
Problem Formulation

Practical Challenges
In the joint communications and sensing (JCS) paradigm, a single 
waveform must accommodate and be optimised for both tasks, as the 
ultimate goal of ISAC is to utilise a common resource block and a single 
device. However, designing a waveform that satisfies both communications 
and sensing performance is challenging and requires careful consideration. 

Additionally, due to the large distances involved, the sensing echoes from 
targets are typically very weak. Therefore, it is essential to equip the 
satellite with a receive filter that maximises the sensing mutual information.

Results
To demonstrate our proposed DNN-based framework, we use normalised 
rates for the communications and sensing utility functions, and a linear 
combination with variable 𝜌 to represent their trade-off. 
For the main system parameters, we deliberately choose 𝐾 = 3 users, 𝑄 = 3 
targets, 𝑁! = 16 transmit antennas, 𝑁" = 16 sensing receive antennas, and 
the signal length 𝐿 = 10 symbols. The results of the simulation are given as 
follows.

Introduction 
In this study, we propose a general framework for a learning-based 
approach to design waveform and receive filter for integrated sensing and 
communications (ISAC) over non-terrestrial networks, such as satellites. 
This approach forms a critical part of our overarching predictive design 
scheme, which is essential for satellite-based ISAC due to the inherent 
challenges of propagation delay and significant path loss. 

Given the extreme difficulty of the optimisation problem, we propose a data-
driven solution, leveraging its ability to adapt and learn from complex, 
dynamic environments, thus offering more accurate and flexible outcomes 
than traditional optimisation methods.
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An illustration of our system model

Our considered system 
model consists of 𝐾 single 
antenna-equipped ground 
IoT devices, 𝑄 sensing 
targets, and a satellite with 
𝑁! and 𝑁" transmit and 
sensing receive antennas, 
respectively.

We formulated our problem as a multi-objective optimisation problem 
(MOOP) as follows

Our objective is to maximise the expectation of the network utility function 
with respect to (w.r.t.) the channel state information (CSI), desired symbols, 
and target response matrix (TRM). Furthermore, the constraints ensure that 
the waveform and receive filter adhere to the power budget constraints.
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subject to kXnk2F  Pmax, kWnk2F  1
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maximise
Xn,Wn

EHn,Sn,Gn [U{UC(Xn,Hn,Sn), US(Xn,Wn,Gn)}] ,

Methods Our deep neural network (DNN) architecture to design 
waveform and receive filter is depicted as follows

Pre-processing: 
• Complex to scalar

DNN:
• 1	× (Concatenate)
• 3	×	(FC + ReLU) 

Post-processing: 
• Scalar to complex and 

normalise to power trace.

Loss function:
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Training and testing losses for various values of 𝜌 demonstrate convergence to 
specific minimum points, indicating the effectiveness of our data-driven training 
phase. We used 8000 samples for training and 2000 samples for testing.*

For different values of 𝜌, the testing values of communications and sensing rates 
vary. Although the sensing rates exhibit some unusual behaviour, generally, a 
higher 𝜌 results in a higher communications rate and a lower sensing rate. The 
following figure illustrates the trade-off between communications and sensing.

Communications and 
sensing trade-off

Our learning-based solution meets the 
power budget constraints for waveform and 
filter due to the penalty method and output 
normalisation scheme.
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* Experiments were conducted using PyTorch on an AMD EPYC 7313 CPU and an NVIDIA GeForce RTX3090 GPU.


