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Operational weather forecasting system relies on computationally expensive
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remarkable potential in weather forecasting achieving state-of-the-art . - 14-
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results. However, transformers are discrete models which limit their ability to - L0
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learn the continuous spatio-temporal features of the dynamical weather o 06 ]
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system. We address this issue with STC-ViT, a Spatio-Temporal Continuous > o e R L Cfesome
Vision Transformer for weather forecasting. STC-ViT incorporates the o a o]
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continuous time Neural ODE layers with multi-head attention mechanism to o 6-
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learn the continuous weather evolution over time. o » *
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Aims

The main aim of this study is to predict extreme events at high resolution. To
achieve this aim future studies would look at: Figure 2: RMSE comparison of STC-VIT trained at 1.40625 degree with

GraphCast and PanguWeather trained at 0.25 degree , IFS-ENS at 0.2
degree and IFS-HRES at 0.1 degree resolution data for lead times

 Weather and climate downscaling ranging from 1 to 10 days

 Climate Emulation
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We propose STC-VIiT which leverages the continuous learning paradigm to .
-

effectively learn the complex spatio-temporal changes even from weather | | — f\T\\\

data recorded at coarser resolution. The idea is to parameterize the i i Jormatves._ i remporal Contimous Attention ™
attention mechanism by converting it into a differentiable function. Temperature at 10 Temperature at 11 -
Continuous temporal attention is calculated sample-wise and combined with """-' '
the patch wise spatial attention to learn the spatio-temporal mapping of

weather variables in the embedding space of the vision transformer. 1B ~ R
Furthermore, we add derivation as a pre-processing step to prepare the '
discrete data for continuous model and explore the role of normalization in —

continuous modelling.
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Methods

at different time points.
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Figure 1: Temporal derivatives of image time series Figure 4: Temperature at 2-meter forecasts
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