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Main steps:
1. To build in-house labelled Lidar datasets. 
2. To propose a DL-based pre-disaster building footprint extraction method 
with large-scale Lidar data validated in case studies at locations prone to 
natural disasters.
3. To propose a DL-based post-disaster multi-level BDLC method using 
large-scale Lidar data.

Aims
To address the above issues, this research aims to propose novel DL 
models to classify buildings with large-scale datasets considering both pre- 
and post-disaster periods.

The pre-disaster analysis focuses on building footprint extraction, and the 
post-disaster analysis focuses on multi-level building damage 
classification.

Introduction
After natural disasters, a rapid response is important to mitigate injuries and 
casualties. Both pre- and post-disaster building information plays an 
important role in facilitating swift disaster responses. However, current Light 
Detection and Ranging (Lidar)-based deep learning (DL) methods for 
disaster-related building information extractions have some limitations: (1) 
There is little evidence of applying DL models for building-related 
classifications considering data sources related to either before or after 
natural disasters; (2) The large-scale scenarios are rarely discussed or 
tested in well-known DL methods in Lidar applications; (3) Most current 
post-disaster studies lack proper multi-level building damage classifications 
in the remote sensing field.
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Pre-disaster: Building footprint extraction

Pre-disaster Post-disaster

Damage level D0 D1-D3 D4 D5 Mean
Ground truth 41 23 15 21 /

Description No/minor 
damage

Partially 
collapsed

Totally 
collapsed

Story 
failure /

TP of the proposed model 31 5 2 13 /

Accuracy of the proposed model 0.76 0.22 0.13 0.62 0.51

Post-disaster: Multi-level building damage classification
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Implication
• To allocate resources for rapid rescue decisions

• To allocate resources for recovery plans

• Benefit to developing countries, such as the Pacific Islands

Humanitarian-related purposes: 

• To contribute to the resilience and sustainability of cities and human 
settlements

• Aligning with the United Nations Sustainable Development Goal (UN 
SDG) 11 ‘Sustainable Cities and Communities’
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