
Methods 
GNNs for Channel Decoding

• GNN is a class of DL methods and is designed to process graph
structured data.

• Linear block codes can be graphically represented as the Tanner graph. 𝑛
variable nodes in the Tanner graph correspond to 𝑛 codeword bits.

• The channel decoding problem is in fact a binary node classification task
on the Tanner graph.

• The GNN-based decoder can finally obtain estimated codewords from
node embeddings.

• In each iteration, a variable node in GNN is assigned a hidden
embedding, which is updated based on the edge messages on the
Tanner graph.

Aims 
Develop a novel GNN-based channel decoding algorithm with better error 
correcting capability,  improved scalability, and lower training complexity, to 
enhance the accuracy and reliability of satellite communication systems in 
physical layer.

Results
We evaluate the decoding performance for BCH and LDPC codes. The
model hyperparameters are provided in the table below. Figure 4 and Figure
5 show the bit error rate (BER) results for the learned decoders. Simulation
results show that GNN decoder can improve BER performance compared to
the conventional BP and the NBP decoder for short BCH and LDPC codes.

We also verify the GNN decoders’ generalization capability by applying a
single trained decoder model directly to process codes with different block
lengths and codes rates. It shows that the GNN decoder is scalable to the
code length and code rate, i.e., a well-trained GNN can be used to decode
codes with different parameters without re-training.

Introduction 
Satellite communication systems, with the nature of long distance
transmission and high attenuation level, face the challenge of frequent
signal interference. To improve the system reliability, channel coding
technology is utilized to combat channel impairments and control
transmission errors in the process of satellite communication. For example,
the CCSDS TC Recommendation [1] chose BCH codes and LDPC codes for
uplink coding.

In modern satellite communication, traditional coding methods struggle due
to complex and unreliable environments. Researchers are actively seeking
optimal coding schemes that are accurate, flexible, and simple. Deep
learning techniques have shown promise in improving decoding, but many
studies face the challenge of increased neural network complexity as
codewords grow longer.

From the point view of scalability, we utilize the scalable Graph Neural
Network (GNN) technique to develop a novel channel decoding method,
allowing a single neural network structure to decode any block code. This
single trained GNN decoder is applicable across various block lengths and
code rates.
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Figure 1:  Basic schematic diagram for satellite communication.
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Figure 2: A bipartite Tanner graph.

Training of GNN
• The goal of the training

phase is to find an optimal
GNN that minimizes the
difference between the
transmitted codeword and
the estimate output by the
decoder.

• During the training phase,
GNN parameters are
updated utilizing the Adam
optimizer with a given
learning rate. Figure 3: The end-to-end training system.
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Figure 4: BER performance for BCH codes of length n = 63. EW-GNN is 
only trained with the (63, 51) BCH code and T = 8.

Figure 5: BER performance for LDPC codes at rate 1/2. EW-GNN is only 
trained with the (32, 16) LDPC code and T = 8.
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