSI

Red 0.63–0.69 0.636–0.673 0.65–0.68 30 30 10

Green 0.52–0.60 0.53–0.59 0.543-0.578 30 30 10

Blue 0.45–0.52 0.45–0.51 0.458-0.523 30 30 10

NIR 0.76–0.90 0.851–0.879 0.785-0.899 30 30 10

NIR 2 – – 0.855–0.875 – – 20 (Resampled to 10)

SWIR 1 1.55–1.75 1.566–1.651 – 30 30 –

SWIR 2 2.08–2.35 2.107–2.294 1.565-1.655 30 30 20 (Resampled to 10)

SWIR 3 – – 2.1–2.28 – – 20 (Resampled to 10)

Table 6.3: The class distributions of Landsat6c and Sentinel7c

Dataset Number of Bands Classes
Number of Images

Per class Total

Landsat6c 6

Clear 944

2770
Other aerosol 916

Smoke 910

Sentinel7c 7

Clear 112

351
Other aerosol 116

Smoke 123
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6.2.2 Methods

The study examines the performance of models derived from various transfer learn-

ing approaches against a benchmark model trained exclusively on the target domain

dataset. The transfer learning approaches investigated in this chapter are based on the

IA VIB SD model, which is first trained on the source domain dataset and then up-

dated on the target domain dataset using the pretrained weights. This type of transfer

learning is commonly referred to as homogeneous-network transfer learning, in con-

trast to heterogeneous-network transfer learning, which employs a different model for

the target domain. The latter has been demonstrated in the work of [283] and [285],

both reviewed in Chapter 3.

Notably, homogeneous-network transfer learning often requires modifying the input

layer of the DL model when the imagery data differs in dimensions (e.g., the number

of spectral bands) between the source and target domains. Similarly, the classification

head must be replaced if the number of classes varies across domains. Despite these

structural adjustments, the model transferred to the target domain is still considered

a version of the source domain model.

Figure 6.2 provides a schematic representation of the model training and transfer

learning methods used in this study. First, the IA VIB SD model is trained sepa-

rately on Landsat6c (source domain) and Sentinel7c (target domain), as shown in

Figure 6.2 (a). The latter serves as the benchmark model to evaluate the performance

of the transferred models. Subsequently, the Landsat6c-pretrained IA VIB SD model

is transferred to the target domain using four different transfer learning methods: two

methods using the conventional approach, depicted in Figure 6.2 (b), and two methods

employing the proposed approach, shown in Figure 6.2 (c).

In the context of the study in this chapter, the source domain dataset Landsat6c

and the target domain dataset Sentinel7c share the same classes, eliminating the need

to replace the classification head of IA VIB SD. However, since Sentinel7c contains

seven spectral bands, one more than Landsat6c, this discrepancy must be addressed.

Two options can be considered to handle this difference:

1. Replacing the IA module: This involves modifying the IA module to accept seven

bands as input for the Sentinel7c dataset.
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Figure 6.2: Schematic of model training and transfer learning approaches. (a)
IA VIB SD trained purely on Landsat6c (as the pretrained model to be transferred)
or Sentinel7c (as the benchmark model to evaluate the performance of the transferred
models). (b) Conventional approach to transferring Landsat6c-trained IA VIB SD to
Sentinel7c: “HT” and “HTNL” map seven input bands in Sentinel7c data to six bands,
aligning with the Landsat6c-pretrained model, using linear and non-linear mapping,
respectively. (c) Proposed approach to transferring Landsat6c-trained IA VIB SD to
Sentinel7c: “FineTune” involves replacing the IA Module in the pretrained IA VIB SD,
freezing the VIB SD, and updating its weights through fine-tuning; “Init” entails train-
ing IA and VIB SD together with random IA weights and pretrained VIB SD weights.

2. Adding a mapping layer: This approach adds a mapping layer before IA VIB SD,

mapping the seven-band input imagery to a six-band feature map, which can then

be fed into IA VIB SD.

The conventional approach in the second option, serving as the transfer learning

benchmark, can be implemented through a linear mapping, similar to the method in

[288], using a 1×1 convolutional layer without an activation function, referred to as the

“HT” method. It can also be implemented using a non-linear mapping by introducing

an activation function in the 1 × 1 convolutional layer, referred to as the “HTNL”

method. Notably, both methods in this approach utilise all spectral bands from both
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the source and target domains, which is advantageous compared to methods requiring

band selection or dimensionality reduction techniques that may result in significant

information loss.

The proposed approach, which is the first option, offers several advantages:

• The IA module can learn to extract class-oriented spectral patterns more effec-

tively by leveraging all seven bands.

• The primary feature extraction base, the VIB SD model, which processes a fea-

ture map consisting of 32 spectral patterns, remains unchanged. This ensures a

smoother transition in transfer learning compared to scenarios where the major

feature extraction base processes the original bands directly.

During the transfer learning process, both the new IA module or the mapping layer

can initially be trained separately while VIB SD is frozen. Subsequently, VIB SD is

unfrozen, and the entire model is fine-tuned with a low learning rate. This method,

where the VIB SD is fine-tuned while leveraging the new IA module, is referred to as

“FineTune.”

Alternatively, the new IA module or the mapping layer can be trained together with

the transferred VIB SD model, initialised with pretrained parameters. This method,

training the integrated model from scratch with the new IA module and pretrained

VIB SD, is labelled as “Init.”

It is important to highlight that the “HT” and “HTNL” methods modify the input

imagery by mapping it to the same dimensionality as the imagery used to pretrain the

models. Although the IA module aids “HT” and “HTNL” in learning useful spectral

patterns, these patterns are not derived from the actual spectral bands. In contrast,

the “FineTune” and “Init” approaches maintain the integrity of the original input im-

agery by learning genuine spectral patterns directly from the actual bands. Findings

demonstrate that “FineTune” and “Init” deliver superior performance by preserving

the original input imagery. Preliminary results indicate that “Init” outperforms “Fine-

Tune,” leading to the decision to train both “HT” and “HTNL” from scratch without

fine-tuning.
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In the following content, where the context is clear, “HT”, “HTNL”, “FineTune”,

and “Init” also refer to the corresponding models resulting from the four transfer

learning methods.

6.3 Experimental Settings and Evaluation Metrics

6.3.1 Training Environment

All algorithms were implemented in TensorFlow and trained on the Ubuntu 16.04

operating system. The training was conducted using two Nvidia GeForce 1080 GPUs,

utilising the mirror strategy provided in the TensorFlow standard library. The Adam

optimiser [300] was used for all models.

To ensure consistency in comparison, a combination of global and local random

seeds were employed during training to control various random processes, including

parameter initialisation, dataset splitting, shuffling, and the distribution of training

jobs between the GPUs. This approach guarantees that data splits remain consistent

across different models when using the same split percentage, enhancing comparability

between the models.

6.3.2 Pre-training IA VIB SD on Landsat6c

For the Landsat6c dataset, 64% was allocated for training, 16% for validation, and

the remaining 20% for testing. To enhance the training dataset, random horizontal

and vertical flipping were applied as data augmentation techniques. A batch size of 32

was used, with a maximum of 300 training epochs. Early stopping was implemented

to prevent redundant training, terminating the process if validation accuracy did not

improve over 60 epochs. The initial learning rate was set to 0.01, with a reduction

factor of 0.8 applied if the validation loss did not decrease within 20 epochs.

The model was trained using multiple seed combinations, and the weights yielding

the highest testing accuracy of 85.08% were selected for further investigation into cross-

sensor transfer learning using the Sentinel7c dataset.
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6.3.3 Training the Benchmark and Transferred Models on Sen-

tinel7c

The training task associated with the target domain involves training the benchmark

IA VIB SD purely on Sentinel7c and updating the Landsat6c-pretrained IA VIB SD.

This aims to verify the following:

1. Can the transferred models achieve higher accuracy than the benchmark model,

considering the effects of differing spectral bands and the number of bands be-

tween the source and target domains?

2. Can the proposed transfer learning approach (which includes the “FineTune” and

“Init” methods) outperform the conventional approach (which includes the “HT”

and “HTNL” methods)?

3. Can the proposed approach maintain superior performance even in scenarios

where labelled training data in the target domain are extremely limited?

To address these questions through concrete experimental evidence, all models were

trained with 10%, 20%, and up to 50% of the Sentinel7c dataset, with their performance

assessed using the remaining data for validation. Validation metrics were used for

comparison. For each percentage of training data, the global seed was altered 10

times, and the overall model performance was compared across 10 sets of results for

each training data percentage.

Due to the small size of the Sentinel7c dataset, a batch size of 8 was used. The

maximum number of epochs was set to 300, and the early stopping strategy mentioned

earlier was applied to avoid redundant training. For training the benchmark model and

using the “Init”, “HT”, and “HTNL” methods, the initial learning rate was set to 0.01

and reduced by a factor of 0.8 if the validation loss did not decrease within 20 epochs.

For the “FineTune” method, the initial learning rate was set to 0.0005 and similarly

reduced by a factor of 0.8 if the validation loss did not decrease within 20 epochs.

6.3.4 Evaluation Metrics

The study in this chapter adopts the same evaluation metrics as in Chapter 5: accuracy

(%), Kappa, and FNR for the target class, “Smoke.”
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The evaluation of both the transferred models and the original model was based on

their performance during validation, using 10%, 20%, and up to 50% of the Sentinel7c

dataset for training. This corresponds to 90%, 80%, and down to 50% of the dataset,

respectively, being utilised for validation.

6.4 Results and Discussion

In this section, the results of the transferred IA VIB SD obtained using different trans-

fer learning methods are compared against the results of the benchmark IA VIB SD

trained solely with the Sentinel7c dataset. The comparisons are based on the validation

results using 10% up to 50% of the samples for training, with the rest allocated for

validation.

Table 6.4 presents the parameter counts of all the transferred models in compari-

son to the benchmark IA VIB SD trained on the Sentinel7c dataset. It demonstrates

that the proposed ”FineTune” and ”Init” methods maintain the same complexity as

the original model, whereas ”HT” and ”HTNL” only introduce negligible additional

parameters to the benchmark model.

Table 6.4: Parameter counts of the models when trained using Sentinel7c.

Model Benchmark FineTune Init HT HTNL

Parameter Count 1,812,285 1,812,285 1,812,285 1,812,367 1,812,367

Table 6.5 presents results, including mean accuracies and Kappa, along with 95%

confidence intervals. The best mean values for all metrics are highlighted in bold. No-

tably, the proposed approach, involving the replacement of the IA module, consistently

achieved the best performance.

As indicated in Table 6.5, training a new IA VIB SD with only 10% of the Sen-

tinel7c data significantly increased accuracy to 66.2% when used for predictions on

the Sentinel7c dataset, surpassing the 54.13% accuracy obtained by the Landsat6c-

pretrained IA VIB SD, as presented in Table 6.1. Particularly noteworthy is that the

transferred model, utilising the proposed “FineTune” method, further improved the

accuracy to 71.99%. Moreover, when trained with 50% of the Sentinel7c data, the
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proposed “Init” method yielded an accuracy of 90.17%, which is 5.69% higher than the

benchmark model trained exclusively on Sentinel7c data.

Table 6.5: Results of all transferred models versus the benchmark model trained with
10% - 50% Sentinel7c data

Data% Model Accuracy Kappa FNR

10%

Benchmark 66.20± 8.38% 49.36± 12.42% 39.62± 24.61%

FineTune 71.99± 6.28% 57.99± 9.22% 30.95± 21.73%

Init 71.87± 6.77% 57.83± 10.33% 33.10± 21.65%

HT 69.97± 10.40% 54.99± 15.52% 36.63± 26.19%

HTNL 70.82± 8.48% 56.33± 12.35% 36.36± 30.07%

20%

Benchmark 75.87± 6.63% 63.84± 9.77% 28.03± 16.69%

FineTune 80.43± 4.34% 70.60± 6.47% 19.11± 14.09%

Init 81.25± 5.36% 71.84± 8.10% 22.11± 11.42%

HT 79.22± 4.66% 68.81± 6.96% 22.73± 18.25%

HTNL 80.11± 5.85% 70.15± 8.81% 24.40± 12.36%

30%

Benchmark 80.49± 10.24% 70.72± 15.42% 26.24± 21.24%

FineTune 82.69± 6.19% 74.00± 9.41% 18.29± 13.83%

Init 85.55± 4.83% 78.32± 7.22% 19.65± 6.81%

HT 82.04± 9.14% 73.02± 13.73% 21.00± 13.69%

HTNL 83.76± 3.99% 75.61± 6.07% 20.29± 10.88%

40%

Benchmark 83.05± 3.94% 74.51± 5.95% 20.69± 12.10%

FineTune 85.14± 3.54% 77.66± 5.34% 16.63± 14.61%

Init 86.10± 3.83% 79.06± 5.87% 14.64± 9.89%

HT 85.14± 6.06% 77.64± 9.10% 17.59± 15.36%

HTNL 86.14± 5.31% 79.15± 8.05% 18.30± 13.84%

50%

Benchmark 84.48± 4.08% 76.64± 6.09% 20.19± 9.89%

FineTune 85.63± 3.79% 78.39± 5.76% 15.62± 15.45%

Init 90.17± 4.23% 85.25± 6.32% 10.73± 7.78%

HT 87.01± 6.15% 80.48± 9.21% 14.82± 16.68%

HTNL 89.48± 3.44% 84.20± 5.19% 16.35± 7.35%
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It can be observed that the “FineTune” model excelled in terms of overall accuracy

and Kappa when using 10% of the Sentinel7c dataset for training, and it maintained

the lowest FNR for the target class “Smoke” when training data were at 10%, 20%, and

30%. However, the “Init” model began to exhibit higher overall accuracy and Kappa

when using 20% of the training data and achieved the lowest FNR for the target class

’Smoke’ when the training data exceeded 40%.

The observed trend suggests that the “FineTune” method, with its careful updates

to pretrained model weights, effectively leveraged the spectral patterns learned from

the source domain when the training data were extremely limited. In contrast, the

“Init” method adapted better to the new spectral patterns in the target domain when

more training data were available.

Figure 6.3 shows the boxplots of the results for all transferred models and the

benchmark model. The figure reveals consistent trends when evaluating the models

based on their median values.

Figure 6.4 presents a line chart depicting the performance of all models trained

with 10% to 50% of the Sentinel7c dataset. The chart clearly illustrates that the

proposed approach, particularly the “Init” method, demonstrates superior performance

compared to the benchmark model and the conventional transfer learning approach.

In summary, the findings highlight the effectiveness of the proposed transfer learn-

ing approach for cross-sensor transfer learning, particularly in scenarios with limited

training data from the new sensor. Notably, the approach is model-agnostic, allowing

the replacement of the base model VIB SD with any known model structure, provided

that the input shape is modified to integrate with the IA module seamlessly.
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Figure 6.3: Boxplots of the results.
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Figure 6.4: Line charts of the results.
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Furthermore, the proposed approach stands out from the method presented in [283],

which trained a brand new model for the target domain using data featuring pseudo

labels generated by a pretrained model from the source domain. Similarly, in contrast

to the approach outlined in [285], which involves substantial data pre-processing based

on domain knowledge, the proposed approach is straightforward, eliminating the need

for intensive model training, feature engineering or domain-specific knowledge.

Nevertheless, given that the proposed approach depends on the IA module, existing

DL models must be integrated with the IA module prior to applying this approach.

Consequently, it is not possible to directly transfer models that have already been

trained on large datasets. Instead, these models must undergo retraining after inte-

gration before they can be utilised. Moreover, additional research may be required to

ascertain the efficacy of the proposed method with specific base models, as the effec-

tiveness of the IA module could be influenced by the unique structures of these models,

as discussed in Chapter 5.

6.5 Conclusion

In this chapter, it is demonstrated that adapting class-oriented spectral patterns learned

by the IA module can facilitate cross-sensor transfer learning for smoke detection using

multispectral satellite imagery. The results show that, with the assistance of the IA

module, transferring the pretrained IA VIB SD model from Landsat6c and updating

it with a small amount of Sentinel7c data consistently resulted in significantly higher

accuracy compared to training the model exclusively with an equivalent amount of

Sentinel7c data. Remarkably, the best results were obtained using the proposed “Fine-

Tune” and “Init” methods. These two methods replace the IA module to accept seven

bands as input from the Sentinel7c dataset before updating the model. This indicates

that the IA module autonomously adapts to new data and effectively retains critical

spectral features learned from the Landsat6c dataset for accurate prediction.

It is worth noting that the number of input channels for VIB SD is set to 32 to

integrate with IA in IA VIB SD. This is because the IA module outputs a feature

map with 32 channels, representing the spectral patterns it extracts by default. This

strategy can be applied to any DL model structure. Therefore, this approach offers

a model-agnostic, easy-to-implement solution for early smoke detection using multi-

sensor, multispectral imagery, enabled by IA-supported cross-sensor transfer learning
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that accounts for varying spectral bands across different sensors.
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7.1 Summary of Contributions

This thesis introduces three innovative approaches to enhancing timely and accurate

scene-level EF smoke detection using multispectral satellite imagery, thereby facilitat-

ing fire disaster prevention.

The first approach is the lightweight CNN model VIB SD, presented in Chapter 4,

designed specifically for smoke detection with potential for onboard SmallSat appli-

cations. Additionally, the Landsat6c dataset, a multispectral satellite imagery smoke

detection training dataset, was created. As the first of its kind in the literature, Land-

sat6c enables the exploration of IR bands to improve VIB SD’s accuracy in smoke

detection. A comprehensive investigation using VIB SD and Landsat6c showed that

each IR band contributes individually to enhancing VIB SD’s detection accuracy.

The second approach, proposed in Chapter 5, is the IA module which enables DL

models to learn class-oriented spectral patterns and enhance smoke detection accuracy,

particularly with multispectral satellite imagery. IA’s effectiveness was demonstrated

through its integration with DL models of various architectures, including widely-

recognised CNN models and the VIB SD model. Notably, the IA VIB SD model,

combining IA and VIB SD, outperformed other models when trained on both the

RGB USTC SmokeRS dataset and the multispectral Landsat6c dataset. Class-oriented

characteristics can be clearly observed in the IA-learned spectral patterns through

visualisation.

The third approach, introduced in Chapter 6, leverages cross-sensor transfer learn-

ing to facilitate fast model development, thereby achieving more timely smoke detec-

tion with a higher temporal resolution gained through combining multiple satellites for

the task. The proposed transfer learning approach innovatively adapts class-oriented

spectral patterns learned from the source domain to the target domain, facilitated by

the IA VIB SD model. Specifically, by retaining the VIB SD part within the source

domain-pretrained IA VIB SD during the transfer, the knowledge learned from the

source domain can be carried over to the target domain, while the IA module is re-

placed to adapt to the different band number in the target domain imagery. This

approach achieved superior accuracy compared to training IA VIB SD purely on the

target domain, as well as the conventional transfer learning approach, which employs

a mapping layer to align the band dimensions between the source and target domains.
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The major contributions of this thesis, rooted in the three innovative approaches,

are summarised as follows:

1. Invention of the lightweight VIB SD model, the IA module, and the in-

tegrated lightweight IA VIB SDmodel, contributing to accurate smoke

detection utilising multispectral satellite imagery:

• VIB SD achieved competitive accuracy with the state-of-the-art model, SAFA,

while using less than 2% of its parameters, demonstrating great potential

for onboard-SmallSat applications.

• The IA module, novelly incorporating band, spatial, and channel attention

mechanisms, enables DL models to automatically learn class-oriented spec-

tral patterns. It substantially enhances DL-based smoke detection using

multispectral satellite imagery, marking a pioneering achievement in the

literature.

• The IA VIB SD model, integrating IA and VIB SD, further improves smoke

detection accuracy with only a marginal increase in parameters compared

to VIB SD.

2. Development of an innovative cross-sensor transfer learning approach

aided by the IA module, facilitating rapid model development, con-

tributes towards solutions for timely smoke detection using multiple

satellites:

• This approach is straightforward to implement, avoiding the need for com-

plex data engineering, which typically requires domain expertise and is time-

consuming.

• It offers flexibility in the choice of satellites and spectral band combinations

in their data, as it accommodates varying band numbers between source

and target domains.

• By preserving the original spectral bands, it ensures that the learning and

adaptation of spectral patterns are based on authentic data, leading to ro-

bust model adaptation across different sensors.

• This approach also presents a promising few-shot learning strategy in re-

mote sensing. Notably, the transferred IA VIB SD model significantly out-

performed the benchmark IA VIB SD model, even when trained with only

10% of the target domain data, with as few as 10 training samples per class.
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3. Creation of two multispectral satellite imagery training datasets from

different sensors, contributing to future research:

• Landsat6c: Derived from Landsat 5 TM and Landsat 8 OLI, this dataset

comprises six spectral bands (i.e., RGB, NIR, SWIR 1, and SWIR 2) with

a spatial resolution of 30 metres. It is labelled into three scene classes

(“Smoke”, “Clear”, and “Other aerosol”), each containing over 900 training

samples. This dataset can support future research and industrial applica-

tions in satellite-based EF smoke detection. In addition, it can be further

used to generate pixel-level segmentation training datasets, facilitating fu-

ture research in pixel-level smoke detection.

• Sentinel7c: Derived from Sentinel-2 MSI, featuring seven spectral bands

(i.e., RGB, NIR, NIR 2, SWIR 2, and SWIR 3) with a spatial resolution of

10 metres and the same scene classes as Landsat6c. It contains 351 imagery

files with over 100 samples per class. It serves as an ideal target domain for

cross-sensor transfer learning. Additionally, it can be further expanded to

serve as an independent training dataset for smoke detection studies based

on Sentinel-2 MSI imagery.

7.2 Practical Implications

The findings and contributions of this thesis hold significant practical implications for

fire disaster mitigation and remote sensing applications:

1. Potential for NRT EF smoke detection using multiple existing satellites

with higher spatial resolution:

• The lightweight IA VIB SD model, already trained on Landsat6c and suc-

cessfully transferred to Sentinel7c with fewer than 200 training samples in

total, can be adapted to other satellites in a similar manner. The reduced

need for labelled training samples allows for rapid model transfer.

• Once the models achieve the required detection accuracy through ground-

based simulations, they can potentially be deployed onboard these satellites

for timely and reliable identification of EF smoke scenes, which is crucial for

mitigating extreme fire disasters.
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2. Rapid development of DL models for CubeSat constellations and other

resource-constrained platforms enhances the operational capabilities of

satellite-based fire monitoring systems, supporting fast response and

mitigation efforts:

• The Landsat6c-trained IA VIB SD model can be transferred to CubeSat

sensors with sufficient observational data that have successfully captured

smoke events.

• This approach can also be applied to CubeSat sensors yet to be launched

using synthetic data for simulation, provided the sensor specifications are

known, as demonstrated in [55].

• The success of IA VIB SD on onboard-SmallSats may inspire the develop-

ment of models specifically designed for CubeSat constellations, expanding

their capability for NRT smoke detection and other remote sensing tasks.

3. Applications in other remote sensing domains:

• The IA module or the IA VIB SD model could be applied in domains such

as water observation, vegetation disease detection, or other remote sensing

tasks where spectral information is crucial.

• The IA-aided transfer learning approach may benefit other areas of remote

sensing where labelled imagery is scarce.

• The IA module has shown potential to improve the interpretability of DL

models, aiding decision-making and analysis in environmental monitoring

and disaster management applications.

7.3 Future Directions

Building on the contributions and findings of this research, several avenues for future

work are identified:

1. Refinement and optimisation of IA VIB SD:

• Further refine and optimise the IA VIB SD model structure to enhance its

accuracy and stability in detecting EF smoke scenes.
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• Expand the current datasets and collect new datasets from different sensors,

particularly hyperspectral sensors on SmallSats, to improve model training

and validation.

2. Exploration of IA module applications:

• Investigate the application of the IA module in other remote sensing do-

mains to verify its effectiveness in learning class-oriented spectral patterns

for various environmental monitoring tasks.

• Develop methods to leverage the IA module for pixel-level labelling or seg-

mentation tasks, enhancing its utility in detailed image analysis.

3. Advancement of cross-sensor transfer learning:

• Further explore and optimise the proposed transfer learning approach to

improve its robustness and efficiency in adapting DL models to new sensors

with limited training data.

• Extend the transfer learning framework to incorporate data from additional

satellite sensors and constellations, supporting a more comprehensive and

integrated approach to smoke detection and other remote sensing applica-

tions.

4. Integration of advanced techniques and additional information:

• Investigate state-of-the-art techniques such as self-attention mechanisms and

lightweight transformers to improve the spatial and spectral feature extrac-

tion capabilities of DL models.

• Explore the integration of additional information, such as weather and en-

vironmental data, with satellite imagery to predict fire risk and enhance

proactive fire disaster prevention.

5. Broader applications in remote sensing:

• Apply the IA module or IA VIB SD model in other remote sensing domains,

such as water observation and vegetation disease detection, where spectral

patterns can provide significant contributions.

• Explore cross-sensor applications in other domains, aided by the IA module,

to enhance the versatility and applicability of DL models in various remote

sensing tasks.
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This chapter concludes the thesis by summarising the significant contributions,

practical implications, and future research directions, providing a comprehensive overview

of the advancements achieved in developing innovative approaches to smoke detection

using multispectral satellite imagery.
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