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Introduction Results
* Artificial Intelligence and computer vision can solve many challenging
Earth Observation problems, such as flood detection [1] and semantic Does Interference Exist When Training a Once-For-All Network?
change segmentation [2]. (CVPRW, 2022) [4] ~ _ . . . training time |mpfover2§$:2£0pulaﬂ0n
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challenges for training Al models. method for training a | [ f -
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2) Training data heterogeneity due to nanosatellites observing
different geographical regions. Paper

3) Limited onboard compute hardware. Diversity is Definitely Needed: Improving Model-Agnostic Zero-shot
Classification via Stable Diffusion (CVPRW, 2023) [5]

Our methods

* How do we solve these challenges and enable state of the art computer

vision solutions for Earth Observation task in a nanosatellite summary

constellation? We developed technigues for improving the quality of synthetic images
from diffusion models such that they could generate training data for
A classification tasks with real images. This can be used to generate

IMS synthetic satellite training data. Anmual g Herbasous g fdustda
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* Enable the effective and practical use of Al models onboard
nanosatellites in a constellation.

* Use recent advances in computer vision and machine learning to
develop state of the art Earth Observation solutions.
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Methods

* Our solution consists of three stages: ground training, deployment and
knowledge transfer.

* In ground training we pretrain either a single network or subnet
population (many networks) with all available and relevant data, limiting the
onboard training time.
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*In the deploymgnt stage we search for and deploy optimal subnets to Top Left: Overview of the entire :z : r
each nanosatellite. method. 2 % 305
* Lastly, we use Federated Learning [3] to coordinate the knowledge Top right: Real (top row) and SynthetICE:: }
transfer of newly learnt knowledge between the subnets. (bottom row) satellite images. :
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N SR Communication We are currently working on developing a Federated Learning system capable of
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Subnet Population Preliminary results comparing against existing methods
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